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A �ow network analysis of direct balance-sheet

contagion in �nancial networks

Mario Eboli�

July 2013

Abstract

This paper puts forward a novel approach to the analysis of direct contagion

in �nancial networks. Financial systems are here represented as �ow networks �

i.e., directed and weighted graphs endowed with source nodes and sink nodes �and

the propagation of losses and defaults, originated by an exogenous shock, is here

represented as a �ow that crosses such a network. In establishing existence and

uniqueness of such a �ow function, we address a know problem of indeterminacy

that arise, in �nancial networks, from the intercyclicity of payments. Su¢ cient and

necessary conditions for uniqueness are pinned down. We embed this result in an

algorithm that, while computing the propagation caused by a shock, controls for the

emergence of possible indeterminacies. We then apply some properties of network

�ows to investigate the relation between the structure of a �nancial network �i.e.,

the size and the pattern of obligations �and its exposure to default contagion. We
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characterise �rst and �nal contagion thresholds (i.e., the value of the smallest shock

capable of inducing default contagion and the value of the smallest shock capable

of inducing the default of all agents in the network, respectively) for some classes of

networks, namely the complete, star-shaped, incomplete regular, and cycle-shaped

networks. Finally, we show that the exposition to default contagion of a generic

network �both in terms of contagion thresholds and of number of defaults induced

by a shock �monotonically grows with the ratio between internal and external debts,

where the former are the intra-network obligations and the latter are the debts that

the agents in the network owe to �nal claimants who do not belong to the network.

JEL classi�cation: C63, G01, G33.

Key words: systemic risk, �nancial contagion, �nancial networks, �ow networks.

1 Introduction

In this paper we put forward a novel approach, based on the theory of�ow networks,1 for the

analysis of direct contagion in networks of agents connected among themselves by �nancial

obligations. Financial contagion is broadly de�ned as the transmission of �nancial distress

across agents, sectors or regions of the economy. The literature has distinguished among

three di¤erent forms of �nancial contagion, also known as systemic risk, corresponding to

di¤erent possible channels of propagation:2 1) Informational contagion, that can occur in

banking systems,where depositors�expectations about the possibility of a crisis can lead

to bank runs, and in imperfectly informed �nancial markets, where �bad news�can a¤ect

the sentiments of the traders; 2) Direct contagion transmitted via networks of �nancial

obligations. In banking and �nancial systems, such networks arises from three sources: i)

loans and deposits in the interbank money market, ii) �over-the-counter�trading in assets

and derivatives, and iii) payment systems; while, in the manufacturing sector, networks of

�nancial obligations arise from trade credit.3 3) Common exposure to losses in the value

of assets, losses that can be exogenous or endogenous to a �nancial network, the latter

being the case of �re sales of illiquid assets induced by liquidity shortages. In this paper

we forego informational contagion, as well as any analysis of agents�behaviour, and focus

on the mechanics of direct balance-sheet contagion using a framework that takes common

1See Ahuja et al. (1993) for a reference book on the theory of �ows and �ow network.
2See the review articles by Dow (2000) and by De Bandt-Hartmann (2000).
3See Kiyotaki-Moore (2001, 2002)
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exposures into account.

We represent a �nancial system as a �ow network �i.e., a directed and weighted graph

endowed with source nodes and sink nodes �and use the properties of network �ows to

analyse the dynamics of the �ows of losses that propagate, in a �nancial system, as a conse-

quence of an external shock. Flow network theory is a branch of graph theory that, starting

with the works of nineteen century physicists such as Gustav Kircho¤, has been progres-

sively developed and applied to a vast number of �elds, ranging from telecommunication

to electrical and hydraulic engineering, transportation, computer networking, industrial

and military logistics, etc. To the best of our knowledge, the present work is the �rst

application of network �ow analysis to economics or �nance.4

The paper is organized as follows. In the next section, we review the literature related

to this work. In section three, we de�ne a �nancial system in terms of a �ow network.

In section four, we model the domino e¤ect of direct balnce-sheet contagion as a �ow of

losses that crosses a �nancial �ow network, i.e., as a contagion function that associates,

to the links of a network, the �nancial losses induced by an exogenous shock. Existence

and uniqueness of such a contagion function are discussed in section �ve, where we ad-

dress a known problem of indeterminacy that arises from the intercyclicity of payments

in �nancial networks. We identify necessary and su¢ cient conditions for uniqueness and,

in section six, we embed this result in an algorithm that, while computing a contagion

function, controls for possible indeterminacies due to the interciclycity of obligations. In

section seven, we investigate the relation between the structure of a �nancial networks �

i.e., the size and the pattern of the �nancial obligations that form the network �and its

exposure to default contagion. For some classes of networks �such as the complete, star-

shaped, incomplete regular and cycle-shaped networks �we characterise the �rst and �nal

thresholds of contagion, i.e., the value of the smallest shock capable of inducing default

contagion and the value of the smallest shock capable of inducing the default of all agents

4The only other papers that use a �ow network representation of a �nancial network are Castiglionesi

and Eboli (2012) and Pokutta et al. (2011). Castiglionesi and Eboli apply the framework of the present

paper to analyse the �ows of liquidity in interbank deposit networks. They compare the performace of

complete, circular and star-shaped networks in re-allocating liquidity among banks in the aftermath of a

shock. Pokutta et al. model a �nancial network as a �ow network with the aim of measuring the systemic

risk induced by single banks. In so doing these authors do not use �ow analysis in a strict sense, they use

the linear program that maximises the �ows of payments within a network. Moreover, these authors avoid

the indeterminacy problem depicted below by taking the largest possible clearing payment vector as the

unique �default adverse�clearing vector and provide informal arguments in support of this choice.
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in the network, respectively. For generic networks we show that, under a mildly restrictive

condition, the exposure to default contagion of a network �both in terms of contagion

thresholds and of number of defaults induced by a shock �monotonically depends on the

ratio between the values of the external debt and of the intra-network obligations of the

agents in the network. Conclusions are drawn in section seven. Finally, the proofs of the

theorems, lemmae and corollaries presented in the paper are collected in the Appendix.

2 Related literature

This work has been inspired by Eisenberg and Noe (2001), a seminal contribution which has

provided the analytical basis and the computational tool to many authors (see the below

cited papers) who perform numerical simulations to study direct contagion. Their paper

and the present one study the properties of the same object �a directed and wighted graph

that represents a �nancial system �resorting to two di¤erent analytical approaches: we use

�ow networks while Eisenberg and Noe resort to matrix algebra and lattice theory. These

authors investigate the domino e¤ect generated by the default of agents that participate

in a single payment system. In so doing, they study the existence and the uniqueness of

a vector of payments that clears a network of interdependent �nancial claims, where the

capability of an agent to repay in full his debts depends on the solvency of his own debtors

which, in turn, depends on the solvency of their debtors, and so forth. They express such

a vector as a function of the operating cash �ows of the members of the �nancial network.

This function is de�ned on a lattice, representing such a �nancial system, and complies

with the requirements of limited liability, debt priority and pro-rata reimbursements. A

recent contri

Eisenberg and Noe, as well as the present paper, do not investigate agents�behaviour

in a �nancial network and focus on the mechanics of contagion as governed by the rules of

limited liability, debt priority and pro-rata reimbursements. This marks a major di¤erence

with respect to theoretical analyses of direct �nancial contagion �due to Rochet-Tirole

(1996), Freixas et al. (2000), Allen and Gale (1998, 2000) � that take explicitly into

account the behaviour of banks and depositors. These authors use models of contagion

in interbank liquidity networks based on, or inspired to, the seminal paper by Diamond

and Dybvig (1983), where the uncertainty about the timing or the location of consumers�

expenditure �hence, of depositors�withdrawals �generates the risk of liquidity shortages
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for the banks. In order to insure against such a liquidity risk, and in absence of perfectly

functioning �ex-post�liquidity markets, each bank holds deposits in other banks forming, in

so doing, an interbank network of short-term exposures. This network serves the purpose of

sharing liquidity risk and of re-allocating liquidity across banks, de facto moving customers�

deposits from banks in liquidity surplus towards banks in liquidity de�cit. In case of default

of a bank, though, the same network becomes a channel of transmission of �nancial losses

towards the other banks in the network, creating the possibility of systemic crisis. The

initial failure of one or more banks, capable of generating a widespread �nancial crises, can

be due to exogenous causes, as it is in Allen and Gale (1998), where �nancial crises arise as

a consequence of downturns in the economic cycle. Recessions can cause losses in the value

of the assets held by banks, losses capable of rendering them insolvent. If depositors foresee

the recession, they will protect themselves from possible bank defaults by withdrawing their

deposits and, in so doing, they create the conditions for the occurrence of a widespread

crisis. Financial contagion can also originate from liquidity crisis. In Allen and Gale

(2000) the failure of a bank is due to an idiosyncratic shortage of liquidity that forces

the bank to liquidate long-term assets, incurring the costs of such ��re sales�. They show

that a �complete�network �a network where all banks are equal to one another, all have

mutual bilateral obligations and of the same amount �is more robust than an incomplete

network, i.e., a network with fewer links among the banks. Freixas et al. (2000) achieve

similar results: in their examples the �complete�network structure bears the smallest risk

of contagion, while a �credit chain�structure increases the fragility of the banking system.

Acemoglu et al. (2013) challenge the conclusion that the complete network structure is

the most robust and obtain a result, very close to our theorem 5 below, that shows the

robust-yet-fragile nature of such a network structure. As the autors put it: �One of our

main results is that that as the magnitude or the number of negative shocks cross certain

thresholds, the types of �nancial networks that are most prone to contagious failures change

dramatically. In particular, more �nancial interconnections are no longer a guarantee for

stability. Rather, in the presence of large shocks, interbank liabilities facilitate �nancial

contagion and create a more fragile system. Our results show that, in the presence of

large shocks, �weakly connected��nancial networks � for example, one consisting of a

collection of pairwise connected banks with only a minimal amount of shared assets and

liabilities with the rest of the system � are signi�cantly less fragile than the more complete

networks.�[Acemoglu et al. (2013), pages 2 and 3].
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The above mentioned theoretical papers investigate the relation between the shape of

a network and its exposure to systemic risk resorting to stylized examples.5 This has been

perceived as a shortcoming of such a stream of literature. As Upper (2007, page 2 and

3) puts it �Unfortunately, analytical results on the relationship between market structure

and contagion have been obtained only for a limited number of highly stylised structures of

interbank markets, which are of limited use when it comes to assessing the scope for conta-

gion in real world banking systems.[...] Given the scarcity of theoretical results, researchers

have increasingly turned to computer simulations to study contagion.�Upper refers to sev-

eral authors who, in order to assess the robustness of di¤erent network structures, have

studied the mechanics of default contagion using numerical simulations, foregoing the mi-

croeconomic behaviour of banks and depositors. Such papers �which includes the works

by Sheldon and Maurer (1998), Fur�ne (2003), Wells (2002), Elsinger, Lehar and Summer

(2006), Upper and Worms (2004), Degryse and Nguyen (2004), Blavarg and Nimander

(2002), Cifuentes (2003), Mistrulli (2005,2006), Canedo and Martínez Jaramillo (2009) �

have analyzed national banking systems, in most cases estimating the structure of national

interbank networks,6 using simulations to evaluate their exposure to default contagion.

Numerical simulations are also used by Shin et al. (2005) and Nier et al. (2007), who

analyze generic network structures, rather than speci�c national ones. Shin et al. present a

model where default contagion is exacerbated by the e¤ects of ��re sales�. They show that

if the demand for illiquid assets is not perfectly elastic, the forced and untimely sale of such

assets by �nancially distressed operators induces further reductions in their market value,

feeding further contagion. Nier et al. build their model on a previous and unpublished

version of the present paper.7 Using a computing device, these authors generate random

banking networks, in the fashion of the random graphs a là Erd½os-Rényi, and use them to

run numerical simulations aiming at evaluating the exposure to systemic risk of di¤erent

network structures.
5As Rochet-Tirole-Parigi (2000) declare "Because of the complexity of the transfers involved in the

matrix [of �nancial obligations], we will illustrate our �ndings in two symmetric extreme cases." [page 187]
6Apart from Mistrulli (2005, 2006) who used data about the actual interbank exposures, data in pos-

session of Bank of Italy.
7That preliminary version of this paper was presented at the Bank of England in may 2004.
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3 The �nancial �ow network

The purpose of a �nancial system is the intermediation of the supply of funds provided

by �nal claimants �that we will generically label as �households�, who hold shares, bonds

and deposits �and the demand expressed by the �nal users of funds, such as companies,

mortgage holders, governments, etc. Let such a system be composed by a set of �nancial

intermediaries 
 = f!ig ; i = 1:::n, which are directly or indirectly connected to one another
by �nancial obligations, namely bonds and deposits, and let dij 2 R+ be the amount of
debt, if any, that agent i owes agent j. Each agent in 
 is characterized by its own balance

sheet. On the asset side, let ai 2 R+ be the value of the sum of external assets owned by

!i, which are liabilities of agents �the �nal users of funds �who do not belong to 
, let

A = fakg; k = 1:::m, be the set of external assets such that each ak in A appears in the
balance sheet of at least one operator in 
; and let aki 2 R+ be the amount of asset k held
by agent i, if any. Besides the external assets, an agent !i can hold internal assets which

are liabilities of other agents in 
; and let ci =
P

j dji be the sum of the such assets held

by agent i: On the liability side of the balance sheet, let di 2 R+ be the sum of the debts

that !i owes to households and to agents in 
; in the possible forms of bonds, loans and

deposits: di = hi +
P

j dij, where hi is the external debt of !i, i.e., the amount of debt

claims against !i held by households, and
P

j dij is the internal debt of agent i; i.e., the

claims against !i held by other members of 
. For simplicity, we assume that all debts

have the same seniority. Finally, the value of the equity of the i-th agent, ei, is set by the

budget identity ei � ai + ci � di � hi. We assume that the value of the external assets is
set by the market and take the other balance sheet headings ci; di; hi, as well as the debts

dij; at their nominal values. For the sake of simplicity, we also assume that all the shares

issued by the members of 
 are held by households, i.e., there is no cross-holding of shares

among the �nancial intermediaries.

We represent this �nancial system as a multisource network, i.e., a directed and con-

nected graph, with some sources and two sinks, with links endowed with non-negative

capacities.8 Let N =
�

; A; T;H; L
; LA; LT ; LH ;�

	
be a multisource network where:

1. 
 = f!ig is the set of n nodes that represent the above de�ned �nancial intermedi-
aries.

2. A = fakg; is the set of m source nodes, i.e., nodes with no incoming links, that

8See Ahuja et al. (1993), sections 1 and 2, or Diestel (2000), ch. 6.
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represent the external assets held by the members of 
.

3. T is a sink, i.e., a terminal node with no outgoing links. This node represents the

shareholders who own the equity of the agents in 
.

4. H is a sink node representing the households who hold debt claims, in the form of

deposits and bonds, against the agents in 
.

5. L
 � 
2 is a set of ordered pairs of nodes in 
; i.e., a set of directed links flijg
representing the liabilities dij; where lij starts from node !i and ends in node !j; and

lij 2 L
 only if dij > 0:
6. LA =

�
lki
	
is a set of directed links, with start nodes in A and end nodes in 
, that

connect the external assets to their owners, where lki 2 LA only if aki > 0.
7. LT = fliTg is a set of directed links, with start nodes in 
 and end node T .
8. LH = fliHg is a set of directed links, with start nodes in 
 and end node H.
9. � : L
; LA; LT ; LH ! R+ is a map, called capacity function, that associates i) to each

lij the value of the corresponding liability dij, ii) to each lki the value of the corresponding

asset aki , iii) to each l
i
T the equity, ei; of its start node !i, and iv) to each l

i
H the external

debt, hi, of its start node !i:

We shall refer to N as a �nancial �ow network or, for brevity, as a network N , while

we shall refer to a generic multisource network simply as a network.

4 Propagation of losses and defaults: the domino ef-

fect

We now use the above de�ned �nancial �ow network to model the process of direct �nancial

contagion among the agents in 
 as a �ow of �nancial losses that crosses N . This �ow

is initiated by an exogenous negative shock that consists of a loss of value of some of the

external exposures ak: To de�ne a shock, let bk 2 [0; 1] be a parameter that measures the
fraction of the value of the asset ak which is lost. An exogenous shock is an assignment

of value to the vector [bk]; k 2 A; where at least one of its components assumes a strictly
positive value. If bk > 0; then source node ak is activated and sends to its direct descendants

in 
 � i.e., to the nodes !i 2 
 such that lki 2 LA� a �nancial loss equal to bkaki . The

shock, i.e., the �ow of losses out of the source nodes, is a vector of scalars [bkak]. It what

follows, we distinguish between common shock, that a¤ects more than an agent in 
; from

idiosyncratic shocks, i.e., shocks born by a single node only.
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As a shock occurs, the involved source nodes release a �ow of losses into the network.

The propagation of these losses across N is governed by the rules of limited liability, debt

priority and pro-rata reimbursement of creditors. When a node !i su¤ers a loss, this loss

is �rst absorbed by the net worth of the node. Only the residual loss, if any, is passed

over to other nodes in 
. The losses that are o¤set by the equity of the agents in 
 are

born by households, in their capacity as shareholders, thus they exit from the �ow of losses

that circulate across 
 to end up directly into the sink T . To represent this property we

introduce, for each node in 
;an absorption function

�i(�i) = min

�
�i
ei
; 1

�
(1)

where �i is the total loss born by the i-th node, received from source nodes and/or from

other nodes in 
. The variable �i 2 (0; 1) measures the share of net worth lost by a node.
If a node !i receives a positive �ow of losses, it sends to the sink an amount of its own

equity equal to �iei.

The equity of a �nancial intermediary measures its absorption capacity. If the losses

su¤ered by !i are larger than its net worth, then this node is insolvent and sends the

residual loss, �i � ei, to its creditors. For each node in 
, let

bi(�i) = max

�
0;
�i � ei
di

�
(2)

be its loss-given-default function. The variable bi 2 [0; 1] assumes a value of zero if the i-th
operator is solvent, while it assumes a strictly positive value if the operator defaults. In the

latter case, the assets of the insolvent node are liquidated and its creditors get a pro rata

refund. We assume that this is done without delays and without incurring in bankruptcy

costs.9 The creditors fall into two categories: the direct descendants of !i in 
 �i.e., the

nodes !j 2 
 such that lij 2 L
; also said children nodes of !i �and the households who
own claims, in the form of bonds and/or deposits, against !i. The variable bi measures

the fraction of the i-th agent�s debt that is not recovered through liquidation, i.e., the loss-

given-default ratio of the failing agent. When the i-th agent becomes insolvent, households

receive a loss equal to bihi (if hi > 0), that ends into the sink H, while a node !j which

is a creditor of node !i receives from the latter a loss equal to bidij: The loss born by a

9Bankruptcy costs can be introduced in the model by adding extra sources of losses that get activated

in case of defaults. These extra losses would (obviously) make the system more prone to widespread crisis

without substantially altering the results presented below.
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�nancial intermediary in 
 is the sum of the losses, if any, received from its external and

internal exposures:

�i =
X
k

bka
k
i +

X
j

bjdji:

As the occurrence of a shock causes an in�ow of losses into the system, the absorption and

loss-given-default functions govern the propagation of such losses across the network by

assigning a positive real value to each link in N:

De�nition 1 Let f : LA; L
; LT ; LH ! R+ be a map such that: f(lki ) = bkaki ; f(lij) =

bidij; f(l
i
H) = bihi; f(l

i
T ) = �iei; and call this function a contagion in a network N .

Such a contagion function is a �ow in N . A �ow over a generic network is a vector

valued function, de�ned over the links of the network, such that: i) for all the links in the

network, the scalar associated to a link does not exceed its capacity; and ii) for all the

nodes in the network which are neither a source node nor a terminal node, the divergence

� i.e., the di¤erence between the total �ow arriving at a node and the total �ow departing
from such a node � is null.

De�nition 2 Let G = (
; L; s; t) be a network where: 
 is a set of nodes, L � 
2 is

a set of directed links, and s and t are the source and the sink node, respectively. Let

L+(!i) (L
�(!i)) be the set of the outgoing (incoming) links of a node !i 2 
. A function

' : L! R+ is a �ow in G if it satis�es the following conditions:
a. '(l) � �(l); for all l in L; (Capacity constraint)

b.
P

L+(!i)
'(L) =

P
L�(!i)

'(l); for all !i 2 
; (Flow conservation)

Theorem 1 The above de�ned contagion function is a �ow in a network N .

A �ow out of the sources of a network is feasible, also said legitimate, �i.e. it exists �

if it entirely reaches the sink. In the next section we �rst show that any contagion in N is

feasible and then we pin down su¢ cient and necessary conditions for the uniqueness of a

contagion.

10



5 Existence and uniqueness of a contagion function in

a �nancial �ow network

5.1 Network capacity and feasibility of a contagion

Every network has an upper bound to its overall capacity to carry a �ow. The carrying

capacity of a network is equal to the value of the largest �ow out of the sources that can

cross the network and be entirely absorbed by the sink, i.e., the largest feasible �ow. In

general, the carrying capacity of a network is smaller or equal to the absorbing capacity of

its sink. Finding the feasible �ow of maximum value, for a given network, is a fundamental

problem in the study of networks �known, in fact, as the maximum �ow problem. This

problem has been addressed by the celebrated result of Ford and Fulkerson (1956), known

as the minimum cut-maximum �ow theorem. Before presenting this theorem, we need to

introduce the notions of a cut and of its capacity.

A cut in a network N is a partition
�
U;U

	
of fA [ 
 [ T [Hg, where U and U are two

non-empty sets such that A � U and (T;H) 2 U . Let L(U) be the set of links that cross
such a partition, i.e., the union of the set of forward links going from U into U; L+(U) :=�
lki 2 LA j k 2 A; !i 2 U

	
[
�
lij 2 L
 j !i 2 U; !j 2 U

	
[
�
lit 2 LT j !i 2 U

	
; and of the

set of backward links going in the opposite direction, L�(U) :=
�
lij 2 L
 j !i 2 U; !j 2 U

	
.

The capacity of a cut is the sum of the capacities of its forward links: The maximum carrying

capacity of a network is set by the cut which has the smallest capacity among all possible

cuts of the network:

Theorem 2 (Ford and Fulkerson, 1956) In every network, the largest value of a feasible

�ow equals the capacity of a cut of smallest capacity.

This upper bound is always attainable in �ow networks which are somehow adminis-

trated to the end of maximising the �ow that goes from the sources to the sinks. This is the

case of �ow networks such as pipeline systems or electrical networks, where the �ows are

centrally controlled and the networks themselves are designed to achieve this end. More

speci�cally, the achievement of the above de�ned maximum �ow is possible only if there

are no �ows crossing the minimum cut backward, i.e., from the sink towards the sources.10

10In that case it is the net �ow, i.e. the forward �ow less the backward �ow, that crosses the minimum

cut and reaches the sink.
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This requisite implies that there are no cycle �ows crossing the cut. Such a condition

is not guaranteed at all in a �nancial system, where the �ows of losses follow the rules

of bankruptcy in a predetermined and decentralised fashion. Nonetheless, in a �nancial

network the upper bound never binds a �ow of losses: the largest possible �ow out of the

source nodes always reaches the sink. To establish this, we consider the scenario that is

most unfavourable to the to forward transmission of a �ow: the case where, for all cuts in

a network, all backward links are �lled to capacity. We then look at the net capacity of the

cuts in N , that is the residual forward capacity (if any) of a cut when its backward �ow is

maximal.

De�nition 3 The net capacity of a cut, �
�
U;U

	
; is the sum of the capacities of its

forward links less the sum of the capacities of its backward links: �
�
U;U

	
=

P
L+(U)

�(x)�P
L�(U)

�(x).

In a network N; the budget identities of the nodes in 
 imply that the net capacity of

all cuts is the same and equals the total value of the external assets:

Lemma 1 In a �nancial �ow network N; the net capacity of all cuts
�
U;U

	
equals the

capacity of the cut fA; (
; H; T )g :

In other words, the net capacity of all cuts in N is equal to the the total exposure, of

the �nancial system as a whole, towards the �nal users of funds:
P

A a
k: Lemma 1, coupled

with the maximum �ow-minimum cut theorem, delivers the following proposition:

Theorem 3 The largest value of a feasible contagion de�ned in a network N is equal to

the largest possible �ow out of the source nodes, i.e., the largest possible shock.

This means that, in a �nancial network N , the budget identities of the agents in 


guarantee the existence of all possible propagations, i.e., the propagations induced by all

possible exogenous shocks.

5.2 Cycles and nominal indeterminacy of a contagion

The interdependence of obligations that constitutes the fabric of a �nancial network, can

create problems of indeterminacy to the contagion function de�ned above: under some

12



conditions the contagion induced by a given shock is not unique. In this section we pin

down the conditions that create such indeterminacy and asses its scope and implications.

The problem of non-uniqueness of payment �ows in a �nancial network was �rst pointed

out by Eisenberg and Noe (2001). These authors explain the possible indeterminacy of

the vector of payments that clears a network of interdependent �nancial claims with the

following example: �Suppose the system contains two nodes, 1 and 2, both without any

operating cash �ows. Moreover, each node has nominal liabilities of 1.00 to the other

node.[...] In this example, any vector pt = t(1; 1), t 2 [0; 1]; is a clearing vector of the
system� [Eisenberg and Noe, op.cit., page 249]. In this case, the �ow of payments that

goes from node 1 towards node 2 depends only on the payments that node 1 receives

from node 2, and vice versa, therefore they can reimburse each other with any payment

comprises between zero and unity.

The origin of this indeterminacy lies in the joint and simultaneous determination of

the losses of the agents that belong to a cycle of defaulting agents or, more precisely,

to a strongly connected component (henceforth SCC) of defaulting agents.11 If a set of

defaulting nodes is strongly connected, the losses that these nodes pass to one another

are cyclically interdependent, and their loss-given-default functions of are simultaneously

determined, like in the above example of a cycle of two defaulting agents. This simultaneity

can generate indeterminacy: Under the conditions that we identify below, the value taken

on by a contagion in a SCC of defaulting agents is not uniquely de�ned. Such a simultaneity

does not arise at all if the contagion unfolds only along simple paths (as opposed to cycles).

A contagion that does not generate cycle �ows �as it is always the case for a contagion

that takes place in an acyclic network N �does not pose problems of non-uniqueness:

Lemma 2 A contagion in N is uniquely de�ned if it does not embed any cycle �ow, i.e.,

if it does not entail any SCC of defaulting agents.

It is the occurrence of SCC�s of defaulting nodes that generates the cyclical interdepen-

dence of payments which, in turn, can render a contagion indeterminate. For our purposes,
11A cycle in a directed graph is a directed path such that its start node and end node coincide. A

directed path is a sequence of nodes, with a start node and an end node, such that for any two consecutive

nodes, i and i+ 1; these is a link going from i to i+ 1. A directed graph is said to be strongly connected

if there exists a directed path going from each node to every other node in the graph. A subgraph that

is strongly connected is called a strongly connected component. In other words, two nodes, i and j; are in

the same strongly connected component if and only if there exists a directed path from i to j and there

exists a directed path from j to i.

13



we distinguish between closed and open SCC�s:

De�nition 4 Let S = (S; L(S)), where S � 
 and L(S) � S2 � L
; be a strongly

connected component of a network N . We say that S is open if there exists at least one

link in L starting from a node in S and ending in H or in a node in 
nS: Conversely, we
say that S is closed if there is no link in L starting from a node in S and ending in H or

in a node in 
nS:

In other words, the members of a closed SCC are indebted only among themselves.

Conversely, in an open SCC, at least one member of such a component is indebted to the

households H or to nodes in 
 that do not belong to the SCC: We now proceed to show

that a) a contagion is not uniquely de�ned if and only if it entails closed SCC�s of insolvent

nodes, b) the indeterminacy is con�ned to such closed SCC�s, and c) the emergence of

closed SCC�s of defaulting nodes in a contagion can be unambiguously detected.

The cyclical interdependence of obligations, that arises in any SCC of defaulting agents,

renders indeterminate the �ow of losses which is passed around among such agents if and

only if they form a closed SCC. Conversely, open SCC�s of defaulting agents do not generate

any indeterminacy of the contagion function:

Lemma 3 Let S = (S; L(S)) be a SCC in N and let f be a contagion in N: The value

of the contagion on the links in L(S) �hence the value taken on by the loss-given-default

function bi(�i) of the nodes !i 2 S �is not uniquely de�ned if and only if (a) S is closed,
and (b) all nodes in S default.

This indeterminacy, if it arises, has a limited scope. Any positive �ow of pro-rata

reimbursements, in a closed SCC of failed agents, is simply a clearing transaction among

its members, with no consequences on their own �nancial conditions. Moreover, and most

important, this possible indeterminacy is con�ned to closed SCC�s of defaulting nodes, it

never a¤ects the values taken on by the contagion in the rest of the network. This is due

to the fact that a closed SCC is a cul-de-sac: the losses that reach the nodes in such a SCC

do not come out it, these losses are born by their shareholders only, ending up entirely into

the sink T .

De�nition 5 Let � =
�
S
	
be the (possibly empty) set of closed SCC�s of nodes in N ,

and let L� � L
 be the set of links connecting pairs on nodes that belong to members of �:
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Theorem 4 Let f be a contagion in a network N: Then: 1) f is uniquely de�ned on the

links in LnL�; and 2) f is indeterminate on the links of a closed SCC S = (S; L(S)) 2 �
if and only if all nodes in S default.

This theorem re�nes the analogous result put forward by Eisenberg and Noe (2001).

These authors demonstrate that, for a clearing payment vector to be uniquely de�ned, it

is su¢ cient that all risk orbits in the network are surplus sets; where the risk orbit of a

node is its set of descendants, and a surplus set is a set of nodes such that "no node in the

set has any obligation to any node outside the set and the set has positive operating cash

�ows" [Eisenberg and Noe, op. cit., page 241]. The authors also show that, for any clearing

vector of payments, it is impossible for all nodes in a surplus set to have zero equity value,

i.e., at least one node in the set does not default. In the light of the above theorem, we

can replace this condition with a less restrictive one and state that, for a contagion in a

network N to be uniquely de�ned, it is necessary and su¢ cient that all closed SCC�s in N;

if any, are surplus sets.

A useful consequence of the above theorem is that the occurrence of closed SCC�s of

defaulting agents in N is unequivocally revealed by the value taken on by a contagion

function on the links in LnL�. The above theorem implies that the �ow of losses received

by a closed SCC is uniquely de�ned. Moreover, to cause the failure of all the agents that

form a closed SCC, the �ow of losses that reach such a SCC must be maximal �i.e., it must

be equal to the total exposure, of the SCC as a whole, towards the rest of the network.

Corollary 1 Let S = (S; L(S)) 2 � be a closed SCC in N: All nodes in S default if and
only if the �ow of losses that reaches S from the rest of the network �i.e., the �ow across

the partition
�
(A;
nS); S

	
�is maximal, i.e.:

�!
f
�
(A;
nS); S

	
=
X
k2A

X
i2S

bka
k
i +

X
j =2S

X
i2S

bjdji:

This implies that, in computing a contagion, the occurrence of the conditions that cause

the above described indeterminacy can be detected unambiguously by monitoring the �ow

that reaches the closed SCC�s in N , as it is done in the algorithm presented below.
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6 Computing a contagion process

An algorithm that computes a contagion f in N must perform two tasks: calculate f and

check for possible indeterminacies, i.e., monitor the occurrence of closed SCC�s of insolvent

agents. This can be done as follows.

In calculating f , we add a superscript t = 1; 2; 3; ::: to the variables involved in the

computation �namely �ti; b
t
i; �

t
i �to indicate the value taken on by these variables at each

iteration of the algorithm. Recall that �i =
P

k bka
k
i +

P
j bjdji and let

[�i]1�n = [bk]1�m
�
aki
�
m�n + [bj]1�n [dji]n�n

be the vector of the losses born by the agents in 
: Then:

1. For a given value assignment of the vector [bk], compute [�ti] = [bk]
�
aki
�
+
�
bt�1j

�
[dji],

starting with t = 1 and setting b0j = 0;

2. compute [�ti] = [�i(�
t
i)] and [b

t
i] = [bi(�

t
i)] according to (1) and (2);

3. if
P


 �
t
iei+

P

 b

t
ihi <

P
A bkak , then start again from point 1; if

P

 �

t
iei+

P

 b

t
ihi =P

A bkak, then move to step 4;

4. de�ne the set of insolvent agents induced by f , 
 = f!i 2 
jbi > 0g ; and the sub-
graph composed by such nodes, 
 = (
; L(
));

5. search for SCC�s S = (S; L(S)) in 
: If there is none, then stop; if there is at least

one S in 
, then move to step 6;

6. for every S in 
, de�ne the matrix of the coe¢ cient of the system of equations used

in part (1) of the proof of lemma 10:

[d(S)]m�m =

2666666666664

d1 �d21 � � � � � � � � � �dm1
�d12 d2 �d32 � � � � � � ...
... �d23 d3 � � � � � � ...
...

...
...

. . . � � � ...

�d1(m�1)
...

...
...

. . . �dm(m�1)
�d1m � � � � � � � � � �d(m�1)m dm

3777777777775
where m = jSj ;
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7. for every S in 
, compute the sum of the rows of [d(S)]m�m. For every S in 
 such

that this sum is equal to zero, label S as �closed�and the bi�s of the nodes in S as

�indeterminate�.

The �rst three steps of this algorithm calculate, for a given shock vector [bk] ; the value

of the contagion f through the iterated application �node by node, along the directed paths

of N �of the absorption and loss-given-default functions, �i(�i) and bi(�i), de�ned above.

The values of the vectors [�ti]; [�
t
i]; [b

t
i] computed in step 1 and 2, are strictly increasing

in t as long as there are nodes in 
 with strictly positive divergence, i.e., as long as

there exists at least one i 2 
 s.t. �ti > �t�1i ei + b
t�1
i di, which, in turn, implies thatP


 �
t
iei +

P

 b

t
ihi <

P
A bkak . Conversely, the repeated iteration of the algorithm yields

stationary values of the vectors at hand once the �ow out of the sources has been entirely

absorbed by the sinks, i.e., when
P


 �
t
iei +

P

 b

t
ihi =

P
A bkak. A feasible �ow, in a �ow

network, ends up entirely into the sinks, and the feasibility of any contagion in a �nancial

networkN is guaranteed by theorem 7. Hence, the equality condition in step 3 is eventually

achieved, then the divergence of all nodes in 
 is null and neither the losses arriving at a

node nor the losses departing from a node can grow anymore: the computation of f stops

and the algorithm delivers the pair of n dimensional vectors f[�i]; [bi]g which identify the
contagion caused by the shock vector [bk].

Each iteration of steps 1-3 computes the passing of losses from a set of nodes in N to

their children nodes. In absence of SCC�s of defaulting agents, the length of the longest

possible path in N is equal to n and so is the largest possible number of iterations of

this �rst part of the algorithm. Conversely, in presence of SCC�s of defaulting agents �

that generate cycle �ows �the algorithm converges asymptotically and monotonically to

the �nal values f[�i]; [bi]g by computing progressively smaller augmentations of the cycle
�ows. Since the values at hand are sums of money, this problem can be easily overcome

by setting an approximation of, say, one cent of a euro. Discretizing, in this fashion,

the variables at hand, the stationary values f[�i]; [bi]g are obtained in a �nite number of
iterations of steps 1-3.

Steps 4-7 of the above algorithm control for the occurrence of closed SCC�s of insolvent

agents and signal the indeterminacy of the loss-given-default parameters in [bi] of the agents

in such SCC�s. Finding the SCC�s of a directed graph, as step 5 requires, is a known basic

issue in computer science and the literature provides several algorithms for it.12 Steps 6 and

12The most known are the ones due to R. Tarjan and to H. Gabow. See Cormen et al. (2001), chapter
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7 identify the closed SCC�s of insolvent agents induced by f; resorting to the singularity

condition of the matrix [d(S)]m�m : This condition, in turn, is necessary and su¢ cient to

cause indeterminacy of the loss-given-default functions of a set of insolvent agents, as it

has been argued above in the proof of lemma 11.

It is the case to point out that calculating f �by running steps 1-3 �on closed SCC�s in

N; is a waste of computing time if such closed SCC�s turn out to be composed entirely of

insolvent agents. This possible ine¢ ciency is avoided by resorting to the following modi�ed

version of the above algorithm:

1. Search for SCC�s S = (S; L(S)) in N: If there is none, then proceed to compute f

with steps 1-3 of the above algorithm. If there is at least one S in N , then proceed

to step 2;

2. for every S in N , de�ne [d(S)]m�m and compute the sum of its rows. Then label as

�closed�SCC�s S the S in N such that the sum of the rows of [d(S)]m�m is null and

de�ne the set � =
�
S
	
;

3. let j�j = Y . If Y = 0, proceed to compute f with steps 1-3 of the above algorithm
. If Y � 1; then let � =

�
Syjy = 1; :::; Y

	
and construct a new network Nn�: for

every Sy 2 �; i) replace Sy with a sink node Ty, ii) direct the links across the cut�
(A;
); (Sy; H; T )

	
of N into the sink Ty:

4. run steps 1-3 of the above algorithm on the so modi�ed network Nn�.

5. for every y 2 �; compare the �ow �!f f(A;
); Tyg that ends into the sink Ty; with
the total equity of the nodes in Sy: If

�!
f f(A;
); Tyg =

P
i2S ei, then, for all nodes

!i 2 Sy, set �i = 1, label bi as �indeterminate�and stop. If
�!
f f(A;
); Tyg <

P
i2S ei;

then run steps 1-3 of the above algorithm on Sy:

The search for closed SCC�s is here done at the beginning of the algorithm, by steps

1 and 2. If any closed SCC is found in N , then step 3 modi�es the network, by replacing

such components with sink nodes, and step 4 calculates the values taken on by f on the

links in LnL�. The legitimacy of this operation is guaranteed by part (1) of theorem 4.

Part (2) of this theorem is applied in step 5, where the closed SCC�s of insolvent agents

are identi�ed by comparing the �ow of losses that enters each closed SCC Sy in N , i.e.,

22, and the literature cited therein.

18



the �ow across the partition f(A;
); Tyg of Nn�, with the total absorbing capacity of the
nodes in Sy: Finally, f is computed on the closed SCC�s in N where f is uniquely de�ned,

the ones with at least one solvent agent.

On the one hand, this second algorithm saves computing time by avoiding the calcu-

lation of f on the SCC�s of N where f is indeterminate, if f induces any closed SCC�s of

insolvent agents. This gain grows with the number and the size of such SCC�s. On the

other hand, this algorithm requires more time than the �rst one above for a) the identi-

�cation of the closed SCC�s in N; because 
 � 
; and b) the transformation of N into

Nn�: The choice between these two algorithms will ultimately depend, case by case, on
the expectations of the analyser with respect to the occurrence of closed SCC�s of default-

ing agents. For instance, in working on networks composed mostly of banks that hold

customer deposits, the analyser can reasonably expect a very limited presence of closed

SCC�s and, therefore, choose the �rst algorithm. Conversely, the presence of closed SCC�s

is more likely to occur in networks with a large number of �nancial intermediaries who do

not have obligations (bonds and deposits) towards the households in H: In this case, the

second algorithm is potentially more e¢ cient than the �rst one.

7 Contagion in di¤erent network structures

Understanding the relation existing between the structure of the net of �nancial obligations

among banks and the resiliency of the banking system to withstand possible liquidity

and insolvency shocks, is an important issue for central banks and policy makers. Since

2008, the possible implications of the externalities generated by a �nancial contagion have

prompted a number of bail outs by some governments, with the known consequences for

the public debts of the nations involved. In most advanced nations, monetary authorities

have imposed rules, known as �large exposure rules�, to limit the credit exposures of banks

towards single borrowers and increase the diversi�cation of their portfolio. Both the Basel

I and the Basel II committees have recommended this sort of controls on credit risk.13 In

setting an upper limit to single loans �usually linking the size of a loan to some measure

of the capital of the lending bank �these measures also imply a growth in the number of

debt/credit relations existing in a �nancial system, i.e., a growth in the connectivity of the

13See, on the web page of the Bank for International Settlements, the documents �Principles for the

Management of Credit Risk�and the paragraphs 729 and 736 of �The New Basel Capital Accord�.

19



�nancial network. At the same time, in several countries, the authorities have encouraged

mergers and acquisitions in the banking sector, leading to more concentrated systems with

fewer and larger operators. In most cases this policy has reinforced, if not generated, two-

tiers banking systems where few large operators act as money centers, i.e., each of them

is connected to many small banks which, in turn, are not connected among themselves.

Whether this policies have rendered �nancial systems more or less resilient to withstand

systemic shocks, given the structural changes that they brought along, is a question that

does not have an obvious answer.

In what follows, we investigate the fact that di¤erent networks propagate losses in

di¤erent fashions. The e¤ects of a shock on a network N depend on the two elements that

form its structure: a) the shape of the network, i.e. the pattern formed by the links in

L
; and b) the values of the assets and liabilities of the agents in the network, i.e., the

capacities of the links in L
. We study the e¤ects of these two determinants of a contagion

separately, beginning with the former.

In this section we focus our attention on the e¤ects of external shocks that cause the

default of some nodes in 
 while leaving the value of the external assets of the other nodes

una¤ected. The purpose of this restriction is to isolate the contagion caused by the domino

e¤ect from the contagion caused by common exposures to exogenous shocks. Let � = [bbk]
be a shock vector and let D be the set of agents in 
 who default as a consequence of this

shock, D =
n
!i 2 
 j

P
k
bbkaki +Pj bjdji � ei

o
. Let D0 be the set of primary defaults,

i.e. the set of agents that su¤er a loss of value of their external assets (the initial shock)

large enough to cause their default , i.e. D0 =
n
!i 2 
 j

P
k
bbkaki � eio : We assume thatP

k
bbkaki = 0 for all nodes !i 2 
 nD0. Let D00 = D nD0 be the set of secondary defaults,

i.e. the set of agents who would be solvent if they had not received losses from their debtors

in 
. There is no default contagion if the set D00 is empty.

7.1 Thresholds of default contagion

We take into consideration three types of network structures: the complete, the unilateral

circle (also know as the wheel), and the star network. We focus on these three stylised

structures because they are, respectively, neat examples of networks which are dense, sparse

and scarcely centralised, and sparse and highly centralised.14

14The complete, the star and the circular networks frequently emerge, as equilibrium structures, in

models of endogenous formation of networks. For instance, Jackson and Wolinsky (1996) show that the
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To evaluate and compare the contagiousness of di¤erently shaped networks, we look at

two characteristics of a network: the �rst and the �nal thresholds of contagion.

De�nition 6 The �rst threshold of contagion of a network N; � 1(N); is the magnitude

of the smallest shock that is large enough to cause secondary defaults. Correspondingly, the

�nal threshold of contagion of a network, � 2(N); is the value of the smallest shock that

is capable of inducing the failure of all nodes in the network.

Moreover, and unless otherwise speci�ed, we assume that: i) all agents in the networks

are equal to one another; ii) all links in L
 have the same weight, i.e., the debt of each

node towards any other node in a network is equal to dij for all lij 2 L
:

7.1.1 Complete networks

A network where each agent lends to every other agent in the network (and, therefore,

everybody borrows from everybody else) is said to be complete. Let a complete �nancial

network N c =
�

; A; T;H; Lc; LA; LT ; LH ;�

	
be such that its set of links Lc is maximal,

i.e., Lc = flijji 6= j; i; j = 1; 2; :::; ng : In such a complete network, the �ow of losses that
comes out of the initially defaulting agents is evenly spread among all other agents in the

network. As a conseguence, all nodes in 
nD0 su¤er the same loss from their defaulting

debtors and eventually, if the shock is su¢ ciently large, they all default together.

Theorem 5 In a complete network N c the �rst threshold and the �nal threshold of conta-

gion coincide and are equal to

� c = nei + ei
hi
dij
. (3)

This result shows that the complete network, on one hand, is entirely resilient to rela-

tively small shocks, i.e. faces no defaults for shocks smaller than � c. On the other hand,

for large enough shocks � larger than or equal to � c �this network induces a complete

system melt down. The same applies to the star-shaped network, if the central node is in

the set of primary defaults, as shown below.

complete structure is both e¢ cient and pairwise stable for low values of the cost of forming connections,

while the star structure is both e¢ cient and pairwise stable for intermediate values of such a cost. In

Bala and Goyal (2000) and Hojman and Szeidl (2008), the star emerges as the unique equilibrium network

structure if the cost of linking is not too high. In Gale and Kariv (2003) the analysis focuses on the circle,

the star and the complete network because, as the authors argue, they span all possible networks in three

agents games.

21



7.1.2 Incomplete networks

A generic incomplete network is a network such that the cardinality of the set of links L


is not maximal, i.e. there is at least a pair of nodes wich are not directly connected to one

another. The �rst and �nal thresholds of an incomplete network can not be characterised,

unless some restrictions are imposed on their structure �as it is done below with the cycle

and star-shaped networks which are, obviously, incomplete networks themselves. Thus, for

the sake of tractability, we focus the attention on incomplete networks which are regular,

i.e. where the indegree and outdegree of each node are equal.15 We failed to identify the

�rst and the �nal threshold of an generic shock in a incomplete regular network. The

rationale of this impasse lies in the fact that the unfolding of a contagion in an incomplete

network, beyond the �rst line of defaults induced by a generic shock, remains ambiguous

unless strong restrictions are imposed (as we do below by setting r = 1): Indeed, shocks

of equal magnitude have di¤erent e¤ects on a network N r, depending on i) the position of

the nodes in D0, and ii) the distribution of external losses across such nodes.16 Thus we

content ourselves with characterising simply the �rst threshold of contagion caused by an

idiosyncratic shock, i.e. a shock that causes one primary default only.

Let N r =
�

; A; T;H; Lr; LA; LT ; LH ;�

	
be an incomplete regular �nancial �ow net-

work. Let r be the indegree (and the outdegree) of all nodes in 
; then

Theorem 6 The �rst contagion threshold of an idiosyncratic shock in a network N r is

� r1 = (r + 1)ei + rei
hi
di
:

7.1.3 Star-shaped networks

A star-shaped network is composed by a central node, !c; that borrows from and lends

to each of the peripheral nodes !p; p = 1; 2; :::; n�1;which, in turn, have no �nancial obliga-
tions among themselves. Let a star-shaped �nancial networkN s =

�

; A; T;H; L
; LA; LT ; LH ;�

	
be such that L
 = flpc; lcpjp = 1; 2; :::; n� 1g :We assume that all links in L
 have the same
weight, i.e., dcp = dpc = dp, for all links in L
.

15The indegree (outdegree) of a node is the number of its incoming (outgoing) links.
16For instance, it can be shown that, for any incomplete regular network, it is possible to �nd a set of

initially defaulting agents, D0; and a distribution of losses among them, such that the �rst and the �nal

thresholds are the same as the ones of a complete network N c: This is the case for a cycle-shaped network,

as de�ned below, hit by a shock such that: i) D0 is composed by half of the nodes in the network; ii) all

nodes in D0 su¤er an external loss of equal amount; iii) each node in D0 is adjacent to two nodes in 
nD0.
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In a star-shaped network, the contagion thresholds depend on the distribution of the

initial shock between the center and the periphery of the network. We obtain results for

the three possible cases: 1) the shock is idiosyncratic and borne by the central node alone:

D0 = !c; 2) the shock is borne by !c and by some peripheral nodes, and 3) the shock is

borne by peripheral nodes only:

Theorem 7 The �rst threshold of contagion, � s1; and the last threshold of contagion, �
s
2;

of a star-shaped network N s are the following:

1. (a) if D0 = !c and (b) if D0 = f!c; !pjfor some p 2 (1; :::; n� 1)g, then the �rst and
the last threshold coincide and are equal to

� s = (n� 1)ep + ec + ep
hc
dp
;

2. if D0 = f!pjfor some p 2 (1; :::; n� 1)g and !c =2 D0; then the �rst threshold is equal

to

� s1 = mep + ec

�
1 +

hp
dp

�
where m is the minimum number of peripheral defaults which is su¢ cient to induce

the default of the central node, i.e. m is such that
Pm

p=1 dp = ec; while the �nal

threshold is equal to

� s2 =

�
(n� 1)ep + ec + ep

hc
dp

��
1 +

hp
dp

�
:

7.1.4 Cycle-shaped networks

An incomplete regular network with degree equal to unity forms a cycle. Formally, a

cycle-shaped �nancial network N o =
�

; A; T;H; L
; LA; LT ; LH ;�

	
is such that L
 =

flijji = 1; 2; :::; n; j = i+ 1 for i = 1; :::; n� 1, and j = 1 for i = ng :As above, assume that
all links in L
 have the same weight, i.e., dij = di; and all nodes have the same balance

sheet, ai + ci = ei + hi + di: In this network, the e¤ects of an external shock that involves

more than one agent, jD0j > 1, crucially depend on the position that such defaulting nodes
have on the cycle network. In order not to resort to implausible restrictions on this issue,

we content ourselves with the analysis of the impact of idiosyncratic shocks.
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Theorem 8 The �rst threshold of contagion, � o1; and the last threshold of contagion, �
o
2;

of an idiosyncratic shock in a cycle-shaped network N s are the following:

1.

� o1 = 2ei + ei
hi
di
;

2.

� o2 = 2ei + ei
hi
di
+ ei

�
1 +

di
hi

�"�
1 +

hi
di

�n�2
� 1
#
:

7.1.5 Comparing the contagion thresholds of di¤erent network structures

For the sake of comparability, we set the four types of networks considered here to be

composed by the same number of agents, n; and to be endowed with the same total stock

of equity, E =
P

i2
 ei, and with the same total external debt, H =
P

i2
 hi. In order

to isolate the e¤ects that the shape of a network has on its contagion thresholds from the

e¤ects that the balance sheet ratios ei=hi and hi=di have on such thresholds, we set these

ratios to be the same for all agents in all networks.17

Under these conditions we have the following

Corollary 2 1. The contagion thresholds of the star-shaped and of the complete networks

are such that:

� s1 < �
s < � c < � s2:

2. The �rst contagion thresholds of the cycle-shaped network, � o1; and of the incomplete

regular network, � r1; are such that:

� o1 < �
r
1 < �

c:

These results show that:

1. In complete networks, as well as in star-shaped networks (when the center is in the

set of primary defaults), the �rst and the �nal thresholds coincide. The rationale

of this result stems from the fact that, in both these classes of networks, the losses

that over�ow from the primary defaults are evenly spread among all the nodes which

17This restriction implies that i) the banks in the complete, incomplete and cycle-shaped networks all

have the same balance sheet ai + ci = ei + hi + di, and ii) in the star-shaped network, the balance sheet

of the peripheral nodes is equal to ap + cp = ep + hp + dp while the balance sheet of the central nodes is

equal to ac + cp(n� 1) = ec + hc + dp(n� 1); where ec = (n� 1)ep and hc = (n� 1)hp:
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are not in the set of initial defaults. In these networks no secondary defaults occur

when the system is perturbed by shocks smaller than the unique contagion threshold,

while all agents in these networks default if it is hit by a shock larger than such a

threshold. In other words, these network structures are robust � yet � fragile: they
are resilient to relatively small shocks and, at the same time, they are exposed to

the risk of a collapse of the entire �nancial network, if hit by a su¢ ciently large

shock.18 As pointed out by Acemoglu et al.(2013), this result about the complete

network structures �con�rm[s] a conjecture by Haldane (2009) who suggested that

highly interconnected �nancial networks may be �robust-yet-fragile�and that they

�exhibit a knife-edge or tipping point property�, in the sense that �within a certain

range, connections serve as shock-absorbers [and] connectivity engenders robustness.�

However, beyond a certain range, interconnections start to serve as a mechanism for

propagation of shocks�[ Acemoglu et al.(2013), page 3]. Our results also show that

the robust-yet-fragile feature belongs also to the star shaped network, which is sparse

but highly centralised. This indicates that this property �due to the even di¤usion

of losses from defaulting nodes to all the other nodes in the network �stems from

the high connectivity as well as from the high centralization of a network.

2. The �rst thresholds of incomplete regular and cycle-shaped networks are both smaller

than the ones of complete networks. The converse applies to the �nal thresholds of

such networks: � c � � r2 � � o2: This implies that the class of incomplete regular

networks (which includes the cycle-shaped ones), compared to complete and star-

shaped networks, is more exposed to episodes of contagion due to shocks of small

magnitude, with limited and local default contagion.

7.2 Value of balance sheets headings and contagion thresholds

In the network structures analysed above, the only headings of the balance sheets of the

agents that determine the contagion thresholds of a network are the stock of equity e and

the h=d ratio between internal and external debt. Moreover, all the above characterised

thresholds are increasing in the equity endowments, e, and in the h=d ratio. The protective

role played by the equity stock is not surprising: the larger the equity of the members of a

18The robust-yet-fragile nature of the complete networks has been pointed out also by Acemoglu et al

(2013).
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network, the larger the amount of losses that can be absorbed by those agents, the higher

the contagion thresholds of the network (and, of course, the smaller the set of defaults

induced by any given shock).

The relevance of the h=d ratio, in turn, lies in the fact that this ratio governs the

allocation of the �ow of losses, released by defaulting nodes, between external creditors

(households) and internal ones (other nodes in 
). The smaller this ratio between external

and internal debt, the smaller the portion of losses that, at each default, is sent into the

sink H; and the larger the �ow of losses that continues to circulate among the nodes in


, and vice versa. Therefore, the smaller the h=d ratio: i) the larger the portion of an

external shock that over�ows from the primary defaults towards the rest of the network;

ii) the smaller the smallest shocks capable of causing secondary defaults (the contagion

thresholds), and iii) the larger the number of defaults induced by a shock. This is true,

under a mildly restrictive condition, for all �nancial �ow networks. In order to establish

this result, we restrict the attention to networks where each agent holds an amount of

internal exposures, ci; equal to its internal debt, di; and we vary the h=d ratio by varying

proportionally the value of all intra-network obligations �the weights of the links in 
 �

while keeping constant the value of the other balance sheet headings. The scope of these

restrictions is discussed below.

De�nition 7 Let N be a �nancial �ow network such that ci = di; for all i 2 
; and let
fN �g be the set of �nancial �ow networks, indexed by � 2 R+; such that: i) all networks
in fN �g are equal to N in everything but the weights of the links in L
;ii) for all dij in N;

the corresponding d"ij in N
� is equal to d"ij = (1 + �)dij:

Within this class of networks, and for any given shock, the �ow of losses that a defaulting

agent passes to his creditors in
 is increasing in �; i.e. it grows as the h=d ratio diminishes.19

Lemma 4 Let � be an external shock to the networks in fN �g and let D0 be the set of

primary defaults induced by �. Let LD
0
= flijji 2 D0; j 2 
g be the set of the outgoing

links of the nodes in D0: Then the �ow of losses that crosses a link lij 2 LD
0
in a network

N �; as a consequence of a shock, is increasing in �:

This result stems from the pro-rata allocation of losses among the debtors of defaulting

agents: the relative growth of the internal debts with respect to the external debts of
19As can be checked by inspecting the argument of the proof of the lemma below, the losses that

defaulting nodes pass to other nodes in 
 do not grow if the h=d ratio remains constant.
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defaulting agents, transfers part of the losses from their external to their internal debtors.

As a consequence, the amount of losses that the primary defaults send to the other nodes

in 
 (the �contagious��ow), as well as the amount of losses that circulate among the nodes

in D0, grow with �; while the �ow of losses sent to the sink H correspondingly diminishes

with ": This means that the larger �, the larger the �ow carried by each link across the cut

(D0;
nD0). Clearly this implies that the losses received by each creditor of the defaulting

nodes in D0; for any given shock, grow as � increases. Thus, as � grows, progressively

smaller shocks are su¢ cient to induce contagion. For the same reason, the larger �, the

larger the number of defaults induced by a given shock. In sum, a proportional growth

of the value of the intra-network obligations dij�s, while the extra-network obligations hi�s

remain �xed, renders a network increasingly exposed to default contagion, both in terms

of thresholds and of scope of contagion:

Theorem 9 1. Let f� 0�g and f� 00�g be, respectively, the sets of �rst and of �nal contagion
thresholds of the networks in fN �g and let such sets be indexed by � 2 R+: Then � 0� and � 00�
are decreasing in �:

2. Let � be an external shock to the set of networks fN �g and let fD�g be the set,
indexed by � 2 R+; composed of the sets of defaults induced by � in the networks in fN �g :
Then the number of defaults, i.e. the cardinality of D�; is increasing in �:

These results are obtained under two restrictions: ci = di; for all i 2 
; and the

proportionality of the above considered changes in the value of intra-network obligations.

The former restriction is merely a convenient way to ensure that the change in the value

of the intra-network obligations is compatible with the balance sheet constraints. This

restriction can be replaced without altering the above results.20 Conversely, the latter

restriction �that keeps the proportions among the intra-network obligations �xed while

varying their values �is a necessary condition for lemma 21 because a non proportional

change of such obligations may shift losses from poorly capitalized agents towards highly

capitalized ones (or, with similar e¤ects, from defaulting nodes with a low h=d ratio to

nodes with a high h=d ratio).21

20For instance, it could be replaced by assuming that, as � grows, the nodes s. t. ci > di sell external

assets to the nodes s. t. ci < di preserving, in so doing, the equality between assets and liabilities in the

balance sheets of the agents in 
:
21This is best explained by an example. Consider a network with just three nodes, !1; !2 and !3, where

!1 is indebted with both !2 and !3; and e2 > e3: Suppose that !1 defaults. In this case, an increase of
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8 Conclusions

In the last decade �nancial networks have became a crucial concern for central banks

and policy makers. Even if economists and central bankers have devoted a good deal

of attention to the study of �nancial networks, our knowledge of their properties is still

limited. Financial networks, unfortunately, are complex mathematical objets and our

understanding of their features is obstacled by the analytical di¢ culties. The �ow network

framework presented in this paper has the ambition of contributing to the set of analytical

tools that the literature on �nancial networks has been providing in the last years.

In this paper we represent a �nancial network as a �ow network and model the di¤usion

of losses and defaults, originated by an exogenous shock, as a �ow that crosses such a

network. Using some properties of network �ows, we obtain three sets of results. First, we

address a know problem of non uniqueness of the clearing payments vector that arises from

the possible existence of strongly connected components of defaulting agents. We establish

necessary and su¢ cient conditions for the uniqueness of clearing intercyclical payments and

use embed these conditions in an algorithm that computes the contagion process. Second,

we investigate the relation between the shape of a �nancial networks and its exposure to

default contagion. We characterise �rst and �nal contagion thresholds (i.e., the value of

the smallest shock capable of inducing at least one default and the value of the smallest

shock capable of inducing the default of all agents in the network, respectively) for di¤erent

network shapes, namely the complete, star-shaped, incomplete regular, and cycle-shaped

networks. We �nd that �rst and �nal thresholds coincide in complete networks, and the

same applies to star-shaped networks (when the center is in the set of primary defaults)

because, in both cases, the losses that over�ow from the primary defaults are evenly spread

among all remaining nodes. This means that these network structures have a robust-yet-

fragile nature: they are very resilient to shocks of relatively small magnitude �in the sense

that no default contagion occurs for shocks smaller than the unique contagion threshold �

but, at the same time, they are exposed to the risk of a complete melt-down, which occurs if

they are hit by a su¢ ciently large shock. We also �nd that the �rst thresholds of incomplete

regular and cycle-shaped networks are both smaller than the ones of complete networks.

the value of d12, while d13 is kept constant, implies a shift of losses from !3 towards !2 and, therefore,

implies an increase of the �rst (and last) contagion threshold of this simple network as well as, for some

shock values, a decrease of the number of defaults. Thus, a non-proportional increase of intra-network

obligations does not necessarily imply a larger exposition to default contagion.
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This implies that the class of incomplete regular networks (which includes the cycle-shaped

ones), compared to the classes of complete and star-shaped networks, is more exposed to

episodes of contagion due to shocks of small magnitude and scope. Third, we �nd that the

ratio between the external debt of the agents in a network (i.e. the debt towards claimants

who do not belong to the network, such as households) and their internal debt (i.e. the

debt towards other agents in the network) determines the exposure to contagion of the

network. Ceteris paribus, the larger the ratio between the intra-network exposures and

the external debt of the agents in a network, the more the network is exposed to default

contagion, both in terms of scope and of thresholds of contagion.

Appendix: proofs of theorems, lemmae and corollaries

Proof of theorem 1. 1: The capacity constraint is satis�ed because i) f(lki ) = b
k�(lki )

for all lki in L
A; f(lij) = bi�(lij) for all lij in L
; f(liH) = bi�(l

i
H) for all l

i
H in L

H ; and

f(liT ) = �i�(l
i
T ) for all lit in L

T ; and ii) bk; bi; �i 2 [0; 1]; for all i 2 
 and all k 2 A. 2: The
budget identity of the balance sheets of the agents in 
; together with the rules of limited

liability and debt priority � encoded in (1) and (2) � ensure that any �ow of losses that
arrives in a node is redirected �rst towards the sink and, for the residual part, towards

the node�s descendants in 
. In notation:
P

X�(!i)
'(x) = �i = �i(�i)ei + bi(�i)di =P

X+(!i)
'(x); for all !i 2 
.

Proof of lemma 1. Let
�
Ui; U i

	
be a cut in N and let

�
Ui�1; U i�1

	
be another

cut in N such that Ui�1 = Uin!i; !i 2 Ui. The set of forward links of Ui is L+(Ui) =
L+(Ui�1)+

�
lij 2 L
 j !i 2 Ui; !j 2 U i

	
+lit�

�
lki 2 LA j ak 2 A

	
�
�
lji 2 L
 j !j 2 Ui�1

	
;

while the set of backward links of Ui is L�(Ui) = L�(Ui�1) +
�
lji 2 L
 j !j 2 U i

	
��

lij 2 L
 j !j 2 Ui�1
	
. Thus we can express the capacity of

�
Ui; U i

	
as

�
�
Ui; U i

	
= �

�
Ui�1; U i�1

	
+ �

�
lij 2 L
 j !j 2 U i

	
+ �(lit)

��
�
lki 2 LA j ak 2 A

	
� �

�
lji 2 L
 j !j 2 Ui�1

	
��

�
lji 2 L
 j !j 2 U i

	
+ �

�
lij 2 L
 j !j 2 Ui�1

	
Since: i) �

�
lij 2 L
 j !j 2 U i

	
+�

�
lij 2 L
 j !j 2 Ui�1

	
= di; ii) �

�
lji 2 L
 j !j 2 Ui�1

	
+

�
�
lji 2 L
 j !j 2 U i

	
= ci; iii) �

�
lki 2 LA j ak 2 A

	
= ai and iv) �(lit) = ei + hi; by the

budget identity ai + ci � ei + di + hi we obtain that �
�
Ui; U i

	
= �

�
Ui�1; U i�1

	
: This
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procedure can be iterated for all pairs of cuts
�
Ui; U i

	 �
Ui�1; U i�1

	
in N , starting from�

Ui�1; U i�1
	
= fA; (
; H; T )g :

Proof of lemma 2. Let P 1(!i) =
�
!jjlji 2 L


	
be the set of parent nodes of !i; let

P 2(!i) be the set of the parent nodes of the parent nodes of !i and so forth for P 3(!i);

P 4(!i); :::; P
n(!i):The union of such sets, P (!i) = [nj=1P j(!i); forms the set of the ances-

tors of !i; i.e. the set of nodes !j in 
 s.t. there exists a directed path from !j to !i: For

each i 2 
, �i and bi are both uniquely de�ned functions of �i which, in turn, is a uniquely
de�ned function of the loss-given-default functions of the defaulting nodes in P 1(!i) which,

in turn, are uniquely de�ned functions of the losses su¤ered by the nodes in P 1(!i) which,

in turn, are uniquely de�ned functions of the values taken on by the loss-given-default

functions of the defaulting nodes in P 2(!i); and so forth up to the source nodes of N: In

other words, �i; �i and bi are functions of the values taken on by the loss-given-default

functions of the defaulting nodes in P (!i): In absence of cycles of defaulting agents, we

have that no node in 
;belongs to the set of its own ancestors. This implies that �i; �i
and bi are obtained through the non-recursive iteration of uniquely de�ned functions, thus

they are uniquely de�ned as well.

Proof of lemma 3. To show that conditions (a) and (b) are individually necessary and

jointly su¢ cient to generate the indeterminacy of a contagion in a SCC, we �rst assume

that all nodes in S default and discuss the implications of S being closed or open. Then we

assume that S is closed and show that all nodes in S must default for the indeterminacy

to arise.

1) Let us assume that all nodes in S default. Each node !i in S receives losses equal to

�i =
P

k2A bka
k
i +
P

j =2S bjdji+
P

j2S bjdji, where
P

k2A bka
k
i is the �ow of losses (if any) that

!i receives directly from the source nodes;
P

j =2S bjdji is the �ow of losses that it receives

through its defaulting parent nodes that do not belong to S (if any); and
P

j2S bjdji is the

�ow of losses that !i receives from its defaulting parent nodes that belong to S. For the

time being, we resort to a simplifying assumption. We assume that f does not induce any

cycle �ow along the directed paths that connect the source nodes in A to the members of

S, i.e., there is no SCC of defaulting nodes laying between the source nodes and S. By

Lemma 8, this assumption implies that the �ow of losses received by the nodes in S from

nodes in 
nS is uniquely de�ned. On this basis we take, for all !i in S,
P

j =2S bjdji as a

datum and express bi(�i) as a linear function of the loss-given-default functions, the bj�s,
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of the other members of S :

bi =

P
k2A bka

k
i +

P
j =2S bjdji � ei

di
+

P
j2S bjdji

di

rewritten as

bidi �
X
j2S

bjdji =
X
k2A

bka
k
i +

X
j =2S

bjdji � ei

For a SCC composed ofm nodes, we have a system composed ofm of such linear equations:2666666666664

d1 �d21 � � � � � � � � � �dm1
�d12 d2 �d32 � � � � � � ...
... �d23 d3 � � � � � � ...
...

...
...

. . . � � � ...

�d1(m�1)
...

...
...

. . . �dm(m�1)
�d1m � � � � � � � � � �d(m�1)m dm

3777777777775

266666666664

b1

b2

�
�
�
bm

377777777775
=

266666666664

P
k2A bka

k
1 +

P
j =2S bjdj1 � e1P

k2A bka
k
2 +

P
j =2S bjdj2 � e2
�
�
�P

k2A bka
k
m +

P
j =2S bjdjm � em

377777777775
The solution of this system � i.e., the vector of unknowns [b1; b2; :::; bm]; hence the �ow

values assigned by f to the links in LS �is indeterminate if and only if the matrix of the

coe¢ cients of the system is singular.22 The components of such a matrix have the following

properties:

(1) di �
P

j2S dij; for every i 2 f1; 2; :::;mg ;
(2) for every i; j 2 f1; 2; :::;mg ; if i 6= j; then there exists a sequence of indexes

i1; i2; :::; ik; where i = i1 and j = ik; such that di1i2 � di2i3� � � � �dik�1ik 6= 0:
Property (1) holds with the equality sign for the nodes in S that are indebted only

to other nodes in S. Thus, in a closed SCC we have that di =
P

j2S dij; for every i 2
f1; 2; :::;mg : Conversely, in an open SCC we have that di >

P
j2S dij for at least one

22I am indebted to Paola Cellini for her generous help in characterizing the singularity conditions of

such a matrix.
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i 2 f1; 2; :::;mg : Property (2) is a formal expression of strong connectivity: for every
ordered pair (!i; !j) 2 S there exists a directed path that starts in !i and ends in !j.
Now demonstrating the if part of the lemma is straightforward. If S is a closed SCC,

then di =
P

j2S dij; for every i 2 f1; 2; :::;mg : In this case the sum of the rows of the

coe¢ cient matrix is null and so is its determinant.

In order to establish the only if part of the Lemma, we suppose that the determinant

of the matrix is null and show that, in such a case, di =
P

j2S dij for every i 2 f1; 2; :::;mg ;
which means that S is closed. We use the fact that the determinant of a matrix is null

if and only if its rows are linearly dependent. Thus we suppose that there exist m real

numbers 1; 2; :::; m not all null and such that, for every i; j 2 f1; 2; :::;mg ;

idi =
X
j 6=i

jdij:

We can suppose, re-ordering the indexes if necessary, that jmj � jij for all i < m; thus
m 6= 0; therefore

dm =
X
j 6=m

j
m
dmj

where
j
m

�
��� jm ��� � 1: Then condition (1) implies that m = j for every j such that

dmj 6= 0; thus it implies that dm =
P

j 6=m dmj:

Consider now the set

E =
�
j 2 f1; 2; :::;mg jj = m

	
If E coincides with f1; 2; :::;mg ; we obtain that condition (1) holds with the equality sign
for all i 2 f1; 2; :::;mg ; which is our thesis. Seeking a contradiction, let us suppose that
E does not coincide with f1; 2; :::;mg : Then we can suppose, re-ordering the indexes if
necessary, that there exists an index h > 1 such that E = fh; :::;mg ; i.e., such that
i = m if and only if i � h: The strong connectivity of S; as expressed by condition

(2), implies that, for at least one index i 2 fh; :::;mg ; there exists an index k < h such

that dik > 0: Let then be dik > 0�with i 2 fh; :::;mg and k < h�and repeat the above
reasoning with the index i in place of m : the relation

di =
X
j 6=i

j
i
dij

together with condition (1) and with the fact that jij is maximal, implies that i = j for
every j such that dij 6= 0 and, therefore, that i = m = k; contradicting the hypothesis
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that k < h: This proves that, if the determinant of the above coe¢ cient matrix is null, then

all i are equal among themselves and, therefore, di =
P

j 6=i dij; for every i; j 2 f1; 2; :::;mg :
Finally, we can remove the above made simplifying assumption because i) by de�nition,

no closed SCC can lie along the paths that go from A to S, and ii) the presence of an

open SCC of defaulting agents along such paths does not cause any indeterminacy, as it is

shown above.

2) Suppose that S is closed and that only part of the nodes in S default. Let eS � S
be the set of defaulting nodes in S and let L(eS) be the set of the links that connect such
failing agents among themselves. Then the subgraph (eS; L(eS)) � S may or may not be a
SCC. If it is not, no indeterminacy arises, as implied by lemma 8. If (eS,L(eS)) is strongly
connected, such a SCC of defaulting agents is open because (eS; L(eS)) � S and S is strongly
connected. Hence, also in this case the contagion is uniquely de�ned on the links in L(eS).
Proof of theorem 4. 1) Recall that L = LA [L
 [LH [LT . Then: i) the values taken
on by f on the links in LA are exogenously set by the external shock; ii) by de�nition, the

nodes in a closed SCC S have no debts towards the nodes in 
nS or the households in H:
Thus, any possible indeterminacy of the values of the loss-given-default functions of the

nodes in a S 2 � has no e¤ects on the �ow of losses received by the nodes in 
nS; which
unfold along the links in L
nL(S), and by the households, which are de�ned on the links
in LH . Lemma 8 and 10 establish that a contagion that unfolds along simple paths and

open SCC�s of N is uniquely de�ned. Therefore the contagion is uniquely de�ned on all

links in LH and in L
nL�; iii) The absorption functions �i(�i) of the nodes in a S 2 �;
that set the values taken on by f on the links going from S to T; are i) uniquely de�ned if

at least one node in S is solvent, and ii) all equal to unity, if all nodes in S default. Thus,

a contagion is uniquely de�ned on the links in LT :

2) It follows from lemma 10.

Proof of corollary 1. The total loss received by the nodes in S from the rest of

the network is:
P

k2A
P

i2S bka
k
i +

P
i2S
P

j =2S bjdji. Aggregating the balance sheets of

the members of S we obtain:
P

k2A
P

i2S a
k
i +

P
i2S
P

j =2S dji =
P

i2S e, the debts cross-

held by the members of S net out and the exposures are entirely backed by the total

equity in S: Thus, if the sum of the losses born by the agents in S is maximal � i.e., ifP
k2A

P
i2S bka

k
i +

P
i2S
P

j =2S bjdji =
P

k2A
P

i2S a
k
i +

P
i2S
P

j =2S dji �then all agents in
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S fail. Conversely, if the sum of the losses born by the agents in S is less than maximal �

i.e., if
P

k2A
P

i2S bka
k
i +
P

i2S
P

j =2S bjdji <
P

k2A
P

i2S a
k
i +
P

i2S
P

j =2S dji �then at least

one of such agents has a strictly positive residual equity, i.e., it does not default.

In demonstrating theorem 5, 6 and 8 below, we resort to a known property of network

�ows: for a �ow de�ned in a �ow network, the value of the net forward �ow that crosses a

cut is the same for all the cuts of the network. Applying this property to a �nancial �ow

network N , we obtain a convenient feature of a contagion f in N : the value of the net

forward �ow that crosses all cuts of N equals the value of the exogenous shock, i.e., it is

equal to the �ow that crosses the cut fA; (
; H; T )g.
As above, let

�
U;U

	
be a cut of a �nancial �ow network N; L+(U) be the set of

forward links going from U into U; and L�(U) be the set of backward links going from U

into U . Let f [L+(U)] =
P

l2L+(U) f(l) be the forward �ow that crosses
�
U;U

	
going from

nodes in U into nodes in U , and let f [L�(U)] =
P

l2L�(U) f(l) be the backward �ow that

crosses the cut at hand in the opposite direction. The net �ow that crosses
�
U;U

	
is equal

to
�!
f
�
U;U

	
= f [L+(U)]� f [L�(U)] :

Lemma 5 Let f be a contagion in a network N and let
�
U;U

	
be a cut of N: The net

�ow across a cut
�
U;U

	
in N is equal to the �ow out of the source nodes:

�!
f
�
U;U

	
=

�!
f fA; (
; H; T )g =

P
A b

kak:

Proof. See Diestel (2000), page 126, for a proof that refers to generic �ow networks.

Proof of theorem 5. Lemma 5 ensures that the value of an exogenous shock, i.e., the

�ow that crosses the cut fA; (
; H; T )g ; is equal to the forward �ow that crosses the cut
f(A;D0); (
nD0; T;H)g, which is also the net �ow across this cut, since no �ow crosses it
in the opposite direction. Let m be the number of primary defaults caused by a shock [bbk],
m = jD0j: Each of node !i in D0 sends 1) to the sink T a �ow equal to its own equity e;

2) to the sink H a �ow equal to bih; and 3) a �ow equal to bidij to each of its (n � m)
creditors in 
nD0: The shock that comes out of the source nodes,

�!
f (A; (
; H; T )); is then

equal to

me+

mX
i=1

bihi +

mX
i=1

bidij(n�m) (4)

where 1) me is the value of the �ow
�!
f (D0; T ) going from D0 to T; 2)

Pm
i=1 bihi is the �ow�!

f (D0; H) that goes from D0 to H; and 3)
Pm

i=1 bidij(n�m) is the �ow
�!
f (D0;
nD0) going

fromD0 to the n�m nodes in
nD0: In a complete networkN c, each node j in
nD0 receives,
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from its defaulting debtors, a �ow of losses equal to
Pm

i=1 bidij: For default contagion to

occur, this �ow of losses must be larger than or equal to the absorbing capacity of a node:Pm
i=1 bidij � ej: The value of an exogenous shock that is exactly large enough to cause

such a condition to be ful�lled, i.e., such that
Pm

i=1 bidij = ej, constitutes both the �rst

and the �nal threshold of contagion of a network N c : all nodes in 
nD0 default together

if such a threshold is reached. This condition for contagion requires that
Pm

i=1 bi = ej=dij

and, substituting this value in (4), we obtain the �rst and �nal contagion thresholds of a

network N c:

Proof of theorem 6. The proof is trivial and is omitted.

Proof of theorem 7. As above, lemma 5 ensures that the value of a shock,
�!
f fA; (
; H; T )g ;

is equal to the forward �ow that crosses the cut f(A;D0); (
nD0; T;Hg : Then, with respect
to the two cases listed in the theorem, we have that:

1a) If D0 = !c; the �ow that crosses the cut f(A; !c); (
n!c; H; T )g is equal to

ec + bchc + bcdp(n� 1);

where bc(�c) is the loss-given-default function of !c: Contagion occurs for any shock such

that bcdp(n�1) � ep(n�1): The smallest of such shocks is the one that causes bcdp(n�1) =
ep(n�1), hence bc = ep=dp:This condition characterises both the �rst and the �nal threshold
of contagion: if bc = ep=dp, all agents in N s default. Substituting bc = ep=dp into the above

equation delivers the result.

1b) IfD0 = f!c; !pjfor some p 2 (1; :::; n� 1)g, the �ow that crosses the cut f(A;D0); (
nD0; H; T )g
is equal to

(m� 1)ep + ec +
X

p2D0n!c

bphp + bchc + bcdp(n�m);

where: m = jD0j; (m � 1)ep + ec =
�!
f (D0; T );

P
p2D0n!c bphp + bchc =

�!
f (D0; H) and

bcdp(n � m) =
�!
f (D0;
nD0): As above, both �rst and complete contagion occur for any

shock s.t. bc � ep=dp: The smallest of such shocks are the ones s.t. bc = ep=dp and bp = 0.
When both these conditions are met, the value of shock is equal to the total stock of

equity (n � 1)ep + ec plus the losses send by the central node into the sink H; equal to
bchc. Conversely, any shock s.t. bp > 0 sends an amount of losses into the sink H equal to

bchc + (m� 1)bphp wich is (obviously) larger than bchc.
In other words, a shock s.t. bc = ep=dp and bp = 0 is su¢ ciently large to cause the default

of all nodes in the network, �lling up the sink node T; while in�icting on bondholders and
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depositors in H the minimum possible amount of losses. Thus, the smallest shock that can

cause the default of all nodes �if some peripheral nodes are in D0 along with the central

node �is equal to

� s1 = � s2 = (m� 1)ep + ec +
ep
dp
hc + ep(n�m)

= (n� 1)ep + ec +
ep
dp
hc: (5)

2) if D0 = f!pjfor some p 2 (1; :::; n� 1)g and !c =2 D0; the �ow that crosses the cut

f(A;D0); (
nD0; H; T )g is equal to

mep +
mX
p=1

bphp +
mX
p=1

bpdp

where mep and
Pm

p=1 bphp are the �ows that D
0 sends into T and H; respectively, andPm

p=1 bpdp is the �ow that the central node !c receives from the defaulting nodes in D0:

The condition for the �rst threshold of contagion is:
Pm

p=1 bpdp = ec; hence
Pm

p=1 bp = ec=dp

and, substituting this into the above equation, we obtain that � s1 = mep + ec(1 + hp=dp);

The second and �nal threshold of contagion, is set by the �ow that crosses the cut

f(A;D0; !c); (
n(D0; !c); H; T )g which is equal to

mep + ec +
mX
p=1

bphp + bchc + bcdp(n�m� 1)

where: mep+ec =
�!
f ((D0; !c); T );

Pm
p=1 bphp+bchc =

�!
f ((D0; !c); H); and bcdp(n�m�1) =

�!
f (!c;
n(D0; !c)): All nodes in 
n(D0; !c) default if the central node sends to each of them

a �ow larger than or equal to ep: The �nal threshold of contagion is equal to the smallest

of such shocks: bcdp = ep; hence: bc = ep=dp and

� s2 = (n� 1)ep + ec + ep
hc
dp
+

mX
p=1

bphp (6)

As above, to obtain
Pm

p=1 bp; we resort to the fact that the �ow that enters the central

node is equal to the �ow that exits from it:

mX
p=1

bpdp = ec + bcdp(n� 1) + bchc

= (n� 1)ep + ec + ep
hc
dp
:
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thus
mX
p=1

bp = (n� 1)
ep
dp
+
ec
dp
+ ep

hc
(dp)2

:

Substituting this value in (6), we obtain the above result.

Proof of theorem 8. 1. The proof is trivial and is omitted.

2. Let N o be composed by a cycle of nodes (!1; !2; :::; !n) and suppose that N ois

hit by an idiosyncratic shock borne by node !1. ((A;
n!n); (!n; H; T )) is the cut of N o

corresponding to the �nal threshold of contagion of such a shock . The �ow across this cut

is equal to

(n� 1)ei +
n�2X
i=1

bihi + bn�1hi + bn�1di:

The smallest shock su¢ cient to cause the failure of the n-th node, is such that: bn�1di = ei;

hence: bn�1 = ei=di: The �nal threshold at hand is then equal to

� o2 = nei +
n�2X
i=1

bihi + ei
hi
di
: (7)

To obtain
Pn�2

i=1 bi; we use the �ow conservation property: bi�1di = �i = ei + bihi + bidi;

for all i = 2; :::; n; hence:

bi�1 =
ei
di
+ bi(1 +

hi
di
)

and

bi = bn�1

�
1 +

hi
di

�n�1�i
+
ei
di

(1 + hi=di)
n�1�i � 1

(1 + hi=di)� 1

=
ei
di

�
1 +

hi
di

�n�1�i
+
ei
hi

�
1 +

hi
di

�n�1�i
� ei
hi

thus

n�2X
i=1

bi =
(1 + hi=di)

n�2 � 1
(1 + hi=di)� 1

�
ei
di
+
ei
hi

�
� (n� 2) ei

hi

=

"�
1 +

hi
di

�n�2
� 1
#�

ei
hi
+
eidi
h2i

�
� (n� 2) ei

hi

and �nally
n�2X
i=1

bihi =

"�
1 +

hi
di

�n�2
� 1
#�
ei +

eidi
hi

�
� (n� 2)ei
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that, substituted in (7), yields the above result.

Proof of corollary2. Part (1) can be checked by inspection. In checking that � c < � s2;

it is convenient to rewrite these thresholds as follows:

� c = E + ei
hi
dij

and

� s2 = E + E
hp
dp
+
ephc
dp
(1 +

hp
dp
):

Notice that the second addendum of the latter equation, E hp
dp
; is larger than ei hidij .

Part (2) also can be checked by inspection.

Part (3):

Proof of lemma 5. The �ow that crosses an outgoing link lij 2 LD
0
in a network

N � is equal to (�i � ei) [(1 + �)dij= (hi + (1 + �) di)] and is increasing in � for the following
reason. As long as hi > 0; the term within square brackets is strictly increasing in �: In

turn, (�i � ei) is non-decreasing in � because, for a given shock, the losses received by a
node !i 2 D0, �i; grow if there is at least one node !j in D0 such that: i) hj > 0; and ii)

there exists a directed path from !j to !i where all nodes along such a path are insolvent

as well. If either (i) or (ii) does not hold, then �i remains constant as � changes. Thus,

(�i� ei) [(1 + �)dij= (hi + (1 + �) di)] is increasing in � and such monotonic relation is strict
for all links lij 2 LD departing from nodes !i for which: (1) both (i) and (ii) hold, andnor
(2) hi > 0.

Proof of theorem 9. Both 1 and 2 are direct consequences of lemma 4, which implies

that, for any given shock, the losses received by each creditor of the defaulting nodes are

increasing (at least weakly) in �. The formal proof is trivial and is omitted.
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