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Abstract

We characterize a precise comparative static on welfare and the amount of
public information in an economy under uncertainty. Results dating to Hirsh-
leifer (1971) have suggested that information can have negative value in such
a setting, but counterexamples using competitive equilibrium outcomes have
suppressed general results to this effect. We show that under the solution
concept of implementable allocations, the negative relationship between more
public information in the sense of Blackwell and welfare is fully general. Fur-
thermore, Blackwell’s ranking is necessary as well as sufficient to obtain our
ranking, and hence ours provides an equivalent characterization of his ordering.

Journal of Economic Literature Classification Number: D80.
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1. INTRODUCTION

One of the signature topics of information theory is the relationship between the positive,

abstract question of what constitutes more information, and the normative, contextual

question of what constitutes more valuable information. In certain settings, the notion

that more information is valuable is so axiomatic that the answer to the one of these

questions is interpreted as necessarily answering the other. This is the case, for instance,

for the ordering of information formalized by Blackwell [1]. Blackwell’s criterion for

ranking different information may be characterized by the condition that any two decision

makers, each of whom faces a (distinct) nonstrategic choice under uncertainty, should

have the same preferences over which information is better for her particular problem.

Equivalent mathematical conditions for this criterion are often invoked as a formalization

of what constitutes more information in an economic model.

Two important classes of economic environment have been considered in which more

information is possibly not more valuable. One is strategic environments, in which agents

incorporate the quality of others’ information into their own decisions. Inefficiency cre-

ated by the presence of adverse selection, for instance, represents a case in which the

possession of more accurate information may reduce an agent’s welfare. The other class

consists of neoclassical economies making state-contingent trades and production choices

under uncertainty, in which information about the final state at the time of trade is

public and common knowledge. An early paper identifying that information may have a

negative value in such a setting is Hirshleifer [6], which provides a variant of the follow-

ing example. Consider a pure exchange economy in which there is one state-contingent

commodity, and consumers are risk-averse von Neumann-Morgenstern expected utility

maximizers. Each consumer’s utility is strictly increasing in the amount of final good

she consumes, so no Pareto-improving ex-post exchange is possible; however, consumers

may exchange state-contingent claims before the uncertainty is resolved to their mutual

benefit. Now suppose that the consumers have common access to a signal about the final

state, which they observe before any exchange takes place. Under the maximum possible

information, the final state is fully revealed; however, this precludes mutually beneficial

exchange, since all consumers now only value the commodity in the state that is certain
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to be realized. Thus, among all information that the economy might learn about the

final state in advance of trade, fully revealing information is the worst possible.

Hirshleifer’s intriguing observation has spawned a substantial literature on the rela-

tionship between welfare and the amount of public information in an economy under

uncertainty. Important contributions include Marshall [8], Green [4] and Hakansson

et. al. [5], and, more recently, Eckwert and Zilcha [3] and Schlee [9]. A primary question

of interest has been whether Hirshleifer’s result, in which the maximum possible amount

of information is compared to an arbitrary instance of less information, generalizes to

all possible pairs of information structures that might be ordered by their informative

content. In addressing this question, the above papers, and the literature in general,

has used competitive price equilibrium as the solution concept to attach an outcome to

a particular instance of an economy and information. Under this approach, the results

have been mixed. Marshall [6] strongly suggests and Green [4] proves formally that when

the case of no information is compared to an arbitrary instance of some information, it

is impossible for all agents to have higher ex-ante utilities in an equilibrium under the

latter; this follows from the logic that, under conditions in which the first welfare theorem

holds, any equilibrium under no information is ex-ante Pareto efficient. However, it is

not necessarily true that the equilibrium outcome under no information ex-ante Pareto

dominates the equilibrium under better information. Furthermore, when two informa-

tion structures are considered that do not lie at the extremes of uninformative and fully

revealing, the equilibrium outcome of either may ex-ante Pareto dominate the other, even

if the structures can be ordered by some criterion. Thus, there are no very general results

on the ex-ante Pareto ranking of competitive equilibrium outcomes across information

structures.

In light of the nonexistence of such results, the literature has focused on conditions

under which more information is identifiably better or worse for an economy under un-

certainty. Green [4] considers a partial equilibrium model with futures contracts but

no state-contingent contracts, and hence incomplete markets, and derives sufficient con-

ditions for an agent to prefer more information in this setting. Eckwert and Zilcha

[3] consider dynamic economies with some uninsurable risk and production in which

production choices are made under uncertainty about productivity, and show that more
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information may be beneficial by allowing superior savings behavior. Schlee [9] returns to

the complete-market exchange case to seek circumstances under which the firm Pareto

ranking of Hirshleifer’s example generalizes to arbitrary ordered pairs of information

structures. He shows that more information always leads to an ex-ante Pareto regression

in competitive equilibrium under any of three conditions: there is no aggregate uncer-

tainty across states; there is a set of risk-neutral consumers who can perfectly insure all

risk-averse consumers; or the preferences of the consumers are aggregable, in the sense

that aggregate demand is independent of the initial distribution of endowments, and

hence can be represented by the demand of a single representative consumer. Schlee’s

results reveal that the kind of relationship between public information and welfare in an

economy under uncertainty hinted at by Hirshleifer’s example in fact holds under a wide

array of interesting circumstances. However, a large set of environments remains outside

of those that satisfy Schlee’s sufficient conditions.

To deepen the understanding of the relationship between public information and wel-

fare, this paper departs from the previous literature in the use of competitive equilibrium

as the solution concept. In place of competitive equilibrium, we use the set-valued so-

lution concept of allocations that are implementable. We define an allocation to be

implementable if it is feasible under the economy’s resource and production constraints,

and if it yields each consumer at least as much expected utility as her endowment given

(common) beliefs at the time of exchange. In an Edgeworth box economy, for instance,

the set of implementable allocations are those lying in the (lens-shaped if preferences are

strictly convex) area between the consumers’ indifference curves through the endowment

point. The set of implementable allocations represents all allocations that a social plan-

ner could choose for the economy under the constraints that the choice must be feasible,

and that any consumer who is assigned a bundle giving her less utility than her endow-

ment could instead withdraw from the economy and consume her endowment. We note

that any competitive equilibrium allocation lies in this set, though the set is generally

well-defined even when a competitive equilibrium does not exist.

Using sets of implementable allocations as the solution concept, we can apply the

partial welfare ordering in which set A is ordered ahead of set B if each allocation in B

is ex-ante weakly Pareto dominated by some allocation in A. Thus, in the social planner
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framework, A is preferred to B if any allocation the planner could choose in B is worse

than some allocation the planner could choose in A. This allows a comparative static

exercise analogous to the one performed on competitive equilibrium allocations.

We derive two main results. The first provides a direct answer to the question of how

public information relates to welfare in an economy under uncertainty, using the welfare

criterion on sets of allocations laid out above. For any two information structures that

can be ordered by Blackwell’s criterion, the set of implementable allocations when there

is less information dominates the set of implementable allocations when there is more

information. So, for instance, fixing the competitive equilibrium allocation when there

is more information, even if it is the case that not all consumers are better off ex-ante in

the competitive equilibrium allocation when there is less information, there is necessarily

some implementable allocation under less information that does make all consumers

better off ex-ante. The intuition for why this is so relates directly to a particular way

of interpreting Blackwell’s theorem. We expand on this later in the paper, but provide

a brief intuition here. Signals bear on the set of implementable allocations only via

the consumers’ participation, or individual rationality, constraints. When information

structure A is ordered ahead of information structure B by Blackwell’s ordering, we can

roughly interpret A as resulting from the observation of some information additional to

B. Under A, individual rationality must be respected for all possible realizations of that

additional information. But under B, the constraints across realizations of the additional

information may be pooled, and hence a larger set of allocations are individually rational.

In this setting, more information is a nuisance: it has no instrumental value to the

economy, which can make state-contingent decisions, and thus it merely serves to contract

the set of interim exchanges that consumers are willing to make.

Our second main result is that (reverse) Blackwell dominance is not only sufficient

for the set of allocations implementable under one information structure to dominate

the set implementable under another, it is also necessary when one considers a general

class of economies. That is, if Blackwell’s criterion does not order information structure

A ahead of information structure B, then it is possible to construct an economy and

find an allocation implementable for that economy under A that is not ex-ante Pareto

dominated by any allocation implementable under B. Thus, our criterion generates a
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partial ordering on information structures that is an exact mirror image of Blackwell’s

ordering. Employing the definition of Blackwell’s criterion using decision problems, we

can state our results by saying that information structure A is better than information

structure B for all nonstrategic decision-makers facing uncertainty if and only if B is

better than A for all economies under uncertainty.

Our focus on implementable allocations as a solution concept rather than competitive

equilibrium is not based on a subjective preference for the former. Rather, we wish

to highlight the general forces that cause public information to have negative value.

As stated above and demonstrated below, under implementable allocations the negative

value of public information is unambiguous. We submit that insofar as public information

also exhibits this negative value under competitive equilibrium, it is for the same reason:

gains to trade are contracted when more information is revealed. That competitive

equilibrium need not always preserve the monotonicity of the relationship is in keeping

with the idiosyncratic comparative statics that competitive equilibrium is apt to generate,

e.g., the example in which a consumer in an exchange economy derives an improved

equilibrium utility by disposing of part of her endowment. In the case of the relationship

between public information and welfare there is no generally accepted intuition, and hence

individual examples showing that more public information can be better or worse under

competitive equilibrium may promote a perspective of ambiguity on the subject. Our

goal is to show convincingly that the notion that more information harms an economy

under uncertainty, as we draw from Hirshleifer’s example and Schlee’s results, is in fact

the natural intuition.

The paper proceeds in four additional sections. The first formalizes the class of

economies we consider and defines our partial orderings. The second defines Blackwell’s

ordering and contains our main results. The third discusses intuition for the results. The

fourth concludes.

2. THE ENVIRONMENT

There is a finite set Ω of M states of the world containing elements ω. This set is held

fixed throughout the analysis. An economy E is described by the following fundamentals.

There is a set of I consumers indexed by i. Consumer i is characterized by: a state-

contingent endowment ei(ω), which for each ω is a point in the consumption set X, a
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vector space; and a state-contingent von Neumann-Morgenstern utility function ui(xi, ω),

concave in xi for every ω, over sure-thing consumption xi in state ω. State-contingent

production is possible and is summarized by state-contingent production possibility sets

X(ω). It is assumed that for every ω the grand endowment
∑

i ei(ω) is in X(ω), so that

null production is possible. This nests the special case of an exchange economy with no

disposal, in which X(ω) is the singleton set {∑i ei(ω)} for all ω. Finally, the realized

state is generated according to a probability function f(ω), which is common knowledge

among the consumers and satisfies f(ω) > 0 for all ω and
∑

ω∈Ω f(ω) = 1. The set of all

economies satisfying these criteria is denoted E .
The economy is presumed to have access to an information structure ζ, comprised of

elements (Y,Π). Y is a finite set of N signals with elements y; while the set of states Ω

is held fixed, the set of signals Y , and its size N , may vary across different information

structures. Π is an M × N matrix of M probability distributions on the N signals.

Specifically, πmn is the probability that signal yn is observed given that state ωm is

realized, written π(yn|ωm). Thus, Π contains only nonnegative elements, and its rows

each sum to 1; we refer to the class of matrices having these characteristics as Markov

matrices. The elements of ζ are common knowledge among the consumers. Consumers

are assumed to observe, before any economic activity takes place, a single realization of

a signal generated from the distribution on states f(·) combined with the conditional

distribution π, i.e., the probability that they observe signal y is
∑

ω∈Ω f(ω)π(y|ω).
Given an economy E and an information structure ζ, an allocation for the economy

is a profile of state- and signal-dependent consumptions
(
xi(y, ω)

)I

i=1
. An allocation is

defined as feasible if
∑

i xi(y, ω) ∈ X(ω) for all y ∈ Y and all ω ∈ Ω. An allocation is

defined as individually rational if

∑

ω∈Ω

f(ω)π(y|ω)(ui(xi(y, ω), ω) − ui(ei(ω), ω)) ≥ 0

for all y ∈ Y and all i. Feasibility simply requires that aggregate consumption lie in the

production possibility set for all states. Individual rationality requires that for any signal

y that might be realized, each consumer earns a higher expected utility from the allocation

conditional on y than she does from consuming her random endowment. This definition

of individual rationality captures the feature that all consumers observe the realization
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of the signal before they engage in any economic activity. Thus, when a given consumer

determines whether she prefers not to participate in the economy and instead consume

her endowment, she uses her posterior beliefs about the state of the world conditional on

the realized signal. Any allocation that is both feasible and individually rational given E

and ζ is defined to be implementable. We denote the set of all implementable allocations

given E and ζ by X∗(E, ζ). X∗(E, ζ) must contain the initial endowment, and hence is

nonempty.

We also define implementability for finite lotteries over allocations. Given an economy

E and an information structure ζ, a finite lottery is a finite set of J noncontingent allo-

cations X∆, with typical element
(
xij

)I

i=1
, and a signal- and state-dependent probability

function δ(x|y, ω) on X∆, with δj(y, ω) the probability that allocation j obtains given

that signal y and state ω are realized. Note that any deterministic allocation
(
xi(y, ω)

)I

i=1

can be represented as a finite lottery, with X∆ the set of all allocations
(
xi

)I

i=1
such that

(
xi

)I

i=1
=

(
xi(y, ω)

)I

i=1
for some y ∈ Y and ω ∈ Ω, and δj(y, ω) = 1 if xij = xi(y, ω) for

all i, δj(y, ω) = 0 otherwise. A finite lottery is feasible if for every j, y ∈ Y and ω ∈ Ω,

δj(y, ω) > 0 implies
∑

i xij ∈ X(ω). A finite lottery is individually rational if for every

signal y and consumer i,

∑

ω∈Ω

f(ω)π(y|ω)
∑

j

δj(y, ω)(ui(xij , ω)− ui(ei(ω), ω)) ≥ 0.

A finite lottery is implementable if it is feasible and individually rational. The set of all

implementable finite lotteries given E and ζ is denoted ∆∗(E, ζ), and is nonempty as it

contains the degenerate lottery that puts all probability on the initial endowment.

We now define some partial orderings on information structures. We do so using

sets of ordered pairs of information structures to summarize the binary relations we

have in mind. The first ordering is economy-dependent and denoted S(E). For two

information structures ζ and ζ ′, we define (ζ, ζ ′) ∈ S(E) if and only if for any allocation
(
x′i(y

′, ω)
)I

i=1
∈ X∗(E, ζ ′), there exists an allocation

(
xi(y, ω)

)I

i=1
∈ X∗(E, ζ) such that

∑

ω∈Ω

f(ω)
∑

y∈Y

π(y|ω)ui(xi(y, ω), ω) ≥
∑

ω∈Ω

f(ω)
∑

y′∈Y ′
π′(y′|ω)ui(x′i(y

′, ω), ω)
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for all i. In words, ζ is ordered over ζ ′ for economy E if any implementable allocation

given E and ζ ′ is ex-ante weakly Pareto dominated1 by some implementable allocation

given E and ζ. Building on this ordering, we define the economy-independent ordering

S by (ζ, ζ ′) ∈ S if and only if (ζ, ζ ′) ∈ S(E) for all E ∈ E . ζ is ordered over ζ ′ by S

if for any economy E in the class that is considered, and any implementable allocation
(
x′i(y

′, ω)
)I

i=i
given E and ζ ′, there is an implementable allocation

(
xi(y, ω)

)I

i=i
given E

and ζ that weakly Pareto dominates
(
xi(y′, ω)

)I

i=i
.

We define a second pair of orderings for lotteries, one economy-dependent and one not,

as follows. The economy-dependent ordering S∆(E) is defined by (ζ, ζ ′) ∈ S∆(E) if and

only if for any implementable lottery (X∆, δ
′) ∈ ∆∗(E, ζ ′), there exists an implementable

lottery (X∆, δ) ∈ ∆∗(E, ζ) (note that the set X∆ is the same for each lottery) such that

for every state ω ∈ Ω and every allocation j in X∆,

∑

y∈Y

π(y|ω)δj(y, ω) =
∑

y′∈Y ′
π(y′|ω)δ′j(y′, ω).

In words, the probability that allocation j is chosen conditional on any particular state

being realized is identical across the two lotteries. Thus, ζ is ordered over ζ ′ given E by

S∆(E) if any ex-ante probability distribution over state-specific allocations that can be

induced by a lottery that is implementable given E and ζ ′ can also be induced by some

lottery that is implementable given E and ζ. The economy-independent ordering S∆ is

defined by (ζ, ζ ′) ∈ S∆ if and only if (ζ, ζ ′) ∈ S∆(E) for all E ∈ E .
Deterministic allocations (for given y and ω), as are found in the set X∗(E, ζ), are

possibly more appealing from an implementation perspective than lotteries, in that they

do not require a planner to have the ability to randomize over allocations. However,

the ordering implied by S∆ is stronger than that implied by S, in that the set of imple-

mentable lotteries over allocations is finer than the set of implementable ex-ante expected

utility profiles, and thus S∆ may merit independent consideration. In particular, if S∆

orders information structure ζ ahead of information structure ζ ′, then S does as well:

Proposition 1: S∆ ⊆ S.

1 We use weak Pareto dominance to include the case in which the ex-ante expected utility of each
consumer is identical across the two allocations. Thus, this ordering is reflexive.

8



Proof: Suppose (ζ, ζ ′) ∈ S∆. Fix E. Choose an arbitrary deterministic allocation
(
x′i(y

′, ω)
)I

i=1
∈ X∗(E, ζ ′). As described in the text,

(
x′i(y

′, ω)
)I

i=1
has a lottery repre-

sentation (X ′
∆, δ

′). Since (ζ, ζ ′) ∈ S∆, there is a lottery (X ′
∆, δ) ∈ ∆∗(E, ζ) such that for

every j and every ω,

∑

y∈Y

π(y|ω)δj(y, ω) =
∑

y′∈Y ′
π(y′|ω)δ′j(y′, ω).

Since lottery (X ′
∆, δ) induces an identical ex-ante distribution over state-specific con-

sumption profiles, it yields all consumers the same ex-ante expected utility under ζ

as does (X ′
∆, δ

′) under ζ ′. Consider now the deterministic allocation
(
xi(y, ω)

)I

i=1
=

(∑
j δj(y, ω)xij

)I

i=1
. This allocation is feasible by convexity of X(ω) and feasibility of

X ′
∆. Because all consumers are risk averse, they weakly prefer

(
xi(y, ω)

)I

i=1
to lottery

(X ′
∆, δ) for all (y, ω), so implementability of (X∆, δ) implies the implementability of

(
xi(y, ω)

)I

i=1
, and

(
xi(y, ω)

)I

i=1
weakly Pareto dominates (X∆, δ). Thus,

(
xi(y, ω)

)I

i=1

weakly Pareto dominates (X∆, δ
′) and

(
x′i(y

′, ω)
)I

i=1
.

Later results will establish that the two orderings are in fact equivalent.

3. BLACKWELL’S CRITERION AND PUBLIC INFORMATION

We now review Blackwell’s criterion for ordering information structures and compare

that ordering to those we have defined. As described in the introduction, Blackwell’s

ordering is often defined in the context of a single decision maker. The decision maker

chooses an action a from some set A. Her von-Neumann Morgenstern utility function

u(·, ·) is defined on pairs (a, ω) ∈ A × Ω. She is allowed to condition her action on the

realized signal y. She prefers information structure ζ to ζ ′ if she achieves a higher ex-ante

expected utility behaving optimally with respect to signals generated by the former than

by the latter. Blackwell’s criterion for ordering information structures is that ζ is ordered

over ζ ′ if and only if a decision maker would prefer ζ to ζ ′ for any decision problem, as

characterized by the set A, utility function u(·, ·), and a prior on the distribution over

states f(ω). Equivalently, if randomized actions are allowed, the criterion requires that

for any decision problem, any feasible distribution of payoffs under ζ ′ can be duplicated

under ζ.
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Blackwell and others have established that the above criterion is equivalent to numer-

ous conditions on the matrices of conditional signal probabilities Π and Π′ (see, e.g.,

Blackwell [1] for an original exposition, or Blackwell and Girshick [2] or Kihlstrom [7]

for summaries). A dual approach is to consider not the probabilities with which sig-

nals are generated by states, as in Π and Π′, but rather the posterior probabilities over

states conditional on signals. When there are N signals, this would be represented by

an N ×M Markov matrix P , along with a marginal distribution over signals represented

by a Markov N -vector g. Equivalent expressions for Blackwell’s criterion have been es-

tablished where the pair (P, g) is the unit of analysis rather than (Y,Π), i.e., there exist

equivalent binary relations over pairs (P, g) and (P ′, g′). Use of Bayes’ rule provides

the link between the two approaches: any marginal distribution over states f and any

distribution of signals conditional on states Π imply a unique marginal distribution over

signals g, given by the product fΠ, and for any signal yn that is observed with positive

probability (gn > 0), element Pnm of matrix P is fmΠmn/gn. If gn = 0 then row n of

matrix P may be specified arbitrarily; for convenience it is assumed to equal the marginal

distribution f , i.e., Pnm = fm.

For our purposes, it is most convenient and intuitive to use forms of Blackwell’s crite-

rion defined on the (P, g) representation of an information structure. Two such equivalent

criteria are as follows:

Theorem 1 (Blackwell) : (P ′, g′) is ordered ahead of (P, g) by Blackwell’s criterion

if and only if there exists an N ×N ′ Markov matrix T such that P = TP ′ and gT = g′.

Theorem 2 (Blackwell) : (P ′, g′) is ordered ahead of (P, g) by Blackwell’s criterion

if and only if for any real-valued, concave function ϕ(·) defined on 1×M Markov vectors,
∑

n′ gn′ϕ(P ′
n′) ≤ ∑

n gnϕ(Pn), where P ′
n′ (Pn) is the n

′th (nth) row of P ′ (P ).

Where (Pf , gf ) and (P ′
f , g

′
f ) are Bayesian derivations from fundamentals (f,Π) and

(f,Π′), respectively, it is the case that if (P ′
f , g

′
f ) is ordered ahead of (Pf , gf ) by Black-

well’s criterion for some f , then it is so ordered for all f . This is convenient in that the

ordering is then well defined on the original structures (Y,Π) and (Y ′,Π′).

The characterization of Blackwell’s criterion in Theorem 1 lends itself well to inter-

pretation, toward which we offer the following conceptualization. Suppose that, rather
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than being a signal containing information about a realized state, each element y′n′ ∈ Y ′

represents a stochastic process that generates the final state, where row n′ of matrix P ′

represents the distribution over states effected by the n′th process. The elements of Y

are themselves stochastic processes over the elements of Y ′, where Tnn′ is the probability

that the n′th process in Y ′ is the one that generates ω given that yn is realized. Which

element yn ∈ Y obtains is generated according to the probability vector g. Under this

structure, it is evident that the interim distribution over states given that element yn has

been realized is
∑

n′ Tnn′P ′
n′ , or Pn under the original assumptions. Furthermore, the

ex-ante probability that element y′n′ generates ω is
∑

n gnTnn′ , which fulfills the second

condition of the hypothesis, that g′ = gT . Thus, this conceptualization, in which the

fundamentals are g, P ′ and T , reproduces all of the relevant features of the interpretation

of the elements of Y and Y ′ as signals, in which the fundamentals are g, P , g′ and P ′,

with P = TP ′ and g′ = gT .

Under the above conceptualization, we can interpret observation of an element y in Y

as occurring in advance of the resolution of noise as represented by T , and observation

of an element y′ in Y ′ as revealing the resolution of that noise. Specifically, suppose that

a realized y is revealed, followed at a later point in time by a realized y′ and, later yet, a

realized ω. Consider now an economy that can trade after the observation of a realized

y in Y . This economy is able to condition allocations on the realization of y′, as well

as on the realization of ω. Would this economy wish to condition its allocation on the

realization of y′? The intuition of optimization under risk aversion tells us that it is in fact

desirable for such an allocation not to depend on y′, because such dependence effectively

exposes risk-averse consumers to the state-independent noise inherent in T . That is,

consumers value not only the opportunity to insure against risk generated by variation

in the realized state of nature, but also the opportunity to insure against variation in

posterior beliefs about the final state.

This intuition is formalized in the first of our main results relating Blackwell’s ordering

to the value of public information:

Theorem 3: For any two information structures ζ and ζ ′, if ζ ′ is ordered ahead of ζ

by Blackwell’s criterion, then (ζ, ζ ′) ∈ S∆.
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Proof: See appendix.

We provide an outline of the proof here. The proof is executed by choosing an arbi-

trary implementable lottery given ζ ′, (X∆, δ
′), and constructing a lottery given ζ that is

implementable and duplicates the distribution over state-specific allocations of (X∆, δ
′).

Because ζ ′ is ordered ahead of ζ by Blackwell’s criterion, there exists an N ×N ′ Markov

matrix T such that P = TP ′ and g′ = gT . The probability the candidate lottery under

ζ puts on allocation j in state ωm given signal yn ∈ Y is a weighted average of the the

probabilities put on j in ωm given the signals y′n′ ∈ Y ′, where the weights are given by

Tnn′P ′
n′m/Pnm. In essence, the distribution δ chooses an element of y′ ∈ Y ′ by simulating

the noise described by matrix T , then uses the probabilities δ′j(y
′, ω). This duplicates the

conditional distribution over X∆ given any state of δ′; it is individually rational because

by individual rationality of (X∆, δ
′), individual rationality is satisfied for all realizations

of the simulated noise.

Proposition 1 and Theorem 3 taken together clearly imply that if ζ ′ is ordered ahead of

ζ by Blackwell’s criterion, then (ζ, ζ ′) ∈ S, and thus independent proof is not required.

However, a direct proof is transparent using the intuition of Theorem 3. There, it is

shown that, under information structure ζ, it is possible to duplicate the distribution

over final allocations of any implementable lottery under ζ ′ by artificially choosing a

signal yn′ via the probability distribution Tnn′P ′
n′m/Pnm when signal yn is observed, and

then replicating the yn′-contingent lottery. Now, suppose that the implementable lottery

under ζ ′ in question is degenerate, with associated allocation
(
xi(y′n′ , ωm)

)I

i=1
. Since a

lottery under ζ that chooses allocation
(
xi(y′n′ , ωm)

)I

i=1
with probability Tnn′P ′

n′m/Pnm

when yn is observed yields all consumers an identical ex-ante payoff, the degenerate

allocation in which when signal yn and state ωm are realized the consumers receive the

allocation
(∑

n′

Tnn′P ′
n′m

Pnm
xi(y′n′ , ωm)

)I

i=1

necessarily yields them a greater payoff, as they are risk averse. This allocation effectively

insures consumers against the resolution of the noise of T by giving them their expected

y′n′ allocation given yn in every state, thus formalizing the intuition provided previous

to the statement of Theorem 3.
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Because there has been a past emphasis on competitive equilibrium outcomes, one

may argue that the set of implementable allocations as we have defined it is too broad.

In particular, since competitive equilibrium outcomes are interim Pareto efficient under

weak conditions, it may be preferable to limit attention to the subset of implementable

allocations that are interim Pareto efficient given the information structure that obtains.

This would be appropriate if the nature of implementation were, for instance, that a

social planner effects a temporary allocation
(
xi(y, ω)

)I

i=1
, but consumers are allowed to

trade starting from this temporary allocation before the state ω is realized . Then only

interim Pareto efficient allocations by the planner will be immune to further trade by

consumers.

Under conditions for which the interim Pareto frontier is well-defined for all signals, it

is easy to establish that the implications of our result also hold when the set of allocations

considered are implementable and interim Pareto efficient. The interim Pareto frontier is

well-defined if for any signal y, there is a partition of the set of implementable allocations

{A(y), B(y)} with the property that every allocation in A(y) is interim Pareto efficient,

and every allocation in B(y) is interim weakly Pareto dominated by some allocation in

A(y); A(y) is then the interim Pareto frontier for signal y.

Theorem 4: For any economy E ∈ E such that interim Pareto frontiers are well-

defined, if information structure ζ ′ is ordered ahead of ζ by Blackwell’s criterion, then any

interim Pareto efficient implementable allocation in X∗(E, ζ ′) is ex-ante weakly Pareto

dominated by some interim Pareto efficient allocation in X∗(E, ζ).

Proof: By Theorem 3, any interim Pareto efficient allocation in X∗(E, ζ ′) is ex-ante

weakly Pareto dominated by some allocation inX∗(E, ζ). For well-defined interim Pareto

frontiers, any allocation in X∗(E, ζ) is ex-ante weakly Pareto dominated by some interim

Pareto efficient allocation in X∗(E, ζ). Ex-ante weak Pareto dominance is a transitive

ordering.

Having established that our public information orderings reverse those of Blackwell, the

second issue is whether the obverse is true, so that the set of ordered pairs of information

structures that we define and the set that Blackwell defines are in fact mirror images of

each other. In other words, if information structure ζ is better than ζ ′ in our sense, is
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ζ necessarily worse than ζ ′ in Blackwell’s sense? Our second main result is that this is

indeed the case:

Theorem 5: For any two information structures ζ and ζ ′, if (ζ, ζ ′) ∈ S, then ζ ′ is

ordered ahead of ζ by Blackwell’s criterion.

Proof: See appendix.

The proof establishes the contrapositive of the proposition by construction: if ζ ′ is not

ordered ahead of ζ by Blackwell’s criterion, then an economy Ê can be found such that

(ζ, ζ ′) /∈ S(Ê). Note that Theorem 5 also confirms the equivalence of sets S and S∆.

4. DISCUSSION

While the intuition provided by the conceptualization of signal posteriors as processes

generating the final state makes the forces behind our results fairly clear, we offer here

some additional analysis. The exact inverse relationship between the value of information

to an individual decision-maker and the value of public information to an economy under

risk strongly suggests some formal duality between the two. This duality is most easily

understood via the characterization of Blackwell’s ordering of Theorem 2.

Consider two decision problems. The first is the standard one of Blackwell: there is a

single decision maker who chooses an action a ∈ A, where A is some compact set, and

has von Neumann-Morgenstern utility u(a, ω). The decision maker is allowed to observe

the realization of a signal yn before choosing contingent action an. Thus, for any signal

yn, she will choose an ∈ argmaxa∈A

∑
m Pnmu(a, ωm), and her ex-ante expected payoff

from doing so is
∑

n

gn max
an∈A

∑

m

Pnmu(an, ωm).

The function maxan∈A

∑
m Pnmu(an, ωm) is necessarily convex in M -vector Pn, as it is

linear in Pn for any fixed action an. Thus, if (P ′, g′) yields a lower expectation of all

concave functions ϕ(·) defined on Markov M -vectors than does (P, g), it must yield a

higher expectation of all convex functions ϕ′(·) defined on Markov M -vectors than does

(P, g), and the decision maker must prefer (P ′, g′) to (P, g).

Consider now a problem in which the decision maker is a social planner for an econ-

omy under risk. The decision maker’s problem is to choose a state- and signal-dependent
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allocation for the economy
(
xi(yn, ωm)

)I

i=1
. The allocation she chooses must be im-

plementable under our definition. Her objective function is a standard weighted social

welfare function
∑

i λi

∑
n gn

∑
m Pnmui(xi(yn, ωm), ωm), with λi ≥ 0 for all i. Without

the individual rationality constraints, the optimal allocation would simply maximize the

social welfare function state-by-state, and would therefore be independent of the realized

yn. Hence the maximized value of the function for a given n would be linear in Pn, and

in particular would be equivalent for all g and P satisfying gP = f . Because the Pn enter

the individual rationality constraints linearly, the constrained program is thus concave

in Pn for each realized signal n. Thus, the social planner can always attain at least as

great a weighted social welfare with less information as she can with more information.

We note a technical similarity between this latter result and that of Schlee [9]. The

environments Schlee identifies share the feature that the equilibrium price of a given

good in a given state is linear in the assessed probability of that state occurring. Since

consumers’ signal-dependent indirect utilities are concave in prices, given the linear rela-

tionship between posteriors and prices, the indirect utilities are also necessarily concave

in the posteriors, and hence consumers achieve worse ex-ante indirect utility when there

is more information. Thus, public information will have an unambiguously negative

value under competitive equilibrium in any environment for which this linearity between

posteriors and equilibrium prices holds.

One natural question in light of the results of this and other papers is whether the

negative value of information is preserved under the solution concept of the core. The

core properly lies “between” competitive equilibrium and implementable allocations, as

any competitive equilibrium allocation is in the core, and any core allocation is imple-

mentable. An immediate indication that the core does not preserve the negative value

of information is derived from core convergence under replication: the negative value of

information is not globally preserved under competitive equilibrium; hence there neces-

sarily exist an economy and two information structures such that the negative value of

information is violated for the competitive equilibrium allocations; with sufficient repli-

cation of the economy the core converges to the competitive equilibrium allocations; ergo,

the negative value of information is also violated under the core.
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A direct proof of the failure of the core to preserve a strictly negative value of informa-

tion is also easy to construct. Suppose an exchange economy with three consumers and

two states of the world. In each state there are two commodities, x and y. All consumers

have state-independent preferences. Consumer 1 values only commodity x, with utility

u1(x1, y1) = x1. Consumers 2 and 3 have identical utility functions ui(xi, yi) =
√
xi +yi,

i ∈ {2, 3}. Consumer 1 is endowed with one unit of good y in both states. Consumer 2

is endowed with one unit of good x in state 1, nothing in state 2; consumer 3 is endowed

with one unit of good x in state 2, nothing in state 1. Under a signal structure that fully

reveals the final state, the allocation in which consumer 1 consumes one unit of good x

in both states, consumer 2 consumes one unit of good y in state 1, and consumer 3 con-

sumes one unit of good y in state 2, is in the interim core; furthermore, no other feasible

state-dependent allocation gives consumer 1 a greater ex-ante utility. Next, consider a

signal structure in which no information is revealed, and the ex-ante probability of each

of the two states is 1/2. With no aggregate risk, consumers 2 and 3 must be fully insured

in any core allocation. Furthermore, the set of utility pairs (u2, u3) on the Pareto frontier

for the coalition of consumers 2 and 3 is (
√
α,

√
1− α), for α ∈ [1/4, 3/4]. To maximize

consumer 1’s utility subject to the constraint that the utilities of the consumers 2 and

3 equal a given point on their coalitional Pareto frontier, it is evident that consumer 1

should trade good y to the others so that the others each are left with the same amount

of good x (so that their marginal rates of substitution are identical); doing so yields

consumer 1 a total of

1− 1
2
(
√
α+

√
1− α− 1)

units of good x in each state. This is strictly less than 1 for all α ∈ (0, 1), and in

particular for all α ∈ [1/4, 3/4]. Thus, there is no allocation in the interim core under

no information that yields consumer 1 an ex-ante utility of 1, as there is under perfect

information, and an unambiguous negative value of information, in the sense of Pareto

dominance, fails.

For what economies might public information have positive value? A clear case is that

in which information bears on the efficiency of production. Implicit in our specification of

an economy is that the set of state-contingent production possibility sets is the Cartesian

product ΠM
m=1X(ωm), and hence a rectangle. This specifically rules out cases in which
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the choice of production in one state affects what is feasible in another. However, if

important production decisions must be made in advance of the resolution of uncertainty,

then such cases may apply. An obvious example is sunk investment in a specific uncertain

technology; the resources that are sunk could be put to different uses, and hence the

decision to invest affects the production possibilities set in all states. In that environment,

improved information about the technology would allow a welfare-improving adjustment

in the amount of investment. So for instance, in a Robinson Crusoe economy in which

production had this dependency property, more information in Blackwell’s sense would

always have positive value. In general, if production has this feature then there will be

tradeoffs between more efficient production and more efficient risk-sharing, as in Eckwert

and Zilcha (2001) in a somewhat different context.

5. CONCLUSION

We have attempted to show that the notion raised in Hirshleifer’s early paper is quite

general: more public information available before trade results in a worse set of attainable

outcomes for an economy under uncertainty. Adherence to competitive equilibrium as

a solution concept obscures this relationship, as competitive equilibrium may induce

comparative statics that are counterintuitive in light of different solution concepts. In this

regard, one may interpret the conditions that Schlee [9] identifies as sufficient to guarantee

a negative value of public information, as being conditions that induce a natural regularity

in comparative statics under competitive equilibrium.

The preciseness of the relationship between Blackwell’s ordering of information and the

value of public information in an economy under uncertainty may indicate that additional

equivalences between Blackwell and the value of information in broad classes of economic

environment, such as principal-agent settings, may hold. Any such results would help

unify the measurement of information and support Blackwell’s ordering as the standard.

APPENDIX

Proof of Theorem 3. Since Blackwell’s criterion is satisfied, there exists an N × N ′

Markov matrix T such that P = TP ′ and gT = g′. Fix an arbitrary economy E ∈ E , and
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let x′∆ ≡ (X∆, δ
′) be an arbitrary finite lottery over allocations that is implementable

given E and ζ ′. Consider the lottery x∗∆ ≡ (X∆, δ
∗) given E and ζ, satisfying

δ∗j (yn, ωm) =
N ′∑

n′=1

Tnn′Pn′m

Pnm
δ′j(y

′
n′ , ωm)

if Pnm > 0,
(
δ∗j (yn, ωm)

)J

j=1
an arbitrary probability vector if Pnm = 0. δ∗j (yn, ωm) is

a proper lottery because
∑

j δ
′
j(y

′
n′ , ωm) = 1 for all y′n′ and ωm, and

∑N ′

n′=1 Tnn′Pn′m =

Pnm for all yn and ωm. We will show that this lottery yields an identical distribution

over all state-specific allocations and is implementable given E and ζ.

First, we prove that the lotteries are ex-ante identical. Fix allocation j ∈ X∆ and

state ω ∈ Ω. The conditional probability that j is chosen under x∗∆ in state ωm is

N∑

n=1

π(yn|ωm)δ∗j (yn, ωm)

=
N∑

n=1

π(yn|ωm)
N ′∑

n′=1

Tnn′P ′
n′m

Pnm
δ′j(y

′
n′ , ωm)

=
N∑

n=1

gn

fm

N ′∑

n′=1

Tnn′P ′
n′mδ

′
j(y

′
n′ , ωm)

=
N ′∑

n′=1

P ′
n′m

fm
δ′j(y

′
n′ , ωm)

N∑

n=1

Tnn′gn

=
N ′∑

n′=1

gn′P ′
n′m

fm
δ′j(y

′
n′ , ωm)

=
N ′∑

n′=1

π′(y′n′ |ωm)δ′j(y
′
n′ , ωm).

The last term is the conditional probability that j is chosen under x′∆ in state ωm.

Because the ex-ante distributions over state-specific allocations are identical, we have

that for any j, y ∈ Y and ω ∈ Ω, if δj(y, ω) > 0 then δ′j(y
′, ω) > 0 for some y′. Thus,

feasibility of (X∆, δ
′) implies feasibility of (X∆, δ). Individual rationality is satisfied if

for all yn ∈ Y and all consumers i,

gn

M∑

m=1

Pnm

∑

j

δ∗j (yn, ωm)(ui(xij , ωm)− ui(ei(ωm), ωm)) ≥ 0.
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Clearly, the specification of δ∗j (yn, ωm) does not matter if gn = 0, or if Pnm = 0. Other-

wise, substituting the proposed δ∗j (yn, ωm) we have

gn

M∑

m=1

Pnm

∑

j

N ′∑

n′=1

Tnn′Pn′m

Pnm
δ′j(y

′
n′ , ωm)(ui(xij , ωm)− ui(ei(ωm), ωm))

=gn

N ′∑

n′=1

Tnn′

M∑

m=1

Pn′m

∑

j

δ′j(y
′
n′ , ωm)(ui(xij , ωm)− ui(ei(ωm), ωm)).

Because T is nonnegative and x′∆ is individually rational by hypothesis, each of the N ′

terms in the sum across n′ is nonnegative, so the entire sum is nonnegative and x∗∆ is

individually rational.

Proof of Theorem 5. We prove the contrapositive using the characterization of Black-

well’s criterion in Theorem 2. Specifically, we show that if the conditions of Theorem

2 do not hold, then we can construct an economy E ∈ E and find an allocation in

X∗(E, γ′) that is not weakly Pareto dominated by any allocation in X∗(E, ζ), implying

that (ζ, ζ ′) /∈ S. Thus, we take as a hypothesis that there exists a concave function

ϕ(·) defined on Markov M -vectors such that
∑

n′ gn′ϕ(P ′
n′) >

∑
n gnϕ(Pn). If such a

ϕ(·) exists, then there is necessarily a concave function ϕ′(·) with the same property

that takes on only nonnegative values (e.g., via an affine transformation of ϕ(·) if ϕ(·)
is finite-valued, or via an adjustment in ϕ(·) so that it is finite-valued but preserves

the inequality, followed by an affine transformation). Thus, we assume without loss of

generality that ϕ(·) is nonnegative-valued.
The economy E an exchange economy of M + 1 consumers and 2M discrete goods in

each state. A quantity of good m in state m′ will be denoted xm
m′ . For m ≤ M , consumer

m has von Neumann-Morgenstern utility xm+xM+m in every state. That is, each of the

firstm consumers is risk-neutral, and cares only about two goods, the mth andM+mth.

Consumer m ≤ M is endowed with one unit of good m in every state, i.e., em
m(ωm′) = 1

for all m′ ∈ {1, . . . ,M}.
ConsumerM+1 also has state-independent utility, and cares only about goodsm ≤ M ,

so her von Neumann-Morgenstern utility function can be defined solely on nonnegative

M -vectors. This utility function, called u(·), is constructed from function ϕ(·) as follows:
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u(0) = 0, and for any nonzero, nonnegative bundle of the firstM goods {x1, x2, . . . , xM},
we have

u(x1, . . . , xM ) = (
m∑

m=1

xm)ϕ(
x1

∑m
m=1 x

m
, . . . ,

xM

∑m
m=1 x

m
).

u(·) has the property that it coincides with ϕ(·) on all Markov M -vectors. Because ϕ(·)
is concave by hypothesis, u(·) is as well and hence is permissible under the restrictions

on economies in E. Consumer M + 1 is endowed with 1 unit of good M +m in state m

for all m ≤ M , i.e., eM+m
M+1 (ωm) = 1 for all m ∈ {1, . . . ,M}.

This completes the description of the economy. We now focus on a particular allocation

under information structure ζ ′. In this allocation, for any consumer m ≤ M , we have

xm(y′n′ , ωm′) = (1 − Pn′m) for all n′ and m′ ∈ {1, . . . ,M}, and xM+m(y′n′ , ωm) = 1 for

all n′. That is, given realized signal n′, consumer m is allocated 1− P ′
n′m units of good

m in all states, and 1 unit of good M +m in state m. For consumer M + 1 and every

good m ≤ M , we have xm(y′n′ , ωm′) = Pn′m for all n′ and m′ ∈ {1, . . . ,M}, i.e., for any
good m ≤ M and signal n′, consumer M + 1 is allocated P ′

n′m units in all states. This

allocation is feasible, and because it gives all consumers m ≤ M their endowment utility

of 1, while giving consumer M + 1 strictly positive utility rather than her endowment

utility of 0, it is individually rational, and hence implementable.

To complete the proof, we show that the above allocation is not weakly Pareto-

dominated by any allocation that is implementable under ζ. First, note that because

consumer M + 1 is interim perfectly insured and receives nonnegative good quantities

summing to 1 in all states, her interim expected utility given signal n′ under this al-

location is simply ϕ(P ′
n′ ), and her ex-ante expected utility is exactly

∑
n′ gn′ϕ(P ′

n′).

Furthermore, this is the allocation that maximizes consumer M + 1’s utility subject to

the constraint that all other consumers maintain their endowment utility. To see this,

note that the only Pareto-improving reallocations from the endowment that are possi-

ble in this economy entail consumer M + 1 trading all of her good M +m in state m

(which she does not value) to consumer m (the only consumer who values good M +m)

for a quantity of good m (the only good consumer m has to trade). Because consumer

M + 1 is risk-averse, it is efficient for her to consume the same amount of good m in all

states. The largest amount of good m in all states that consumer m would be willing

to trade for 1 unit of good M +m in state m (which he values at P ′
n′m utils) is P ′

n′m.
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Thus, there is no different allocation that yields a greater interim utility for consumer

M +1 and respects individual rationality for the remaining consumers. This means that
∑

n′ gn′ϕ(P ′
n′) is the largest possible ex-ante expected utility consumer M +1 can attain

among all implementable allocations under ζ ′. However, the same argument establishes

that
∑

n gnϕ(Pn) is the largest utility consumer M + 1 can attain among all imple-

mentable allocations under ζ. As
∑

n′ gn′ϕ(P ′
n′) >

∑
n gnϕ(Pn) by hypothesis, there

is no allocation implementable under ζ yielding consumer M + 1 as great an ex-ante

expected utility as the constructed allocation under ζ ′, and hence no allocation imple-

mentable under ζ that weakly ex-ante Pareto dominates the constructed allocation, and

thus (ζ, ζ ′) /∈ S.
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