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Abstract

After a contractionary monetary policy shock, aggregate output decreases over time
with a trough after a year and a half, while the real interest rate increases immedi-
ately, and remains high for about three quarters. A central step in the explanation
is obtaining a persistent increase in the real interest rate, holding aggregate output
constant. I study an endowment economy with segmented markets, where, as in the
U.S. economy, monetary policy is set in terms of a short-term nominal interest rate,
and I show that the real interest rate increases sizeably for up to one year. The shock
has a liquidity effect, moving money and interest rates in opposite directions. The
endogenous processes for the money growth rate and the real interest rate are strongly
serially correlated and close to their empirical counterparts. The more segmented are
markets, the stronger and more persistent are the effects of monetary policy shocks,
and the higher is the serial correlation of the processes for the money growth rate and
the real interest rate. Economies where the intertemporal elasticity of substitution is
low exhibit the same qualitative behavior as economies where the market segmentation
is high.
Keywords: segmented markets, limited participation, monetary policy shocks, real in-
terest rate, persistence, liquidity effect.
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1 Introduction

The VAR literature documents the short-run effects of unanticipated changes in the stance
of monetary policy: After a contractionary monetary policy shock, aggregate output de-
creases over time with a trough after a year and a half, the nominal interest rate increases
immediately and remains high for about three quarters, and the price level either does not
respond or declines over time1. The Fisher equation, stating that the real interest rate is
approximately equal to the nominal interest rate minus the expected inflation rate, implies
that the real interest rate also increases immediately, and remains high for about three quar-
ters. Both the delayed decrease in aggregate output and the immediate increase in the real
interest rate are central features that monetary models must be able to account for. The
behavior of aggregate output is, of course, of primary interest in itself, while the behavior of
the real interest rate is crucial in most explanations of the transmission mechanism of mon-
etary policy, where any component of the aggregate demand decreases following a persistent
increase in the real interest rate2.
Standard representative agent models where current consumption only affects current

period utility cannot account for the previous evidence. The Euler equations of the repre-
sentative agent imply a positive relationship between the real interest rate and the growth
rate of aggregate consumption. Hence, whenever aggregate output and consumption de-
crease over time, the real interest rate must be low, not high. Alternatively, whenever the
real interest rate remains high for several quarters, aggregate output and consumption must
increase, not decrease, over time, so the trough in their response to a contractionary mon-
etary policy shock must occur immediately, not after a year and a half. For instance, the
sticky prices framework models the fact that firms adjust prices only infrequently, and can
replicate the smooth behavior of the price level. By modelling the nominal interest rate as
the exogenous instrument of monetary policy, it can successfully replicate the effects of a
monetary policy shock on the real interest rate, but it cannot replicate its persistent and
delayed effect on aggregate output3.
A central step in the explanation must be, then, abandoning the representative agent

framework and explaining why, holding aggregate output constant, the real interest rate
increases immediately after a contractionary monetary policy shock, and remains high for
several quarters. The limited participation framework, originating from the works of Gross-
man and Weiss (1983) and Rotemberg (1984), successfully explains the immediate increase
in the real interest rate by modelling the fact that households trade bonds only infrequently,
so only a subset of households trades bonds at each moment in time. When a contrac-
tionary monetary policy shock hits the economy, it can only be absorbed by the subset of

1The evidence is robust with respect to different ways of identifying a monetary policy shock—Gordon and
Leeper (1994), Strongin (1995), Leeper, Sims and Zha (1996), Bernanke and Mihov (1998) and Christiano,
Eichenbaum and Evans (1999) document these stylized facts using different identification schemes.

2Bernanke and Gertler (1995) survey the literature on the credit channel explanation, which does not
work through changes in the real interest rate.

3Clarida, Gali’ and Gertler (1999) survey the literature on the sticky prices framework as a model of
monetary economies. Chari, Kehoe and McGrattan (1996) point out the persistence problem, and show that
the response of aggregate output to a monetary policy shock is neither persistent nor hump-shaped.
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households trading bonds at that moment in time, call them the participants in the bond
market. Then, the percentage decrease in the participants’ money demand must be larger
than the percentage decrease in aggregate money supply. If money supply and prices are
proportional, the participants’ real money demand must decrease. The equilibrium real in-
terest rate, then, must increase to discourage the participants’ consumption and real money
demand4. In limited participation models, however, all households invest in bonds and even-
tually trade bonds, so the real effects are bound to be short-lived. For instance, in the
benchmark limited participation economy of Lucas (1990), monetary policy shocks have real
effects only in the impact period, even in the case that the monetary policy process is serially
correlated. Christiano and Eichenbaum (1992), Alvarez and Atkeson (1997) and Alvarez,
Atkeson and Kehoe (1999) propose economies where the real effects last longer, but how to
obtain persistent real effects remains the open and central issue.
Data about bond market participation suggest the use of a different framework. The

1995 Survey of Consumer Finances shows that part of the households does not invest in
bonds at all5. The percentage of households investing in certificates of deposits is 14.1; in
savings bonds 22.9; in bonds 3; in mutual funds 12; in life insurance 31.46. The fact that the
percentages are stable over time leads to conjecture that, as an approximation and in the
short-run, the same households do not invest in bonds. This is what should be expected in
the presence of fixed costs of investing in bonds, as Mulligan and Sala-i-Martin (2000) show.
In the presence of such costs, the choice of investing depends on the wealth to be invested and
the nominal interest rate. If the nominal interest rate is stable, only rich households choose
to invest. And the 1995 Survey of Consumer Finances shows that, indeed, the percentage
of households investing in each category of assets sharply increases with income, which, in
turn, is positively correlated with wealth.
The previous evidence motivates the study of monetary economies where part of the

households never invests in bonds7. In such economies with segmented markets , as Lucas,
Alvarez and Weber (2001) label them, monetary policy affects the distribution of money
across households and the real allocation even when perfectly anticipated8, and the real
effects of a monetary policy shock last for several periods. With regard to the effects on the
real interest rate, the money growth rate and the investors’ consumption co-vary for the same
reason why, in limited participation models, the money growth rate and the participants’
consumption co-vary in the impact period of a monetary policy shock. When the monetary
policy process is positively serially correlated, after a contractionary shock, the money growth
rate remains low for several periods. The investors’ consumption, then, remains low for
several periods, and increases over time to return to its stationary level. The investors’
Euler equations imply, then, that the real interest rate increases immediately and remains

4Grossman and Weiss (1983) and Lucas (1990) focus on the effects of monetary policy shocks on the real
interest rate in limited participation endowment economies.

5See Table 5 B of Kennickell, Starr-McCluer and Sunden (1995).
6Mulligan and Sala-i-Martin (2000) and Mankiw (2000) cite related evidence.
7Alvarez and Atkeson (1996), myself in Occhino (2000) and Lucas, Alvarez and Weber (2001) adopt this

framework for the study of monetary policy, while Mankiw (2000) uses it to study fiscal policy issues.
8Cochrane (1998) points out that anticipated changes in the monetary policy variable seem to have real

effects.
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high for several periods.
In this paper, I study an endowment economy with segmented markets, where monetary

policy is a first-order Markov process for the nominal interest rate9. Modelling monetary pol-
icy in terms of a short-term nominal interest rate is of primary importance for two reasons.
First of all, this assumption best models the operating procedure of most monetary author-
ities. In the U.S. case, in particular, the Federal Reserve announces a target for the federal
funds rate, that is the overnight rate that private banks charge each other for non-borrowed
reserves, and then tries to reach that target affecting the aggregate supply of non-borrowed
reserves through open market operations, i.e. through the purchase and sale of government
securities. Also, Bernanke and Blinder (1992) show that the federal funds rate is an excellent
indicator of the stance of monetary policy, so innovations to the federal funds rate can be
identified with monetary policy shocks.
As documented in the following sections, the modelling strategy that I adopted is suc-

cessful along several important dimensions. A contractionary monetary policy shock has a
sizeable and persistent effect on the real interest rate: When the serial correlation of the
nominal interest rate is .9 as in the U.S. economy, after a 10 basis points unanticipated
increase in the nominal interest rate, the real interest rate increases by 20 basis points, and
remains high for up to one year. The shock has a liquidity effect, moving money and interest
rates in opposite directions. The endogenous processes for the money growth rate and the
real interest rate are strongly serially correlated and close to their empirical counterparts.
The money growth rate, in particular, is very close to a first-order autoregressive process
with a serial correlation of .510. Finally, the more segmented are markets, the stronger and
more persistent is the effect of monetary policy shocks, and the higher is the serial correlation
of the processes for the money growth rate and the real interest rate.
The rest of the paper is organized as follows. In section 2, I describe the economy and

define the equilibrium. The equilibrium behavior of the economy and the effects of monetary
policy shocks are characterized analytically in section 3, and numerically in section 4. Sec-
tion 5 studies economies where the intertemporal elasticity of substitution is low, and shows
that they exhibit the same qualitative behavior as economies where the market segmentation
is high. Section 6 concludes.

2 The economy

Let us consider an endowment economy populated with two types of households, I and N .
There are ω > 0 households of type I, and 1− ω > 0 households of type N , and households
of the same type are identical. There is a single non-storable good, and the preferences of
households of type i over their present and future stochastic consumption {ci,t}

∞
t=0, ci,t > 0

9Alvarez and Atkeson (1996) and Lucas, Alvarez and Weber (2001) consider the case where monetary
policy is set in terms of the money growth rate. In the second chapter of Occhino (2000), I model monetary
policy as a first-order Markov process for the ratio of the bond supply to aggregate nominal assets.

10Christiano, Eichenbaum and Evans (1998) document that the M2 growth rate is well approximated by
an AR(1) process with serial correlation of .5.
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all t, are

E

{

∞
∑

t=0

βt log(ci,t)

}

,

where β ∈ (0, 1), and the expectation is conditional on their information in period zero. The
more general case of constant elasticity of substitution preferences is considered in section 5.
In each period, a goods market session opens where goods are traded for money, which is a

dollar-denominated, durable asset. Households are subject to a cash-in-advance constraint—
Households of type i can only consume goods purchased with the cash balances Mi,t > 0
available at the beginning of the goods market session:

ptci,t ≤Mi,t,

where pt > 0 is the goods price. Let Mt ≡ ωMI,t + (1 − ω)MN,t be the money supply in
period t.
Before the goods market session, households of type i receive a constant endowment

yi > 0. It is convenient to define the aggregate endowment y ≡ ωyI + (1 − ω)yN , and the
investors’ share of aggregate endowment λ ≡ ωyI/y. We will notice that, as in the economies
of Alvarez and Atkeson (1996) and Lucas, Alvarez and Weber (2001), the aggregate behavior
of the economy only depends on the investors’ share of aggregate endowment λ, and neither
the percentage of investors ω nor the ratio of their individual endowment yI to the aggregate
endowment y play independent roles. The endowment cannot be consumed and must be
sold in the goods market. The goods market equilibrium condition is then

ωcI,t + (1− ω)cN,t = y.

The receipts from the sale are only available at the end of the session, and can only be
used to buy goods in the following periods. At the end of the session, the cash balances of
households of type i are the sum of their initial cash balances Mi,t, minus their consumption
expenditure ptci,t, plus the receipts ptyi from the sale of their endowment.
In each period, before the goods market session, a bond market session opens where

one-period nominal bonds and money are traded. A bond is a claim to one dollar at the end
of the period. To model the fact that only part of the households invests in bonds, I assume
that only households of type I, the investors, access the bond market. Investors cannot issue
bonds, and they can purchase BI,t ≥ 0 bonds with the cash balances AI,t > 0 available at
the beginning of the period, so

qtBI,t ≤ AI,t,

where 0 < qt < 1 is the bond price. Since the goods market session follows the bond market
session, the investors’ cash balances MI,t at the beginning of the goods market session are
equal to AI,t − qtBI,t. The non-investors’ cash balances MN,t at the beginning of the goods
market session are, of course, the same as their cash balances AN,t > 0 at the beginning of
the period.
A monetary authority also enters the bond market, issues Bt > 0 bonds, and redeems

them at the end of the period. The bond market equilibrium condition is then

ωBI,t = Bt.
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Let Dt ≡ qtBt be the value of the bond supply in period t.
The only source of uncertainty in this economy is the behavior of the monetary authority.

I assume that the monetary authority announces the bond price qt at the beginning of the
period, and stands ready to issue any number of bonds to clear the market at that price. I
model monetary policy as an exogenous stochastic process for the bond price, and let the
bond supply and the money supply be determined endogenously. Specifically, I assume that
the bond price qt follows a first-order Markov process with transition function

P (q, A) = Prob{qt+1 ∈ A|qt = q}, q ∈ Q, A ∈ B(Q),

where Q ⊂ (0, 1) is a Borel set, and B(Q) denotes the Borel subsets of Q.
At the end of the period, all bonds are redeemed and the investors receive BI,t dollars.

Their cash balances AI,t+1 at the beginning of the following period are then

AI,t+1 = AI,t − qtBI,t − ptcI,t + ptyI +BI,t.

The non-investors cash balances are instead

AN,t+1 = AN,t − ptcI,t + ptyN .

As in Lucas and Stokey (1987) and Lucas (1990), it is convenient to normalize all nominal
variables dated period t dividing them by the aggregate cash balances At ≡ ωAI,t + (1 −
ω)AN,t > 0 at the beginning of the period:

bI,t ≡
BI,t

At

, aI,t ≡
AI,t

At

, aN,t ≡
AN,t

At

, bt ≡
Bt

At

, dt ≡
Dt

At

, mt ≡
Mt

At

, pt ≡
Pt
At

.

Notice that ωaI,t + (1− ω)aN,t ≡ 1, all t, by definition. Also,

At+1 ≡ ωAI,t+1 + (1− ω)AN,t+1

= ω[AI,t − qtBI,t − ptcI,t + ptyI +BI,t] + (1− ω)[AN,t − ptcI,t + ptyN ]

= At −Dt +Dt/qt

≡ [1 + dt/qt − dt]At,

where the second equality follows from the bond market and goods market equilibrium
conditions, and from the definition of At. Notice that other ways of normalizing nominal
variables are possible and might be useful. For instance, one can divide all nominal variables
by the investors’ cash balances ωAI,t. The equilibria do not depend, of course, on the choice
of normalization. However, that choice can help in finding and characterizing the equilibria.
In particular, all the following existence and characterization results depend on the choice
of normalization adopted.
I restrict attention to stationary equilibria, where all aggregate real variables and all

aggregate normalized nominal variables depend in a time-invariant way on only two state
variables. The first state variable is the bond price qt, whose evolution is entirely exogenous.
The second state variable is an indicator of the distribution of cash balances between the two
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types of households at the beginning of each period, and the evolution of this second state
variable must be endogenously determined. As an indicator, I choose the investors’ share
of cash balances θt ≡ ωAI,t/At. As for the choice of normalization, the equilibria do not
depend on the choice of the indicator, but that choice can help in finding and characterizing
the equilibria.
It is then convenient to study the following recursive (stationary) competitive equilibrium.

Let s ≡ (q, θ) be the aggregate state of the economy. Let Θ ⊂ (0, 1) be an interval where θ
takes values in equilibrium, and let S ≡ Q×Θ be the set of possible values for the aggregate
state s. A recursive stationary equilibrium is a set of: an interval Θ ⊂ (0, 1); value functions
vi : R++ × S → R, i = I,N for both types of households; associated policy functions
b̂I : R++ × S → R+, ĉi : R++ × S → R++, â

′
i : R++ × S → R++, i = I,N ; debt function

d : S→ (0, 1); price function p : S→ R++; and law of motion θ
′ : S→ Θ for the investors’

share of nominal assets; such that the following conditions hold:

1. The investors’ value function and associated policy functions solve the following Bell-
man equation:

vI(aI , s) = max
{bI ,cI ,a

′
I
}

{

log(cI) + β
∫

Q
vI(a

′
I , q

′, θ′(s))P (q, dq′)
}

subject to bI ≥ 0, qbI ≤ aI ,

cI > 0, p(s)cI ≤ aI − qbI

and a′I [1− d(s) + d(s)/q] ≡ bI + [aI − qbI − p(s)cI ] + p(s)yI > 0.

The non-investors’ value function and associated policy functions solve the following
Bellman equation:

vN(aN , s) = max
{cN ,a′

N
}

{

log(cN) + β
∫

Q
vN(a

′
N , q

′, θ′(s))P (q, dq′)
}

subject to cN > 0, p(s)cN ≤ aN

and a′N [1− d(s) + d(s)/q] ≡ [aN − p(s)cN ] + p(s)yN > 0.

2. When aI = θ/ω and aN = (1−θ)/(1−ω), both the bond market and the goods market
are in equilibrium:

ωb̂I(aI , s) = d(s)/q

and ωĉI(aI , s) + (1− ω)ĉN(aN , s) = y.

Also, the law of motion θ′(s) of the investors’ share of assets θ is compatible with
individual optimization:

ωâ′I(aI , s) = θ′(s).
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Notice that, when looking for an equilibrium, one must pay particular attention to the
choice of the interval Θ. As we will see, a narrow interval is crucial to obtain an existence
result; but the interval cannot be too narrow, otherwise there are some θ ∈ Θ such that the
next period investors’ share of cash balances θ′(q, θ) lies outside Θ itself.
Using the constraints for the two types of households and the equilibrium conditions of

the two markets, one can easily show that, in equilibrium,

ωâ′I(aI , s) + (1− ω)â′N(aN , s) = 1.

Also, once an equilibrium is found, one can derive the equilibrium bond supply b(s) ≡ d(s)/q,
and the equilibrium money supply m(s) ≡ 1 − d(s). Notice that the money supply, that
is the cash balances available both at the beginning and at the end of the goods market
session, is only a fraction 1 − d(s) of the aggregate cash balances at the beginning of the
period—Part of the cash balances available at the beginning of the period are delivered to
the monetary authority in exchange of nominal bonds which are only redeemed after the
goods market session.

3 Equilibrium behavior of the economy

Since 0 < q < 1 for all s ∈ S, the investors invest in bonds all the money that they are
not going to need in the goods market, so their cash-in-advance constraint always binds in
equilibrium:

p(s)ĉI(aI , s) = aI − qb̂I(aI , s),

at aI = θ/ω. I focus on equilibria where the cash-in-advance constraint for non-investors
is also binding. Theorem A.1 in the appendix shows that, in any equilibrium where the
cash-in-advance constraint always binds also for non-investors, the goods price p(s) satisfies
the relation

p(s)y = 1− d(s), (1)

the law of motion θ′(s) satisfies the relation

θ′(s) = λ+ (1− λ)
d(s)

q − qd(s) + d(s)
, (2)

and the bond value d(s) solves the following functional equation, which is an equilibrium
version of the investors’ Euler equation:

d(s)

θ − d(s)
≡
∫

Q

β

1− λ

θ′(s)− λ

θ′(s)− d(q′, θ′(s))
P (q, dq′), (3)

all s ∈ S, where s ≡ (q, θ), and the law of motion θ′(s) is given by 2.
The following theorem A.2 in the appendix shows that, if the functions p(s), θ ′(s) and

d(s) are given by the equations 1, 2 and 3, and, in addition, p(s) satisfies the inequality

(1− ω)p(s)yN ≥ β(1− θ), (4)
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all s ∈ S, where s ≡ (q, θ), then a binding cash-in-advance constraint is also always optimal
for non-investors, and markets are in equilibrium. Notice that (1 − ω)p(s)yN are the non-
investors’ receipts from the sale of their endowment, and that 1−θ are the non-investors’ cash
balances at the beginning of the period, that is, with binding cash-in-advance constraints,
the non-investors’ receipts from the sale of their endowment in the previous period. Hence,
the inequality requires that the gross inflation rate, i.e. the inverse of the gross rate of return
of investing in money, be greater than the non-investors’ preferences discount factor for all
s ∈ S.
The previous theorem allows to reduce the problem of determining the equilibrium behav-

ior of the economy to the problem of finding a space Θ where θ takes values in equilibrium,
and a solution d(s) to the functional equation 3, such that the function θ′(s) given by the
relation 2 takes values in Θ and the function p(s) given by the relation 1 satisfies the in-
equality 4, for all s ∈ S. To this end, we need to make some assumptions constraining the
process for q. First, let us define the function d?(q), d? : (0, β)→ (0, β), as follows

d?(q) ≡
β − q

1− q
.

d?(q) is equal to β when q is equal to 0, is continuous and strictly decreasing in q, and is
equal to 0 when q is equal to β.

d?(q) has the following economic interpretation. Consider for a moment a deterministic
stationary economy where the bond price is constant and equal to q, the value of the bond
issue size is constant and equal to d, all the real variables are constant, and all the nominal
variables grow at the growth rate 1 − d + d/q of the aggregate cash balances. Since the
investors’ consumption is constant over time, from the investors’ Euler equation it follows
that q(1 − d + d/q) = β, which is simply the Fisher equation stating that the gross real
interest rate is equal to the ratio of the gross nominal interest rate to the gross inflation
rate. The equation can be written as q − qd + d = β, or d = (β − q)/(1 − q), so d = d?(q).
Hence, d?(q) is the constant value of the bond issue in a deterministic stationary economy
where the bond price is constant and equal to q, all the real variables are constant, and all
the nominal variables grow at the growth rate of the aggregate cash balances.
Let q and q be respectively the smallest and greatest values of q, and let us define

d ≡ d?(q), and d ≡ d?(q). LetM be the metric space of measurable functions on S taking

values in [d, d], with the sup norm. Theorem A.3 in the appendix proves that, if d(s) belongs
toM, then θ′(s) takes values in the interval [θ, θ], where θ ≡ λ+ (1− λ)d/(q− qd+ d), and
θ ≡ λ+(1−λ)d/(q−qd+d). Then, if we let the intervalΘ where θ takes values in equilibrium

be the interval [θ, θ], we only need to determine a solution d ∈M to the functional equation 3,
such that the function p(s) given by the relation 1 satisfies the inequality 4, for all s ∈ S.
To determine such a solution, let us make the following assumption constraining the

minimum value q of the process for q:

Assumption 3.1 d ≤ λ.

The assumption constrains the ratio of the bond value to the sum of the bond value and the
money supply to be less than the investors’ share of the aggregate endowment. Empirically,
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the ratio of the government debt to the sum of the government debt and M2 is around .6.
As I will argue in the next section, a value for the investors’ share of aggregate endowment
larger than 60% seems reasonable.
Let us define the operator T as follows:

(Td)(s) ≡
θR(s)

1 +R(s)
, (5)

where R(s) is the right hand side of the functional equation 3. Theorem A.4 in the appendix
proves that, under assumption 3.1, T :M →M. Since a fixed point of T is a solution to
the functional equation 3, we look for a fixed point of T .
It is convenient to restrict our search for a fixed point to the subset D ⊂ M of the

functions d(s) such that d(q, θ)/θ is weakly increasing in θ: as the investors’ share of cash
balances increases, their nominal investment in bonds increases relative to their consumption
expenditure. Notice that, if d ∈ D, d(q, θ) is strictly increasing in θ: as the investors’ share
of cash balances increases, their nominal investment in bonds increases in absolute value.
Then, theorem A.5 in the appendix proves that θ′(q, θ) is strictly increasing in θ, theorem A.6
proves that T : D → D, and theorem A.7 proves that T is monotone.
The following is the way I use the monotonicity of T to determine numerically a fixed

point. First, let us construct a sequence of functions in D as follows:

d0 ≡ d, and dn ≡ T nd0, all n ≥ 1. (6)

Notice that T : D → D implies that, if dn ∈ D, then dn+1 = Tdn ∈ D, all n ≥ 0. Since
d0 ∈ D, by induction, dn ∈ D, all n ≥ 0.
Then, notice that d0 ≡ d and d1 ∈ D imply d0 ≤ d1. Also, the monotonicity of T implies

that, if dn ≤ dn+1, then dn+1 = Tdn ≤ Tdn+1 = dn+2, all n ≥ 0. Hence, by induction,
the sequence {dn}∞n=0 is weakly increasing. Since d

n ≤ d, all n ≥ 0, the sequence {dn}∞n=0

converges pointwise to a function, call it d∞. Since dn ∈ D, all n ≥ 0, and since d∞ is the
pointwise limit of the sequence {dn}∞n=0, d

∞ also belongs to D.
To compute a numerical approximation to d∞, I discretize the state space S with a grid

of a finite number of states, I apply the operator T to the constant function d, and I iterate
until convergence is reached. Although d∞ is not necessarily a fixed point of T , its numerical
approximation turns out to be a fixed point of T and, therefore, a solution to the functional
equation 3. Moreover, I obtain the same fixed point applying the operator T to the constant
function d and iterating until convergence is reached, Hence, abstracting from the fact that
we are dealing with a numerical approximation of d∞ and not with d∞ itself, d∞ is the only
fixed point in D. The argument is the same as in the proof of the Corollary of Theorem 17.7
of Stokey and Lucas with Prescott (1989). Suppose that d ∈ D is a fixed point of T . Notice
that d0 ≡ d and d ∈ D imply d0 ≤ d. Also, the monotonicity of T implies that, if dn ≤ d,
then dn+1 = Tdn ≤ Td = d, all n ≥ 0. Hence, by induction, dn ≤ d, all n ≥ 0. Since d∞

is the pointwise limit of the sequence {dn}∞n=0, d
∞ ≤ d. A similar argument starting with

d0 ≡ d leads to d∞ ≥ d. Hence, if d ∈ D is a fixed point of T , then d = d∞.
Once a solution d ∈ D has been obtained numerically, p(s) and θ′(s) are given by the

relations 1 and 2. As explained earlier, these functions describe the equilibrium behavior
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of the economy only if p(s) satisfies the additional inequality 4. I then check this condition
and proceed only if it is satisfied. In this case, several aggregate variables can be determined
as follows. The growth rate of the aggregate cash balances is 1 − d(s) + d(s)/q, and the
ratio of the money supply to the aggregate cash balances is 1− d(s). Since I am focusing on
equilibria with binding cash-in-advance constraints, the money growth rate and the inflation
rate are the same and can be determined as follows. Since non-investors spend in the current
period all the receipts from the sale of their endowment in the previous period, the ratio of
their real consumption to their endowment is equal to the inverse of the gross inflation rate.
Since their real consumption is equal to the ratio of their initial money holdings to the goods
price, the inverse of the gross inflation rate is equal to

1− θ

1− ω

1

p(s)

1

yN
=

y

(1− ω)yN

1− θ

p(s)y
=

1

(1− λ)

1− θ

1− d(s)
.

Finally, the expected inflation rate πe(s) is given by

1 + πe(s) =
∫

Q

[1− d(s) + d(s)/q]p(q′, θ′(s))

p(s)
P (q, dq′),

and the real interest rate r(s) is defined as

1 + r(s) ≡
1

q

1

1 + πe(s)
.

I prove an existence theorem under the following two additional assumptions constraining
the variability of the process for q:

Assumption 3.2 d/d ≤ β/q.

Assumption 3.3 d− d ≤ 1− β.

Under the first additional assumption, theorem A.9 proves that T : Dθ → Dθ, where Dθ

is the subset of D of the functions d such that θ − d(q, θ) is weakly increasing in θ: as the
investors’ share of cash balances increases, their consumption expenditure increases. Notice
that any function d(q, θ) belonging to Dθ has bounded slope (and is, therefore, continuous)
with respect to its second argument θ. As a corollary, the pointwise limit d∞ of the sequence
{dn}∞n=0 defined in 6 exists and belongs to Dθ. The next theorem A.10 proves that d

∞ solves
the functional equation 3. Then, theorem A.11 proves that, under the second assumption,
the function p(s) defined in 1 satisfies the inequality 4.
The result that the price level is determinate even though the monetary authority fol-

lows an interest rate rule does depend on the fact that I am focusing on a specific subset of
equilibria. I restricted attention to recursive equilibria, so I am only considering stationary
equilibria where the ratio of the price level to aggregate cash balances is a time-invariant
function of the aggregate state of the economy. Also, I am focusing on the subset of recur-
sive equilibria where the space Θ depends in a specific, reasonable way on the process for
q, and where the function d has specific, reasonable monotonicity properties with respect to
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the aggregate state variable θ. However, although there may exist multiple equilibria, there
may not exist the kind of price level indeterminacy first pointed out by Sargent and Wal-
lace (1975), that is multiple equilibria characterized by the same real allocation but different
price paths. The reason lies in the fact that the fiscal policy is non-ricardian or “passive” in
the terminology of Leeper (1991). Taxes and government spending are independent of the
price level (they are equal to zero!), and, given the real allocation, there is a unique price
level at which the initial real value of government liabilities equals the real discounted present
value of future seigniorage revenues, and the government intertemporal budget constraint is
satisfied.
Empirically, the serial correlation of the process for the nominal interest rate is around

.9. It is then important to characterize the equilibrium behavior of the economy under
the following additional assumption constraining the process for q to be positively serially
correlated:

Assumption 3.4 The transition function P is monotone, i.e., for every non decreasing
function f : Q→ R, the function

∫

Q f(q
′)P (q, dq′) is also non decreasing.

Under this additional assumption, we look for a solution belonging to the subset Dq of D
of the functions d(q, θ) weakly decreasing in q: as the bond price increases, the nominal
investment in bonds decreases. Theorem A.12 proves that, if d belongs to Dq, θ

′(q, θ) is
strictly decreasing in q, and theorem A.13 proves that T : Dq → Dq, Since both constant
functions d and d belong to Dq, the fixed point obtained applying the operator T to these
functions and iterating until convergence is reached also belongs to Dq.
A number of conclusions follow from the fact that d(q, θ) is weakly decreasing in q. Most

importantly, the money supply is weakly increasing in q, so, given θ, the money supply and
the interest rate are inversely related. Since prices and money are proportional, the goods
price and the interest rate are also inversely related. Consider what happens in the impact
period of a monetary policy shock. An expansionary shock is defined as an unanticipated
increase in the bond price q, or, equivalently, as an unanticipated decrease in the nominal
interest rate. Since the second state variable θ is given at the beginning of each period,
the behavior of any variable in the impact period of an expansionary shock only depends
on its response to changes in q. It increases if and only it is increasing in q. Hence, in the
impact period of an expansionary shock, the nominal interest rate decreases by definition,
the bond value d(s) decreases, the money supply increases and the inflation rate increases.
A monetary policy shock moves, then, money and interest rates in opposite directions — A
liquidity effect.
The expected behavior of the economy in the periods following the expansionary shock

depends on the expected behavior of the two aggregate state variables. Under assumption 3.4,
the process for q is positively serially correlated, so the expected future values of q are high.
Hence, a first effect of an expansionary shock on the expected future values of any variable is
to increase them if and only if that variable is increasing in q. A second effect works through
the effect on the expected future values of the second state variable θ. Theorem A.12 in the
appendix proves that θ′(q, θ) is strictly decreasing in q, so an expansionary shock decreases
the second state variable in the period immediately following the shock. In the following
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periods, the expected future values of the second state variable decrease for two reasons.
First, because θ′(q, θ) is strictly decreasing in q, and the expected future values of q are high.
Second, because theorem A.5 in the appendix proves that θ′(q, θ) is strictly increasing in
θ, and the expected future values of θ are low. Hence, a second effect of an expansionary
shock on the expected future values of any variable is to increase them if and only if that
variable is decreasing in θ. If a variable is increasing in one state variable and decreasing in
the other, the two effects work in the same direction and we can determine the behavior of
the expected future values of that variable.
To prove rigorously the previous intuition, let B(Θ) and B(S) respectively denote the

Borel subsets of Θ and S. Let us define the state transition functions Πn: for n = 1,

Π((q, θ), A×B) ≡ P (q, A)χB(θ
′(q, θ)),

all (q, θ) ∈ S, A×B ∈ B(S), where χ is the indicator function; and for n > 1,

Πn((q, θ), A×B) ≡
∫

Q
Πn−1((q′, θ′(q, θ)), A×B)P (q, dq′),

all (q, θ) ∈ S, A×B ∈ B(S). The expected future values of prices and quantities are defined
in terms of these state transition functions. For instance, the expectation of the n periods
ahead future value of the ratio d(s) of the debt value to aggregate cash balances is dne (s) =
∫

S d(s
′)Πn(s, ds′). Theorem A.14 in the appendix proves that the expected future values of

any function inherit the monotonicity properties with respect to θ of the function itself. For
instance, the ratio d(q, θ) of the debt value to aggregate cash balances is strictly increasing
in θ, so the expected future ratio dne (q, θ) is also strictly increasing in θ. The theorem
is used to prove the following theorem A.15 establishing that, if a function is increasing
(decreasing) in q and decreasing (increasing) in θ, then the expected future values of that
function are increasing (decreasing) in q. The monotonicity is strict if the function is strictly
monotone with respect to θ. For instance, the ratio d(q, θ) of the debt value to aggregate
cash balances is decreasing in q and strictly increasing in θ, so the expected future ratio
dne (q, θ) is strictly decreasing in q. Hence, an expansionary shock decreases both the current
value and the expected future values of the ratio of the bond value to the aggregate cash
balances. Similarly, one shows that an expansionary shock increases both the current value
and the expected future values of the ratio of the money supply and the goods price to the
aggregate cash balances. Together with the positive serial correlation of the process for the
bond price, this implies again an inverse relation between money and prices on one side and
interest rates on the other.

4 Numerical analysis

The effects of monetary policy shocks depend crucially on the economic weight of investors,
namely their share λ of aggregate endowment, while neither the percentage of investors,
nor the individual endowment of any households play an independent role. But what is the
investor’s share λ of the aggregate endowment in the U.S. economy is not obvious at all.
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A first problem is that, in the model, households can only invest in bonds and money, so
it is not clear what is the empirical counterpart of a bond. In my opinion, investment in
transactions accounts (checking, savings and money market accounts) should be considered
as investment in money. I also would not consider as investment in bonds the investment in
assets, like retirement accounts, whose demand is inelastic with respect to the interest rate.
The reason is that the crucial difference in the model between investors and non-investors
is that only the investors’ demand for assets is interest rate elastic, so, if the demand for an
asset is not interest rate elastic, investing in that asset should not be considered as investing
in bonds. A second problem in estimating the investors’ share λ of aggregate endowment
is that Tables 3 and 5 B of Kennickell, Starr-McCluer and Sunden (1995) let us only infer
what is the investors’ share of aggregate income, not their share of aggregate endowment.
Since income is equal to labor earnings (endowment) plus return to investment, the investors’
share of aggregate income is greater than their share of aggregate endowment. To clarify
with an example, in the case that the investors receive an endowment of 1 and a return to
investment of 1, and the non-investors only receive an endowment of 1, the investors’ share
of aggregate income is 2/3, while their share of aggregate endowment is 1/2.
With the previous considerations in mind, let us now try to infer what is the investor’s

share λ of the aggregate endowment in the U.S. economy. Table 5 B of Kennickell, Starr-
McCluer and Sunden (1995) shows, for each income bracket, the percentage of households
investing in each category of assets. For each category of assets, an upper bound for the
investors’ share of aggregate income is the largest percentage of investors across income
brackets. That is 21.1% for certificates of deposits, 39.9% for savings bonds, 14.5% for
bonds, 45.2% for stocks, 38% for mutual funds, and 54.1% for life insurance. On one hand,
the percentage of households investing in any of these categories of assets is, of course, larger
than any of the previous percentages. On the other hand, the previous percentages are upper
bounds for the investors’ share of aggregate income, which, as previously argued, is larger
than their share of aggregate endowment. Values between 50% and 75% seem, then, the
most plausible for the investors’ share λ of aggregate endowment in the U.S. economy.
To better understand the mechanisms at work in more realistic economies where the

monetary policy process is positively serially correlated, let us first consider what happens
in economies where the bond price q follows an i.i.d. process. Figure 1 plots the expected
evolution of three such economies after a contractionary monetary policy shock in period
0. The dashed line refers to a full participation economy, where the investors’ share λ
of aggregate endowment is 100%, while the dotted and solid lines refer to two segmented
markets economies where λ is respectively 75% and 50%. The bond price q is assumed to
take only three values. The intermediate value, which is also the mean value, is set so that
the implied nominal interest rate is 6.5%, which is approximately equal to the mean of the
federal funds rate over the period 1959(1)–2001(1)11. The low and high values are set such
that the implied nominal interest rates differ from 6.5% by 10 basis points. q is assumed to
follow an i.i.d. process. I consider quarterly periods and set β equal to .99. d and d turn
out to be respectively .3650 and .3839, so assumption 3.1 is satisfied. In period 0, I assume

11All data are from the FRED database of the Federal Reserve Bank of St. Louis at the web address
http://www.stls.frb.org/fred/.
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Figure 1: Expected evolution after an unanticipated increase in the nominal in-
terest rate in period 0. The nominal interest rate is i.i.d. The solid, dotted and
dashed lines refer to three economies where the investors’ economic weight, namely their
share λ of aggregate endowment, is respectively 50%, 75% and 100%. Utility is logarithmic.
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that a contractionary monetary policy shock hits the economy, and the bond price takes the
low value. After period 0, the figure plots the evolution of the three economies expected
in period 0. The evolutions of the two segmented markets economies depend on the value
that the second state variable θ takes in period 0, or, equivalently, on the past realizations
of the monetary policy process. I then assume that q takes the mean value before period
0 for a sufficiently long period of time until θ becomes stationary12. The autocorrelation
and cross-correlation functions of the processes for the nominal interest rate, the money
growth rate and the real interest rate are also helpful in understanding the three economies,
so I simulated the three economies for 10000 periods, and plotted the autocorrelation and
cross-correlation functions in figure 2.
The top-left panel of figure 1 plots the experiment. Before period 0, the nominal interest

rate is constant and equal to 6.5%. In period 0, a contractionary monetary policy shock,
namely a 10 basis points unanticipated increase in the nominal interest rate, hits the three
economies. After period 0, the expected values of the nominal interest rate are plotted.
Since the monetary policy process is i.i.d., the nominal interest rate is expected to return
immediately to its mean value. The autocorrelation function of the nominal interest rate in
the top-left panel of figure 2 simply confirms that the process is i.i.d.
The bottom-left panel of figure 1 plots the expected evolution of the money growth

rate13 Notice that the lower is the investors’ economic weight, the smoother is the behavior
of money, as the autocorrelation of the money growth rate in the center-left panel of figure 2
confirms. The reason is that, for a given increase in the nominal interest rate, the lower is
the investors’ economic weight, the smaller is the increase in aggregate bonds investment,
the smaller is the decrease in aggregate money demand, and the smaller is the decrease in
aggregate money supply. Also, notice the inverse relationship between the nominal interest
rate and the money growth rate in the impact period of the monetary policy shock — The
liquidity effect. The money growth rate, however, increases in the following periods. The
reason lies in the fact that a one-period bond is a claim to one dollar in the next period, so an
increase in the bond supply decreases the money supply in the impact period, but increases
the next period aggregate cash balances. When the monetary policy process is i.i.d., all next
period nominal variables increase, and the money growth rate increases. The top-right panel
of figure 2 shows that the nominal interest rate is strongly negatively correlated with the
contemporaneous money growth rate, but strongly positively correlated with the one-period
ahead money growth rate.
The top-right panel of figure 1 plots the expected evolution of the investors’ consumption.

As pointed out by Alvarez and Atkeson (1996), in periods when the money growth rate and
the inflation rate are low with respect to their expected future values, the non-investors’
consumption is high with respect to its expected future value. The reason is that, in equilib-

12The stationary value for θ associated with the mean value of q is unique and can be obtained iterating
on the law of motion θ′(q, θ) with q equal to the mean value, starting with any initial value of θ in the space
Θ. The reason is that theorem A.5 in the appendix proves that, for any given q, the next period value of
the second state variable θ′(q, θ) is strictly increasing in the current period value θ. Also, I obtain the same
stationary value starting from the smallest and the greatest values for θ, namely θ and θ.

13The inflation rate is the same as the money growth rate since the cash-in-advance constraints bind for
both types of households in equilibrium.
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Figure 2: Autocorrelation and cross-correlation functions of the processes for the
nominal interest rate, the money growth rate and the real interest rate. The
nominal interest rate is i.i.d. The solid, dotted and dashed lines refer to three economies
where the investors’ economic weight, namely their share λ of aggregate endowment, is
respectively 50%, 75% and 100%. Utility is logarithmic.
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rium, the non-investors spend all the cash earned in the previous period, so the lower is the
inflation rate, the higher is their consumption. Since the equilibrium aggregate consumption
is equal to the constant aggregate endowment, in periods when the money growth rate is low
with respect to its expected future value, the equilibrium investors’ consumption is low with
respect to its expected future value. From the expected evolution of the investors’ consump-
tion, the expected evolution of the real interest rate can be inferred. When the investors’
consumption is low with respect to its expected future value, the investors’ Euler equation
implies that the real interest rate is high. This mechanism creates an inverse relationship
between the money growth rate and the real interest rate. The bottom-right panel of figure 1
plots the expected evolution of the real interest rate. The lower is the investors’ economic
weight, the stronger is the impact of the shock on the real interest rate. Of course, in the full
participation economy the real interest rate is constant and equal to the preferences discount
rate. The center-right and bottom-right panels of figure 2 show that the real interest rate is
strongly negatively correlated with the money growth rate, and strongly positively correlated
with the nominal interest rate.
Let us now see the previous mechanisms at work in more realistic economies where the

monetary policy process is positively serially correlated, as in the U.S. economy. Figure 3
plots the expected evolution of three such economies after a contractionary monetary policy
shock in period 0. In all three economies the first-order serial correlation of the process for
q is .9, which is approximately equal to the first-order serial correlation of the federal funds
rate over the period 1959(1)–2001(1)14 Specifically, the transition matrix for q is







ρ 1−ρ
2

1−ρ
2

1−ρ
2

ρ 1−ρ
2

1−ρ
2

1−ρ
2

ρ





 ,

with ρ = 1/3 + .9 ∗ 2/3, so that the first-order serial correlation of the process for q is .9.
Figure 4 plots the autocorrelation and cross-correlation functions of the processes for the
nominal interest rate, the money growth rate and the real interest rate. For comparison,
figure 5 plots the corresponding moments of the federal funds rate, the M2 growth rate
and the real interest rate over the period 1959(1)–2001(1). The real interest rate is approx-
imated with the difference between the federal funds rate and the contemporaneous GDP
Price Deflator growth rate, as if expectations of inflation were equal to current inflation. Ap-
proximating it with the difference between the federal funds rate and the one-period ahead
GDP Price Deflator growth rate leads to the same conclusions. The three processes resemble
autoregressive processes with high serial correlation: .95 for the federal funds rate, .63 for
the M2 growth rate, and .82 for the real interest rate. The federal funds rate is strongly pos-
itively correlated with the past and future M2 growth rate, but weakly positively correlated
(.06) with the current M2 growth rate. The correlation between the M2 growth rate and the
real interest rate is −.14. The federal funds rate is strongly positively correlated with the
past, current and future real interest rate, the contemporaneous correlation being .62.

14Clarida, Gali’ and Gertler (1999) point out that typical estimates for the serial correlation are .8 or .9.
Such a high serial correlation is what is commonly referred to as “interest rate smoothing” by the Federal
Reserve.
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Figure 3: Expected evolution after an unanticipated increase in the nominal in-
terest rate in period 0. The nominal interest rate is first-order Markov with .9
serial correlation. The solid, dotted and dashed lines refer to three economies where the
investors’ economic weight, namely their share λ of aggregate endowment, is respectively
50%, 75% and 100%. Utility is logarithmic.
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Figure 4: Autocorrelation and cross-correlation functions of the processes for the
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The top-left panel of figure 3 plots the experiment. Before period 0, the nominal interest
rate is constant and equal to 6.5%. In period 0, a contractionary monetary policy shock,
namely a 10 basis points unanticipated increase in the nominal interest rate, hits the three
economies. After period 0, the expected values of the nominal interest rate are plotted.
Since the monetary policy process is strongly serially correlated, the nominal interest rate is
expected to be high for several periods after the shock. The autocorrelation of the nominal
interest rate in the top-left panel of figure 4 simply confirms that the process is first-order
Markov with serial correlation equal to .9.
The bottom-left panel of figure 3 plots the expected evolution of the money growth

rate. In the full participation economy, the money growth rate only decreases in the impact
period, while, in the segmented markets economies, the evolution of the money growth
rate is smoother. The autocorrelation of the money growth rate in the center-left panel
of figure 4 confirms that the lower is the investors’ economic weight, the smoother and
more persistent is the endogenous process of the money growth rate. In the economy where
the investors’ economic weight λ is 50%, the autocorrelation of the money growth rate
closely resembles that of a first-order autoregressive process with a serial correlation of .5.
Christiano, Eichenbaum and Evans (1998) document that the empirical process for the M2
growth rate is well approximated by an AR(1) process with serial correlation of .5. The top-
right panel of figure 4 shows that the nominal interest rate is weakly negatively correlated
with the current money growth rate, and strongly positively correlated with the future money
growth rate.
The two right panels of figure 3 plot respectively the expected evolution of the investors’

consumption, and the expected evolution of the real interest rate. When a contractionary
shock hits the segmented markets economies, the real interest rate increases immediately,
and remains high for up to one year. The lower is the investors’ economic weight, the stronger
and more persistent is the effect of the shock on the real interest rate. The size of the effect
is important: a 10 basis points increase in the nominal interest rate makes the real interest
rate increase by 12 basis points in the economy where the investors’ economic weight is 75%,
and by 20 basis points in the economy where the investors’ economic weight is 50%. Of
course, in the full participation economy, the real interest rate is constant and equal to the
preferences discount rate. The autocorrelation of the real interest rate in the bottom-left
panel of figure 4 shows that the lower is the investors’ economic weight, the more persistent
and close to data is the process for the real interest rate. The center-right and bottom-right
panels of figure 4 show that the real interest rate is strongly negatively correlated with the
money growth rate and strongly positively correlated with the nominal interest rate.
What drives this important and interesting dynamics is the fact that, in this segmented

markets economy, perfectly anticipated monetary policy has impact effects which are similar
to those that unanticipated monetary policy has in limited participation economies. In the
limited participation framework, a contractionary shock causes the money growth rate to
decrease, the participants’ consumption to decrease, and the real interest rate to increase
in the impact period. In the following periods, the shock does not have any further real
effects, since anticipated changes in the money growth rate do not affect the participants’
consumption. In this segmented markets economy, however, a perfectly anticipated decrease
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in the money growth rate does cause the investors’ consumption to decrease. Hence, when the
monetary policy process is positively serially correlated, a contractionary shock causes the
money growth rate to remain low for several periods, the investors’ consumption to remain
low for several periods and to increase towards its stationary level, and the real interest rate
to remain high for several periods.

5 CES preferences

In this section, I show that the lower is the investors’ intertemporal elasticity of substitution,
the stronger and more persistent is the effect of a monetary policy shock on the real interest
rate, and the higher is the serial correlation of the processes for the money growth rate and
the real interest rate. Economies where the intertemporal elasticity of substitution is low
exhibit, then, the same qualitative behavior as economies where the market segmentation is
high.
Let us consider the same economy as in the previous sections, except that investors’

preferences are

E

{

∞
∑

t=0

βt
c1−σI,t

1− σ

}

,

with a constant elasticity of substitution 1/σ less than one. To determine the equilibrium
behavior of the economy, one can proceed as in the logarithmic utility case, and show that,
in equilibria where the cash-in-advance constraints bind for both types of households, the
ratio d(s) of government debt to aggregate cash balances solves the functional equation

(

d(s)

θ − d(s)

)σ

=
∫

Q

β

1− λ

[θ′(s)− λ][1− d(q′, θ′(s))]σ−1

[θ′(s)− d(q′, θ′(s))]σ

(

d(s)

1− d(s)

)σ

P (q, dq′), (7)

all s ∈ S, where s ≡ (q, θ), and the law of motion θ′(s) is given by the relation 2. Also, with
steps analogous to the logarithmic utility case, one can show that the problem of determining
the equilibrium behavior of the economy can be reduced to the problem of finding a space
Θ where θ takes values in equilibrium, and a solution d(s) to the functional equation 7, such
that the function θ′(s) given by the relation 2 takes values in Θ and the function p(s) given
by the relation 1 satisfies the inequality 4, for all s ∈ S.
To determine such a solution, we make the following additional assumption.

Assumption 5.1 [θ − d]− σ[θ − λ] ≥ 0.

Notice that the assumption specializes to assumption 3.1 in the logarithmic utility case,
and serves the same purpose — under assumption 5.1, the right hand side of the functional
equation 7 is strictly increasing in θ′(s). We also define the operator T as follows:

(Td)(s) ≡
θR(s)1/σ

1 +R(s)1/σ
, (8)

where R(s) is the right hand side of the functional equation 7. As in the logarithmic utility
case, one can show that the operator T satisfies T :M →M. We then let the interval Θ
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where θ takes values in equilibrium be the interval [θ, θ], and look for a fixed point of T ,
which is a solution to the functional equation 7. Also, the operator T satisfies T : D → D,
and is monotone, so, with the same numerical procedure used in the logarithmic utility case,
a fixed point d ∈ D, which turns out to be unique, is determined. The other equilibrium
aggregate variable are then determined and the inequality 4 is checked.
Let us now consider how the effects of a contractionary monetary policy shock on money,

prices and interest rates change, as the intertemporal elasticity of substitution changes. Fig-
ure 6 plots the expected evolution of three economies after a contractionary monetary policy
shock in period 0. In all three economies, the investors’ share λ of aggregate endowment is
75%, and the first-order serial correlation of the monetary policy process is .9. The dashed
line refers to an economy where the investors’ utility function is logarithmic, while the dot-
ted and solid lines refer to two economies where the intertemporal elasticity of substitution
1/σ is respectively 1/3 and 1/5. Though assumption 5.1 does not hold when σ = 5, the
same numerical procedure allows to determine the equilibrium behavior even in this case.
Figure 7 plots the autocorrelation and cross-correlation functions of the processes for the
nominal interest rate, the money growth rate and the real interest rate.
The experiment, plotted in the top-left panel of figure 6, is the same as the one plotted

in the top-left panel of figure 3. Before period 0, the nominal interest rate is constant and
equal to 6.5%. In period 0, a contractionary monetary policy shock, namely a 10 basis points
increase in the nominal interest rate, hits the three economies. After period 0, the expected
values of the nominal interest rate are plotted. Since the monetary policy process is strongly
serially correlated, the nominal interest rate is expected to be high for several periods after
the shock.
The bottom-left panel of figure 6 plots the expected evolution of the money growth rate.

The lower is the investors’ elasticity of substitution, the smoother is the behavior of the
money growth rate. The autocorrelation of the money growth rate in the center-left panel
of figure 7 confirms that the lower is the investors’ elasticity of substitution, the smoother
and more persistent is the process for the money growth rate.
The two right panels of figure 6 plot respectively the expected evolution of the investors’

consumption and the expected evolution of the real interest rate. The lower is the investors’
elasticity of substitution, the stronger is the effect of a monetary policy shock on the real
interest rate. For instance, in the economy where the investors’ share λ of aggregate endow-
ment is 75% and their elasticity of substitution is 1/3, which I consider plausible figures, a
10 basis points increase in the nominal interest rate increases the real interest rate by 20
basis points. More importantly, the real interest rate remains high for up to 4 quarters, with
an increase of about 6 basis points two quarters after the shock. When their intertempo-
ral elasticity of substitution is low, investors require a stronger change in the real interest
rate to change their consumption and money demand, and to absorb the monetary policy
shock. The bottom-left panel of figure 7 shows that the lower is the investors’ elasticity of
substitution, the more persistent and close to data is the process for the real interest rate.
Comparing the plots in figures 6 and 7 with the corresponding in figures 3 and 4, it is

apparent that lowering the investors’ intertemporal elasticity of substitution has the same
qualitative effects as increasing the markets segmentation. Economies where the intertempo-
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Figure 6: Expected evolution after an unanticipated increase in the nominal in-
terest rate in period 0. The nominal interest rate is first-order Markov with
.9 serial correlation. The investors’ economic weight, namely their share of aggregate
endowment λ, is 75%. The solid, dotted and dashed lines refer to three economies where the
investors’ intertemporal elasticity of substitution is respectively 1/5, 1/3 and 1 (log-utility).
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Figure 7: Autocorrelation and cross-correlation functions of the processes for the
nominal interest rate, the money growth rate and the real interest rate. The
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economic weight, namely their share of aggregate endowment λ, is 75%. The solid, dotted
and dashed lines refer to three economies where the investors’ intertemporal elasticity of
substitution is respectively 1/5, 1/3 and 1 (log-utility).
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ral elasticity of substitution is low exhibit the same qualitative behavior as economies where
the market segmentation is high. This suggests that economies with segmented markets
are promising models to address some of the asset pricing puzzles which can only be solved
assuming implausibly low values for the intertemporal elasticity of substitution.

6 Conclusion

In this paper, I modelled the fact that a large part of the households never invests in bonds,
and obtained that, holding aggregate output constant, a contractionary monetary policy
shock increases persistently the real interest rate, which is central in the explanation of the
monetary transmission mechanism. Among other results, I showed that in an endowment
economy where the investors’ economic weight is 75% and their intertemporal elasticity of
substitution is 1/3, after an unanticipated 10 basis points increase in the nominal interest
rate, the real interest rate increases by 20 basis points in the impact period, and remains
high for up to one year. The shock has a liquidity effect, moving money and interest rates
in opposite directions. The endogenous processes for the money growth rate and the real
interest rate are strongly serially correlated, the money growth rate being remarkably close
to an AR(1) process with a .5 serial correlation.
A natural and important direction for further research is the introduction of produc-

tion and sources of uncertainty other than monetary policy. That will allow to assess the
properties of different monetary policy rules in the segmented markets framework, and to
characterize the optimal response of monetary authority to exogenous shocks. More impor-
tantly, it will be possible to use the segmented markets framework to explain the persistent
effects of monetary policy shocks on aggregate output. Production will be introduced as
in Fuerst (1992), where monetary policy shocks affect directly the financial and the firms
sectors. In the segmented markets framework, the investors are the ones directly affected by
monetary policy shocks, so the investors will be identified with the firms. Monetary policy
shocks will, then, affect persistently the distribution of cash balances between the firms and
the households sectors. Since the distribution of cash balances will affect aggregate output
as in limited participation models, monetary policy shocks will have persistent effects on
aggregate output. I am conducting research along these directions, and I will report the
results in later work.
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A Appendix

Theorem A.1 Suppose that, in equilibrium, the cash-in-advance constraints bind for both
types of households: p(s)ĉI(aI , s) = aI − qb̂I(aI , s), and p(s)ĉN(aN , s) = aN , for all s ∈ S,
aI = θ/ω, aN = (1−θ)/(1−ω). Then, the goods price p(s) satisfies the relation 1, the law of
motion θ′(s) satisfies the relation 2, and the bond value d(s) solves the functional equation 3.

Proof. Relation 1 follows from

p(s)y = p(s)[ωĉI(aI , s) + (1− ω)ĉN(aN , s)]

= ωp(s)ĉI(aI , s) + (1− ω)p(s)ĉN(aN , s)

= ω[aI − qb̂I(aI , s)] + (1− ω)aN

= 1− ωqb̂I(aI , s)

= 1− d(s),

where the first equality follows from the goods market equilibrium condition, the third
from the assumption of binding cash-in-advance constraints, the fourth from aI = θ/ω and
aN = (1− θ)/(1− ω), and the last from the bond market equilibrium condition.
Relation 2 follows from

θ′(s)[1− d(s) + d(s)/q] = ωâ′I(aI , s)[1− d(s) + d(s)/q]

= ω[b̂I(aI , s) + aI − qb̂I(aI , s)− p(s)ĉI(aI , s) + p(s)yI ]

= ω[b̂I(aI , s) + p(s)yI ]

= d(s)/q + p(s)ωyI

= d(s)/q + ωyI [1− d(s)]/y

= d(s)/q + λ[1− d(s)]

= (1− λ)d(s)/q + λ[1− d(s) + d(s)/q],

where the first equality follows from the equilibrium condition for θ ′(s), the second from the
investors’ budget constraint, the third from the investors’ binding cash-in-advance constraint,
the fourth from the bond market equilibrium condition, the fifth from relation 1, and the
sixth from the definition of λ.
Finally, to derive the functional equation 3, consider the investors’ optimization problem.

Neither constraint on bI binds since cI > 0 and, in equilibrium, bI > 0. Hence, from the
envelope condition

v′I(aI , s) =
1

p(s)ĉI(aI , s)
,

and the first order condition

1

p(s)ĉI(aI , s)
=

β

q[1− d(s) + d(s)/q]

∫

Q
v′I(â

′
I(aI , s), q

′, θ′(s))P (q, dq′),
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one obtains the Euler equation15

1

p(s)ĉI(aI , s)
=

β

q[1− d(s) + d(s)/q]

∫

Q

1

p(q′, θ′(s))ĉI(â′I(aI , s), q
′, θ′(s))

P (q, dq′).

The investors’ cash-in-advance constraint always binds in equilibrium, so

p(s)ĉI(aI , s) = aI − qb̂I(aI , s),

p(q′, θ′(s))ĉI(â
′
I(aI , s), q

′, θ′(s)) = â′I(aI , s)− q′b̂I(â
′
I(aI , s), q

′, θ′(s)),

for all s ∈ S, all q′ ∈ Q, at aI = θ/ω. Substituting these expressions in the previous Euler
equation, one obtains

1

aI − qb̂I(aI , s)
=

β

q − qd(s) + d(s)]

∫

Q

1

â′I(aI , s)− q′b̂I(â′I(aI , s), q
′, θ′(s))

P (q, dq′).

In equilibrium, â′I(aI , s) = θ′(s)/ω, b̂I(aI , s) = d(s)/qω, and b̂I(â
′
I(aI , s), q

′, θ′(s)) =
d(q′, θ′(s))/q′ω. Substituting these expressions in the previous equation, and multiplying
both sides by d(s)/ω, one obtains

d(s)

θ − d(s)
=

βd(s)

q − qd(s) + d(s)

∫

Q

1

θ′(s)− d(q′, θ′(s))
P (q, dq′).

Finally, using relation 2, one obtains that d(s) solves the functional equation 3.

Theorem A.2 Suppose that the goods price p(s) satisfies the relation 1, the law of motion
θ′(s) satisfies the relation 2, and the bond value d(s) solves the functional equation 3 and
satisfies the inequality 4. Then, the non-investors’ cash-in-advance constraint binds in equi-
librium: p(s)ĉN(aN , s) = aN , for all s ∈ S, and aN = (1− θ)/(1− ω). Also, when aI = θ/ω
and aN = (1− θ)/(1− ω),

ωb̂I(aI , s) = d(s)/q,

ωĉI(aI , s) + (1− ω)ĉN(aN , s) = y

and ωâ′I(aI , s) = θ′(s).

Proof. To show that p(s)ĉN(aN , s) = aN is optimal for all s ∈ S, aN = (1 − θ)/(1 − ω),
I show that deviating from this policy is not optimal. Per absurd, suppose there exists a
s ∈ S such that p(s)ĉN(aN , s) < aN . In this case, from the envelope condition

v′N(aN , s) =
1

p(s)ĉN(aN , s)
,

15It is possible to derive the Euler equation even without assuming the differentiability of the value
function. One simply substitutes once the value function on the right hand side of the Bellman equation
with the expression on the left hand side, and then uses a variational argument.
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and the first order condition

1

p(s)ĉN(aN , s)
= β

1

1− d(s) + d(s)/q

∫

Q
v′N(â

′
N(aN , s), q

′, θ′(s))P (q, dq′),

one obtains the Euler equation16

1

p(s)ĉN(aN , s)
=

β

1− d(s) + d(s)/q

∫

Q

1

p(q′, θ′(s))ĉN(â′N(aN , s), q
′, θ′(s))

P (q, dq′).

Since p(q′, θ′(s))ĉN(â
′
N(aN , s), q

′, θ′(s)) = â′N(aN , s),

1

p(s)ĉN(aN , s)
=

β

1− d(s) + d(s)/q

1

â′N(aN , s)
=

β

aN − p(s)ĉN(aN , s) + p(s)yN
,

and since p(s)ĉN(aN , s) < aN ,
1

aN
<

β

p(s)yN
.

Since aN = (1− θ)/(1− ω),
1− ω

1− θ
<

β

p(s)yN
;

(1− ω)p(s)yN < β(1− θ),

which is a contradiction. Hence, p(s)ĉN(aN , s) = aN , for all s ∈ S, and aN = (1−θ)/(1−ω).
Taking into account the previous result, I now need to show that the following equilibrium

conditions hold:
ωb̂I(aI , s) = d(s)/q,

ωĉI(aI , s) + (1− θ)/p(s) = y

and ωâ′I(aI , s) = θ′(s),

for all s ∈ S, and aI = θ/ω. First, notice that the function ĉI(aI , s) defined by

ωĉI(aI , s) + (1− θ)/p(s) = y

for all s ∈ S, and aI = θ/ω, satisfies the investors’ Euler equation derived in the previous
lemma. Then, it is easy to derive the functions b̂I(aI , s) and â

′
I(aI , s) from the investors’

binding cash-in-advance constraint and the investors’ budget constraint, and to verify that
the equilibrium conditions hold.

Theorem A.3 For any d ∈M, the function θ′(q, θ) defined in 2 takes values in the interval
[θ, θ].

16Again, it is possible to derive the Euler equation without assuming the differentiability of the value
function.
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Proof. For any d ∈M and any s ∈ S,

θ′(s) = λ+ (1− λ)
d(s)

q − qd(s) + d(s)

≤ λ+ (1− λ)
d(s)

q − qd+ d(s)

≤ λ+ (1− λ)
d

q − qd+ d

≤ λ+ (1− λ)
d

q − qd+ d
= θ;

where the first inequality follows from d(s) ≤ d for any s ∈ S; the second from d < 1 and
d(s) ≤ d for any s ∈ S; the third from d < 1 and q ≥ q for any q ∈ Q; and the last equality

from the definition of θ.
Similarly, one can show that θ′(s) ≥ θ.

Theorem A.4 Under assumption 3.1, the operator T defined in 5 satisfies T :M→M.

Proof. For any d ∈M and any s ∈ S, the right hand side of the functional equation 3 is

R(s) ≡
∫

Q

β

1− λ

θ′(s)− λ

θ′(s)− d(q′, θ′(s))
P (q, dq′)

≤
β

1− λ

θ′(s)− λ

θ′(s)− d

≤
β

1− λ

θ − λ

θ − d

=
βd

q − qd+ d

1

θ − d

=
d

θ − d
≡ R;

where the first inequality follows from d(s) ≤ d for any s ∈ S; the second from assumption 3.1
and theorem A.3; the next equality from the definition of θ; and the following from the
definition of d. Hence,

(Td)(s) =
θR(s)

1 +R(s)
≤

θR

1 +R
=

θd

θ − d

θ − d

θ
= d;

where the first equality follows from the definition of T ; the inequality from θ ≤ θ < 1
for any θ ∈ Θ, and from the inequality previously derived; and the next equality from the
definition of R.
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Similarly, one can show that

R(s) ≥
d

θ − d
≡ R,

and that

(Td)(s) =
θR(s)

1 +R(s)
≥ d.

The measurability of Td follows from the fact that P (q, A) is a measurable function of q
for all A ∈ B(Q).

Theorem A.5 For any d ∈ D, the function θ′(q, θ) defined in 2 is strictly increasing in θ.

Proof. For any d ∈ D, any q ∈ Q and any θ1, θ2 ∈ Θ, θ1 < θ2,

θ′(q, θ1) = λ+ (1− λ)
d(q, θ1)

q − qd(q, θ1) + d(q, θ1)

< λ+ (1− λ)
d(q, θ1)

q − qd(q, θ2) + d(q, θ1)

< λ+ (1− λ)
d(q, θ2)

q − qd(q, θ2) + d(q, θ2)
= θ′(q, θ2);

where the first inequality follows from the fact that d(q, θ) is strictly increasing in θ; and the
second from d(s) ≤ d < 1 for any s ∈ S, and the fact that d(q, θ) is strictly increasing in θ.

Theorem A.6 Under assumption 3.1, the operator T defined in 5 satisfies T : D → D.

Proof. In light of theorem A.4, I only need to show that (Td)(q, θ)/θ is weakly increasing
in θ. Indeed, I will show that the monotonicity is strict. For any d ∈ D, any q ∈ Q and any
θ1, θ2 ∈ Θ, θ1 < θ2, the right hand side of the functional equation 3 is

R(q, θ1) ≡
∫

Q

β

(1− λ)

θ′(q, θ1)− λ

θ′(q, θ1)− d(q′, θ′(q, θ1))
P (q, dq′)

<
∫

Q

β

(1− λ)

θ′(q, θ1)− λ

θ′(q, θ1)− d(q′, θ′(q, θ2))
P (q, dq′)

≤
β

(1− λ)

∫

Q

θ′(q, θ2)− λ

θ′(q, θ2)− d(q′, θ′(q, θ2))
P (q, dq′) = R(q, θ2);

where the strict inequality follows from the fact that d(q, θ) is strictly increasing in θ and
from theorem A.5; and the weak inequality from d(s) ≤ d for any s ∈ S, from assumption 3.1,
and from theorem A.5. It follows that

(Td)(q, θ1)

θ1
=

R(q, θ1)

1 +R(q, θ1)
<

R(q, θ2)

1 +R(q, θ2)
=
(Td)(q, θ2)

θ2
,

which concludes the proof that (Td)(q, θ)/θ is strictly increasing in θ.

34



Theorem A.7 Under assumption 3.1, the operator T : D → D defined in 5 is monotone.

Proof. Consider any d1, d2 ∈ D such that d1(s) ≤ d2(s) for any s ∈ S. Let us define
θ′1(s) and θ′2(s) the function θ′(s) respectively when d = d1 and d = d2. Then, the following
steps show that θ′1(s) ≤ θ′2(s) for any s ∈ S:

θ′1(s) = λ+ (1− λ)
d1(s)

q − qd1(s) + d1(s)

≤ λ+ (1− λ)
d1(s)

q − qd2(s) + d1(s)

≤ λ+ (1− λ)
d2(s)

q − qd2(s) + d2(s)
= θ′2(s);

where the first inequality follows from d1(s) ≤ d2(s) for any s ∈ S; and the second from
d2(s) ≤ d < 1 for any s ∈ S, and d1(s) ≤ d2(s) for any s ∈ S.
Let us define R1(s) and R2(s) the right hand side of the functional equation 3 respectively

when d = d1 and d = d2. Then, the following steps show that R1(s) ≤ R2(s) for any s ∈ S:

R1(s) =
∫

Q

β

1− λ

θ′1(s)− λ

θ′1(s)− d1(q′, θ′1(s))
P (q, dq′)

≤
∫

Q

β

1− λ

θ′1(s)− λ

θ′1(s)− d1(q′, θ′2(s))
P (q, dq′)

≤
∫

Q

β

1− λ

θ′1(s)− λ

θ′1(s)− d2(q′, θ′2(s))
P (q, dq′)

≤
∫

Q

β

1− λ

θ′2(s)− λ

θ′2(s)− d2(q′, θ′2(s))
P (q, dq′) = R2(s);

where the first inequality follows from θ′1(s) ≤ θ′2(s) for any s ∈ S, and from the fact that
d2(q, θ) is strictly increasing in θ; the second from d1(s) ≤ d2(s) for any s ∈ S; and the third
from d2(s) ≤ d for any s ∈ S, from assumption 3.1, and from θ′1(s) ≤ θ′2(s) for any s ∈ S.
It follows that, for any s ∈ S,

(Td1)(s) =
θR1(s)

1 +R1(s)
≤

θR2(s)

1 +R2(s)
= (Td2)(s),

which concludes the proof that T is monotone.

Theorem A.8 For any d ∈ Dθ, any q ∈ Q, and any θ1, θ2 ∈ Θ, θ1 < θ2, the law of motion
θ′(q, θ) defined in 2 satisfies

θ′(q, θ2)− θ′(q, θ1) ≤
θ′(q, θ1)− λ

d(q, θ1)

q

β
[θ2 − θ1].
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Proof. Consider any d ∈ Dθ, any q ∈ Q, and any θ
1, θ2 ∈ Θ, θ1 < θ2. Then,

θ′(q, θ2)− θ′(q, θ1) = (1− λ)

[

d(q, θ2)

q − qd(q, θ2) + d(q, θ2)
−

d(q, θ1)

q − qd(q, θ1) + d(q, θ1)

]

= (1− λ)

[

q[d(q, θ2)− d(q, θ1)]

[q − qd(q, θ2) + d(q, θ2)][q − qd(q, θ1) + d(q, θ1)]

]

=
θ′(q, θ1)− λ

d(q, θ1)

q[d(q, θ2)− d(q, θ1)]

q − qd(q, θ2) + d(q, θ2)

≤
θ′(q, θ1)− λ

d(q, θ1)

q[θ2 − θ1]

q − qd(q, θ2) + d(q, θ2)

≤
θ′(q, θ1)− λ

d(q, θ1)

q

q − qd+ d
[θ2 − θ1]

≤
θ′(q, θ1)− λ

d(q, θ1)

q

q − qd+ d
[θ2 − θ1]

=
θ′(q, θ1)− λ

d(q, θ1)

q

β
[θ2 − θ1];

where the first inequality follows from the fact that θ− d(q, θ) is weakly increasing in θ; the
second from q < 1 for any q ∈ Q and from d(s) ≥ d for any s ∈ S; the third from q ≤ q for
any q ∈ Q; and the following equality from the definition of d.

Theorem A.9 Under assumptions 3.1 and 3.2, the operator T defined in 5 satisfies T :
Dθ → Dθ.

Proof. In light of the previous theorems, I only need to show that, if d ∈ Dθ, then
θ−(Td)(q, θ) is weakly increasing in θ. Consider any d ∈ Dθ, any q ∈ Q, and any θ

1, θ2 ∈ Θ,
θ1 < θ2. Then, the difference of the right hand side of the functional equation 3 evaluated
respectively in θ = θ2 and θ = θ1 is

R(q, θ2)−R(q, θ1)

≡
∫

Q

β

1− λ

θ′(q, θ2)− λ

θ′(q, θ2)− d(q′, θ′(q, θ2))
P (q, dq′)

−
∫

Q

β

1− λ

θ′(q, θ1)− λ

θ′(q, θ1)− d(q′, θ′(q, θ1))
P (q, dq′)

≤
∫

Q

β

1− λ

θ′(q, θ2)− λ

θ′(q, θ1)− d(q′, θ′(q, θ1))
P (q, dq′)

−
∫

Q

β

1− λ

θ′(q, θ1)− λ

θ′(q, θ1)− d(q′, θ′(q, θ1))
P (q, dq′)
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=
∫

Q

β

1− λ

θ′(q, θ2)− θ′(q, θ1)

θ′(q, θ1)− d(q′, θ′(q, θ1))
P (q, dq′)

≤
∫

Q

β

1− λ

θ′(q, θ1)− λ

θ′(q, θ1)− d(q′, θ′(q, θ1))
P (q, dq′)

1

d(q, θ1)

q

β
[θ2 − θ1]

= R(q, θ1)
1

d(q, θ1)

q

β
[θ2 − θ1];

where the first inequality follows from theorem A.5 and the fact that θ − d(q, θ) is weakly
increasing in θ; the second inequality from theorem A.8; and the last equality from the
definition of R(s).
Now, the following steps show that, as θ increases, the percentage increase in the function

1 +R(q, θ) is less or equal than the percentage increase in θ itself:

(1 +R(q, θ2))− (1 +R(q, θ1))

1 +R(q, θ1)

≤
1

1 +R(q, θ1)
R(q, θ1)

1

d(q, θ1)

q

β
[θ2 − θ1];

=
θ1R(q, θ1)

1 +R(q, θ1)

1

d(q, θ1)

q

β

θ2 − θ1

θ1

= (Td)(q, θ1)
1

d(q, θ1)

q

β

θ2 − θ1

θ1

≤
d

d

q

β

θ2 − θ1

θ1

≤
θ2 − θ1

θ1
;

where the first inequality follows from the inequality previously obtained; the second equality
from the definition of T ; the following inequality from d(s) ≥ d for all s ∈ S and theorem A.4;
and the last inequality from assumption 3.2.
The previous inequality implies that

1 +R(q, θ2)

1 +R(q, θ1)
≤
θ2

θ1
,

θ1

1 +R(q, θ1)
≤

θ2

1 +R(q, θ2)
,

so θ/(1 +R(q, θ)) is weakly increasing in θ. Since the definition of T implies that

θ − (Td)(s) = θ −
θR(s)

1 +R(s)
=

θ

1 +R(s)
,

it follows that θ − (Td)(q, θ) is also weakly increasing in θ.
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Theorem A.10 Under assumptions 3.1 and 3.2, the pointwise limit d∞ ∈ Dθ of the se-
quence {dn}∞n=0 defined in 6 solves the functional equation 3.

Proof. Let us define θ′n(s) and θ′∞(s) the function θ′(s) respectively when d = dn and
d = d∞. Since the sequence {dn} converges pointwise to d∞, the sequence {θ′n} converges
pointwise to θ′∞.
Now, for any s ∈ S, any q′ ∈ Q, and any n ≥ 0,

|d∞(q′, θ′∞(s))− dn(q′, θ′n(s))|

≤ |d∞(q′, θ′∞(s))− dn(q′, θ′∞(s))|+ |dn(q′, θ′∞(s))− dn(q′, θ′n(s))|

≤ |d∞(q′, θ′∞(s))− dn(q′, θ′∞(s))|+ |θ′∞(s)− θ′n(s)|,

where the last inequality follows from the facts that dn(q, θ) is strictly increasing in θ, and
θ−dn(q, θ) is weakly increasing in θ, so the absolute value of the slope of dn(q, θ) with respect
to θ is less than one. As n→∞, the first absolute value converges to zero since the sequence
{dn} converges pointwise to d∞, and the second absolute value converges to zero since the
sequence {θ′n} converges pointwise to θ′∞. Notice, here, that we need to exploit the fact
that the slopes of the functions belonging to Dθ with respect to their second argument are
uniformly bounded.
Let us define fn(s, q′), f∞(s, q′) and f(s, q′) the argument of the integral on the right

hand side of the functional equation 3 respectively when d = dn, d = d∞ and when d
is constant and equal to d. From the results obtained so far, it follows that the sequence
{fn}∞n=0 converges pointwise to f

∞. Also, fn ≤ f , all n ≥ 0, fn are integrable, all n ≥ 0, and
f is also integrable. By the Lebesgue Dominated Convergence Theorem, f∞ is integrable,
and its integral is equal to the limit of the integrals of f n.
Let us defineRn(s) andR∞(s) the right hand side of the functional equation 3 respectively

when d = dn and d = d∞. From the results obtained so far, it follows that the sequence
{Rn}∞n=0 converges pointwise to R

∞. Hence, for any s ∈ S,

d∞(s) = lim
n→∞

dn+1(s) = lim
n→∞

(Tdn)(s)

= lim
n→∞

θRn(s)

1 +Rn(s)
=

θR∞(s)

1 +R∞(s)
= (Td∞)(s),

that is d∞ solves the functional equation 3. Notice, here, that the fourth equality follows
from the results previously obtained, and not from the continuity of T . The reason is that
T is uniformly continuous in the sup norm, while the sequence {dn} converges to d∞ only
pointwise.

Theorem A.11 Under assumption 3.3, for any d ∈ M, the function p(s) defined in 1
satisfies the inequality 4.

Proof. For any d ∈M,

(1− ω)p(s)yN =
(1− ω)yN

y
[1− d(s)] = (1− λ)[1− d(s)] ≥ (1− λ)(1− d),
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where the inequality follows from d(s) ≤ d for all s ∈ S. Also,

β(1− θ) ≤ β(1− θ) = β[1− λ− (1− λ)d/(q − qd+ d)]

= β[1− λ− (1− λ)d/β] = β − βλ− (1− λ)d = (1− λ)(β − d);

where the first inequality follows from θ ≥ θ for all θ ∈ Θ; the first equality from the
definition of θ; and the second from the definition of d. Since assumption 3.3 requires that
β − d ≤ 1− d, the two previous inequalities imply that the inequality 4 is satisfied.

Theorem A.12 For any d ∈ Dq, the law of motion θ′(q, θ) defined in 2 is strictly decreasing
in q.

Proof. For any q1, q2 ∈ Q, q1 < q2, and any θ ∈ Θ,

θ′(q1, θ) = λ+ (1− λ)
d(q1, θ)

q1 − q1d(q1, θ) + d(q1, θ)

≥ λ+ (1− λ)
d(q2, θ)

q1 − q1d(q1, θ) + d(q2, θ)

≥ λ+ (1− λ)
d(q2, θ)

q1 − q1d(q2, θ) + d(q2, θ)

> λ+ (1− λ)
d(q2, θ)

q2 − q2d(q2, θ) + d(q2, θ)
= θ′(q2, θ);

where the first inequality follows from the fact that d(q, θ) is weakly decreasing in q and
from d(s) ≤ d < 1 for any s ∈ S; the second inequality from the fact that d(q, θ) is weakly
decreasing in q; and the strict inequality from d(s) ≤ d < 1 for any s ∈ S.

Theorem A.13 Under assumptions 3.1 and 3.4, the operator T defined in 5 satisfies T :
Dq → Dq.

Proof. In light of theorem A.6, I only need to show that, if d ∈ Dq, then (Td)(q, θ) is
weakly decreasing in q. Indeed, I will show that the monotonicity is strict.
Consider any d ∈ Dq, any q

1, q2 ∈ Q, q1 < q2, and any θ ∈ Θ. Then, the right hand side
of the functional equation 3 evaluated at q = q1 is

R(q1, θ) ≡
∫

Q

β

1− λ

θ′(q1, θ)− λ

θ′(q1, θ)− d(q′, θ′(q1, θ))
P (q1, dq′)

≥
∫

Q

β

1− λ

θ′(q2, θ)− λ

θ′(q2, θ)− d(q′, θ′(q1, θ))
P (q1, dq′)

>
∫

Q

β

1− λ

θ′(q2, θ)− λ

θ′(q2, θ)− d(q′, θ′(q2, θ))
P (q1, dq′)
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≥
∫

Q

β

(1− λ)

θ′(q2, θ)− λ

θ′(q2, θ)− d(q′, θ′(q2, θ))
P (q2, dq′) = R(q2, θ);

where the first inequality follows from d(s) ≤ d for any s ∈ S, from assumption 3.1, and from
theorem A.12; the strict inequality from theorem A.12 and the fact that d(q, θ) is strictly
increasing in θ; and the last inequality from the fact that d(q, θ) is weakly decreasing in q
and from assumption 3.4.
Hence,

(Td)(q1, θ) =
θR(q1, θ)

1 +R(q1, θ)
>

θR(q2, θ)

1 +R(q2, θ)
= (Td)(q2, θ),

where the equalities follow from the definition of T and the inequality from the inequality
previously derived.

Theorem A.14 Under assumption 3.1, for any function f(q, θ) increasing (decreasing) in
θ, the expected future values

fne (q, θ) ≡
∫

S
f(q′, θ′)Πn((q, θ), d(q′, θ′))

are also increasing (decreasing) in θ, for all n ≥ 1. The monotonicity is strict if f(q, θ) is
strictly monotone.

Proof. Consider any q ∈ Q, any θ1, θ2 ∈ Θ, θ1 < θ2, and any f(q, θ) strictly increasing
in θ. Then, after defining fne ≡ f when n = 0, fne (q, θ) is strictly increasing in θ for n = 0.
For n ≥ 1, suppose that fn−1

e (q, θ) is strictly increasing in θ. Then,

fne (q, θ
1) =

∫

Q
fn−1
e (q′, θ′(q, θ1))P (q, dq′)

<
∫

Q
fn−1
e (q′, θ′(q, θ2))P (q, dq′) = fne (q, θ

2);

where the strict inequality follows from theorem A.5, and f n−1
e (q, θ) is strictly increasing in

θ.
By induction, fne (q, θ) is strictly increasing in θ for all n ≥ 1.
The other claims of the theorem can be shown similarly.

Theorem A.15 Under assumptions 3.1 and 3.4, for any function f(q, θ) increasing (de-
creasing) in q and decreasing (increasing) in θ, the expected future values

fne (q, θ) ≡
∫

S
f(q′, θ′)Πn((q, θ), d(q′, θ′))

are increasing (decreasing) in q, for all n ≥ 1. The monotonicity is strict if f(q, θ) is strictly
monotone in θ.
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Proof. Consider any q1, q2 ∈ Q, q1 < q2, any θ ∈ Θ, and any f(q, θ) weakly decreasing
in q and strictly increasing in θ. Then, after defining f ne ≡ f when n = 0, fne (q, θ) is weakly
decreasing in q and strictly increasing in θ for n = 0.
For n ≥ 1, suppose that fn−1

e (q, θ) is weakly decreasing in q and strictly increasing in θ.
Then,

fne (q
1, θ) =

∫

Q
fn−1
e (q′, θ′(q1, θ))P (q1, dq′)

>
∫

Q
fn−1
e (q′, θ′(q2, θ))P (q1, dq′)

≥
∫

Q
fn−1
e (q′, θ′(q2, θ))P (q2, dq′) = fne (q

2, θ);

where the strict inequality follows from theorem A.12, and the fact that f n−1
e (q, θ) is strictly

increasing in θ; and the weak inequality from assumption 3.4 and the fact that f n−1
e (q, θ) is

weakly decreasing in q. Also, theorem A.14 implies that f ne (q, θ) is strictly increasing in θ.
By induction, fne (q, θ) is weakly decreasing in q and strictly increasing in θ for all n ≥ 1.
The other claims of the theorem can be shown similarly.
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