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Abstract 

Two subjects have to repeatedly choose between two alternatives, A and B, where payoffs of 

an A or B-choice depend on the choices made by both players in a number of previous choices. 

Locally, alternative A gives always more payoff than alternative B. However, in terms of overall 

payoffs exclusive choice of B is a better strategy. The equilibrium predicted by the theory of 

melioration is to exclusively play A, while the Nash equilibrium is to almost exclusively play B. The 

predictive values of such equilibria are analyzed under three different informational conditions. 

Special attention is paid to the learning processes exhibited by players. 

JEL classification: C72; C92; D83. 

Keywords: Bounded rationality; Psychology; Melioration; Nash equilibrium; Information; Learning. 
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The Two-Person Harvard Game: An Experimental Analysis 

 

 

 

 

 

 

1. - Introduction 

 

The two-person Harvard game consists of two players that have to repeatedly choose between 

two alternatives, A and B, where the outcome of an A or B-choice depends on the number of 

A-choices made by both players in the last nine periods. For any strategy of the opponent, a 

pattern of individual behavior focused on local payoffs is in direct contradiction with a pattern 

of individual behavior focused on overall payoffs, the former involving a substantial loss in 

payoffs with respect to the latter. More precisely, for any strategy of the opponent, locally an 

A-choice gives always more value than a B-choice. However, if A is chosen in all the nine 

previous choices, an A-choice gives less value than a B-choice when B is chosen in all nine 

previous choices. Furthermore, every A-choice reduces the opponent’s payoffs in the current 

and future periods. 

The Harvard game was originally formulated in the framework of one decision-maker1 (see 

Herrnstein, 1991; Herrnstein and Prelec, 1991; Herrnstein et al. 1993; Kudadjie-Gyamfi and 

Rachlin, 1996; and Warry et al. 1999). The extension developed in this paper to a game 

theoretic environment is a new one. It will be argued below that the two-person Harvard game 

represents the interdependent environment in the consumption of a good with addictive 

characteristics, or the exploitation problem of a common-pool resource. 

The interesting feature of the two-person Harvard game is that situates the predictions of the 

unique Nash equilibrium and of what will be called here the Stable Matching Equilibrium in 

Games at two extremes. The Stable Matching Equilibrium in Games is the equilibrium 

prediction developed here based on the psychological theory of individual decision-making 

known as melioration (see Herrnstein, 1991, 1997; Herrnstein and Prelec, 1988, 1991, 1992). 

The theory of melioration states that individuals at each period select that alternative that 

provided more value in the previous period. It will be shown that this pattern of behavior 

applied to the two-person Harvard game predicts that both players exclusively choose 
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alternative A. In contrast to this, the Nash equilibrium predicts that both players almost2 

exclusively choose alternative B. 

Therefore, while the Stable Matching Equilibrium in Games predicts maximal exploitation of 

the common-pool resource, or maximal consumption of the alternative with addictive 

characteristics, the Nash equilibrium calls for almost complete avoidance of the addictive 

alternative, or for almost complete protection of the common-pool resource. 

In this experimental analysis the two-person Harvard game is analyzed under three different 

informational characterizations. In the first one players are informed neither of the payoff 

structure, nor of their opponent’s past choices. In the second treatment, players have 

information on their opponent’s behavior, and in the final one, players are given some 

qualitative information on the payoff structure. Therefore, the predictive value of the Nash 

equilibrium and the Stable Matching Equilibrium in Games are analyzed under three different 

informational conditions. Furthermore, it is the aim of this paper to study the individual 

learning processes followed by players in the course of the game. A method to analyze the 

“quality” of individual learning will be proposed. Finally, it will be developed a classification 

of players on the basis of the dynamic-adjustment processes exhibited. 

The organization of the paper is as follows. Section 2 formally introduces the two-person 

Harvard game and derives the Nash equilibrium and the Stable Matching Equilibrium in 

Games. Section 3 describes the experimental procedure. In Section 4 the experimental results 

are reported, and Section 5 concludes the paper. 

 

2. - The Two-Person Harvard Game 

 

There are two players, i=1, 2, that have to repeatedly choose between two alternatives, A and 

B. Let xi denote the number of A-choices made by player i in the last ten choices (including 

the current one), xi∈Xi={0,1,…,10}. Functions vi
A(x) and vi

B (x) represent the i-th payoffs 

obtained from a single choice of A and B when x, where 

jiji
A
i cxbxaxxv −−=),( , 

jiji
B
i cxbxdxxv −−=),( ,     i, j = 1, 2, i ≠ j. 

The parameterization followed in this paper is (a,b,c,d)=(16,0.8,0.2,10). Figure 1 represents 

the i-th payoff functions when the number of A-choices made by the opponent is zero and 

ten.3  The i-th payoff functions for any other value of xj in Xj are in between those represented 

in the figure. Note that, for all xj in Xj, the payoff function of A is above the payoff function of 
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B. Therefore, for all 2121 ),( XXXxxx ×=∈= , locally a single A-choice gives more value 

than a single B-choice. However, note also that vi
A(10, xj ) < vi

B(0,x j)  holds for all xj in Xj. 

That is, for any strategy of the opponent, if A is chosen in all nine previous choices, an A-

choice gives less value than a B-choice, when B is chosen in all nine previous choices. 

To interpret the two-person Harvard game, consider that alternative A represents an addictive 

alternative, or a bad habit. That is, irrespective of the individual’s own strategy and that of the 

opponent, alternative A always gives a higher local payoff than alternative B, but, at the same 

time, it reduces the individual’s own payoffs derived from both alternatives in the current and 

future periods. Therefore, the consequences of choosing A once are suffered in the next 

rounds. With a B-choice, however, the individual receives a lower local payoff, but 

contributes to a larger overall payoff. Furthermore, whenever an individual selects the 

alternative with addictive characteristics (alternative A) this reduces the opponent’s payoffs in 

the current and future periods. One enjoys A and B to a lesser extent whenever the person with 

whom one is interacting chooses the alternative with addictive characteristics. 

Another interpretation of the two-person Harvard game is in the vein of a common-pool 

resource (CPR) game. A CPR is a resource for which returns are subtractable and the level of 

appropriation is difficult to limit. Typical examples of CPRs are fisheries, forests, 

groundwater basins, and irrigation systems. It is often argued that CPRs are subject to the so-

called tragedy of the commons (see Hardin, 1968), that predicts that the pursuit of self interest 

by individuals leads to overexploitation of the CPR.4  Hence, in the two-person Harvard game, 

alternative A represents a common-pool resource; the more one and the opponent harvest the 

CPR, the less payoff one will gain from choosing the CPR. On the other hand, B represents an 

alternative market with increasing payoffs, but negatively affected by the CPR exploitation. 

Thus, locally, the CPR alternative is always attractive, however, as it will be seen below, 

players are better off protecting the CPR, and hence investing almost always in the alternative 

market. 

 

2.1.- Nash Equilibrium 

 

It is easy to show that there is a unique Nash equilibrium that happens to be symmetric and in 

dominant strategies. For any player i = 1, 2, all x in X, and any period provided that there are 

at least nine more periods to play, one’s local payoff differential between an A and a B-choice 

is (a−d)>0. However, in overall terms, since an A-choice increases xi in one unit for the next 

ten choices (including the current one), an A-choice gives a total of a−10b. Hence, it can be 
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seen that since a−10b<d, B is a dominant best-reply for any period, provided there are at least 

nine more periods to play. By applying a similar analysis for the last nine periods of the game, 

it is concluded that the best-reply is to play A, instead of B, in the last seven periods. So, the 

Nash equilibrium calls for both players always to play B, except in the last seven periods 

when A must be chosen. Using the parameters above presented and considering 120 periods, 

the Nash equilibrium gives an individual total payoff of 1194. Note, however, that the Nash 

equilibrium is not Pareto optimal. If, instead of playing A in the last seven periods, both 

players play A in the last six periods having played B in the rest, each player will obtain a total 

payoff of 1195. 

It is important to note that the three experimental treatments studied in this paper are with 

incomplete information, and therefore, players cannot derive the Nash equilibrium from an a 

priori analysis. Note, however, that by trying different simple choice patterns, players may 

realize that, although an A-choice is locally more attractive than a B-choice, repeated A-

choices imply that A-payoffs tend to decrease, while repeated B-choices imply that B-payoffs 

tend to increase, the latter being more attractive in terms of payoffs. This would lead to 

playing best-reply, and hence to Nash equilibrium. 

 

2.2.- Stable Matching Equilibrium in Games 

 

Melioration is a simple myopic dynamic-adjustment theory of individual decision-making 

where the decision-maker has to repeatedly choose one alternative from a set of alternatives. 

The theory of melioration states that individuals consider the value obtained from a single 

choice of each alternative and then shift choice to alternatives that provide a higher value. 

Obviously, such a dynamic-adjustment theory may imply a significant loss in terms of overall 

payoffs. 

The extension of melioration developed here to a game theoretic context such as the two-

person Harvard game is straightforward. It follows the dynamic-adjustment process above 

described taking the strategy of the opponent as given. This describes a reply function that 

will be called here the melioration-reply function. Hence, since for all x∈X a single A-choice 

always gives a higher local payoff than a single B-choice, exclusive choice of A is a dominant 

melioration-reply. Therefore, exclusive choice of A on the part of both players is the 

equilibrium predicted by melioration. Drawing from the terminology used in the original 

characterization of melioration (see Herrnstein and Prelec, 1992), this is called here the Stable 

Matching Equilibrium in Games (SMEG). 
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It is of relevance to note that, according to the parameters used, the Stable Matching 

Equilibrium in Games gives 745 units of payoff. Hence, with respect to the Stable Matching 

Equilibrium in Games, the Nash equilibrium brings about a 60% gain in efficiency. 

Therefore, while melioration predicts maximal exploitation in the CPR, or maximal 

consumption of the addictive alternative, the Nash equilibrium calls for almost complete 

avoidance of the addictive alternative, or for almost complete protection of the CPR. Recall, 

however, that the exploitation of the CPR (or the consumption of the addictive alternative) as 

it is referred to by the Nash equilibrium, is Pareto inefficient. 

 

3. - Experimental Procedure 

 

The present experimental study was conducted in the fall semester of 2000 at the Public 

University of Navarra. Sixty volunteer undergraduate students, primarily from economics, 

took part. The experiment was divided into six sessions with ten participants each. In each 

session participants were randomly divided into five independent pairs. 

Three treatments were run, each one comprising ten independent two-person Harvard games. 

In Treatment I, no information was provided as to the nature of the payoff structure. Players 

had to figure out the payoff contingencies throughout their relatively long exposure to the 

game. The hypothesis here is that players will focus on local payoffs, and hence that 

melioration will drive behavior towards the Stable Matching Equilibrium in Games. The 

instructions for Treatment I were as follows (original instructions in Spanish). 

Welcome to today’s experiment! 

In this room there are ten participants who will be put into pairs. The pairs will be fixed throughout the 

experiment. You will not know who the other member of your pair is. In this sense, the experiment is totally 

anonymous. 

The experiment comprises a sequence of 120 periods. 

The aim in this experiment is to accumulate as many points as possible. The way to accumulate points is to 

choose between two alternatives in each period: either A, or B. The other member of your pair will also 

choose between A and B. 

At the end of the experiment you will be privately paid in cash according to the total points that you have 

accumulated. Every 100 points equals 180 pesetas. 

Thank you very much for your participation! 

Hence, although players knew that they were playing with an opponent, they did not know 

with whom, nor did they have any feedback from the opponent. Participants remained in the 

same pair for all 120 periods. The computer screen, that was presented and explained to 

subjects, had two buttons, one for alternative A and one for alternative B, situated at the 



 6 

bottom of the screen, and two counters at the top of the screen, one showing the number of the 

period being played, and the other showing the total points accumulated through time. In each 

session the role of A and B-choices was interchanged across participants. This was to avoid 

any bias regarding the labeling or screen positioning of the buttons. 

In Treatment II players knew at each decision period the previous choice of their opponent. It 

can be hypothesized that when information on the previous choice of the opponent is 

available, imitation of the opponent’s behavior may arise, thus resulting in players trying out 

different choice patterns, a behavior which may prove more successful in terms of payoffs. 

Hence, it is hypothesized that behavior in Treatment II will tend to shift toward Nash 

equilibrium. Instructions for Treatment II were as for Treatment I, except that this extra 

information was announced. 

In Treatment III the only difference with Treatment I was the provision of some qualitative 

information on the nature of the payoff structure. Drawing from Herrnstein et al. (1993) and 

Kudadjie-Gyamfi and Rachlin  (1996), the following was included in the instructions of those 

players taking part in Treatment III. 

The points that you score in each period depend on your decision in that period and in previous periods, as 

well as on the decisions of the other member of your pair in that period and previous periods. If you choose A 

repeatedly, the number of points that you and the other member of your pair will receive from both 

alternatives decreases. On the other hand, if you choose B repeatedly, the number of points that you and the 

other member of your pair will receive from both alternatives increases.  

The hypothesis here is that when this qualitative information on the nature of the payoff 

structure is available, behavior will be more in accordance with the overall analysis of the 

game, and therefore tend to Nash equilibrium. 

Common to all treatments was the fact that no communication was allowed. On average, a 

session, including the instructions phase, took one hour and fifteen minutes. Participants were 

privately paid in cash directly after completing the 120 periods. Average earnings were about 

9.3 euros.5 

 

4. - Experimental Results 

 

The data analysis is structured in three subsections. The first analyzes the predictive value of 

the Nash equilibrium and the Stable Matching Equilibrium in Games. Also, by contrasting 

data between treatments, an analysis is obtained of the effect on behavior of the three different 

levels of information studied here. In Section 4.2 the learning processes exhibited by players 

are studied. Finally, Section 4.3 provides a classification of players on the basis of the 
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individual behavior displayed in the final third of the experiment. The decision rule adopted 

in all the statistical tests that follow is in terms of a significance level of the 5%. 

 

4.1. – Nash Equilibrium and Stable Matching Equilibrium in Games 

 

Table I shows the proportions of A-choices at the individual and game level over the 120 

periods, the first third, the middle third, and the final third of the experiment. Note that the 

average proportion of A-choices in the final third of the experiment is close to 90% in 

Treatments I and II, while in Treatment III it approaches 70%. Figure 2 plots the cumulative 

relative frequency distributions of A-choices for the three treatments. 

 

Observation 1. In Treatments I and II the proportion of A-choices is significantly higher than 

the proportion of B-choices, while in Treatment III it cannot be rejected that there is no 

difference in the proportion of A and B-choices. 

 

In each treatment the proportions of A-choices at the game level in the final third of the 

experiment are taken. Analysis of the data at game level rather than at individual level permits 

the use of independent observations (ten independent observations per treatment). Thus, 

except when explicitly stated to the contrary, data is always considered at the game level. 

Analysis of the final third of the experiment is justified in terms of the interest in studying 

behavior after the learning phase of the game. It will be shown below that individual behavior 

in the final third of the experiment shows a remarkably stable pattern. The Wilcoxon signed-

ranks test is used to test whether, in each treatment, it cannot be rejected that there is no 

difference in the proportion of A and B-choices (for this, and the tests to be applied below, see 

Siegel and Castellan, 1988). Hence, the null hypothesis of no difference in the proportion of A 

and B-choices is rejected in Treatments I and II at significance levels below 0.1% (T = 0 in 

both cases), in favor of the alternative hypothesis of a higher proportion of A-choices. The 

null hypothesis, however, cannot be rejected in Treatment III (T = 12, P-value equal to 

6.54%). 

Consider Figures 3, 4, and 5, where individuals are grouped together on the basis of the 

proportion of A-choices exhibited in the final third of the experiment. There it can be seen 

that, while in Treatments I and II a great majority of players shows behavior consistent with 

the melioration-reply function (more than 60% of the players chose A at least 90% of the 

time), Treatment III shows a higher dispersion across individual behavior. However, even in 
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Treatment III, 70% of players chose A at least 70% of the time. In the whole experiment only 

one player shows a proportion of A-choices of less than 0.1. Observed choice is now 

contrasted across treatments. 

 

Observation 2. For each of the three thirds of the experiment, while Treatment III shows a 

lower proportion of A-choices than the other two treatments, there is no difference between 

Treatments I and II. 

 

The Jonckheere test for ordered alternatives is used to test the null hypothesis of no difference 

in the proportion of A-choices among the three treatments, against the alternative hypothesis 

of an equal or higher proportion of A-choices in Treatment I, as compared with Treatment II, 

and in Treatment II as compared with Treatment III. For each of the three blocks of data, the 

null hypothesis of no difference is rejected at significance levels below 0.01% (J* = 3.27, 

4.506, and 3.213 for the first, middle, and final third, respectively). When the null hypothesis 

is rejected, the Jonckheere test guarantees that at least one of the inequalities is strict. It does 

not, however, say which. A multiple comparison analysis between treatments is therefore 

applied. Table II shows that, for each of the three thirds of the experiment, while it cannot be 

rejected that Treatments I and II show no difference in the proportion of A-choices, Treatment 

III shows a lower proportion of A-choices than the other two treatments. 

Therefore, with regard to the hypothesis on imitation, it can be seen that the provision of 

information on the past choice of the opponent does not induce a significant change in 

behavior. Imitation can only be successful when one of the two players checks the 

consequences of repeated choice of B, and the other player imitates that behavior, realizing 

that such a choice pattern is better in terms of overall payoffs. However, as it will be shown in 

Section 4.2, in the vast majority of cases players do not systematically try different patterns of 

choice, and therefore, more successful behavior in terms of overall payoffs cannot be 

imitated. 

Regarding the hypothesis that the provision of qualitative information on the payoff structure 

would induce behavior consistent with best-reply, the following considerations are in order. 

Note that the proportion of A-choices in Treatment III is lower than in the other two 

treatments throughout all the experiment (Observation 2). Also, note that Treatment III shows 

a higher dispersion on the types of individual behavior (Figure 5). However, it can be seen 

that on aggregate, behavior is not closer to the Nash equilibrium than to the Stable Matching 

Equilibrium in Games (Observation 1, Table I, and Figure 2). Therefore, although the 
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provision of explicit information on the payoff structure clearly lowers the proportion of A-

choices, it is not sufficient to promote the type of individual behavior consistent with best-

reply. Interestingly, Section 4.3 will show that Treatment III gives rise to a new, different type 

of behavior from those considered so far. 

 

4.2. - Learning 

 

Consider Table I, Figure 2, and Table III where the Spearman rank-order correlation 

coefficients are calculated at the individual and treatment level. The Spearman rank-order 

correlation coefficient is a non-parametric measure of association that is used here to relate 

the proportion of A-choices with time. For the calculus of the coefficients, data are divided in 

ten consecutive blocks of twelve periods. 

 

Observation 3. In each one of the three treatments individuals display a tendency to learn to 

play melioration-reply. 

 

In Table I it is seen that in the majority of cases the proportion of A-choices tends to increase. 

Also, in Figure 2 it can be appreciated that for each of the three treatments, the cumulative 

relative frequency distributions of A-choices show an increasing rate. Further to this, note that 

Table III shows that only one negative Spearman rank-order correlation coefficient is 

significant at the 5% level, while more than the 50% of the coefficients are significant 

positive coefficients (one-sided). Furthermore, at the aggregate, the three treatments show 

highly positive correlation coefficients. All this shows a tendency to learn to play according to 

melioration-reply rather than according to best-reply. 

The learning processes used by players in the experiment can be further analyzed by studying 

the number of runs exhibited by players. A run is a succession of choices of the same type, 

either A or B, followed and preceded by a choice of the opposite type, or by no choice. It is 

hypothesized that the number of runs tends to decline through time. This would indicate that 

players, after having tried different choice patterns, tend to adopt a stable pattern of choice. 

Table IV shows the average number of runs per game for the entire experiment, the first third, 

the middle third, and the final third.6 

 

Observation 4. In each of the three treatments, players tend to adopt a stable pattern of 

behavior. 
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For each of the three treatments, the Page test, a non-parametric procedure for dependent 

samples, is used to test the null hypothesis of no difference in the number of runs in the three 

thirds of the experiment, against the alternative hypothesis of a decreasing number of runs. 

The null hypothesis is then rejected in each of the three treatments at significance levels 

below 1% (L = 137, 136.5, and 132, respectively). It can, therefore, be argued that players in 

the three treatments tend to adopt a stable pattern of behavior. The three treatments are now 

contrasted in terms of the number of runs to see whether the informational conditions 

analyzed in this paper have an impact on the individual learning processes. 

 

Observation 5. In each of the three thirds, Treatment III shows a higher number of runs than 

the other two treatments. Furthermore, it cannot be rejected that Treatments I and II show no 

difference in the number of runs in the three blocks of data. 

 

For each of the three blocks of data, the Jonckheere test is applied to test the null hypothesis 

of no difference in the number of runs across the three treatments, against the alternative 

hypothesis of an equal or lower number of runs in Treatment I, than in Treatment II, and in 

Treatment II, than in Treatment III. Then, the null hypothesis of no difference is rejected for 

each of the three blocks of data at significance levels below 0.001% (J* = 3.821, 4.62, and 

3.935, for the first third, the middle third, and the final third, respectively). Table V provides 

the results of the multiple comparison analysis. There it is shown that, for each of the three 

blocks of data, Treatment III shows a higher number of runs than the other two treatments, 

while it cannot be rejected that there is no difference between Treatments I and II in the 

number of runs in each of the three thirds. Therefore, the provision of information on the 

payoff structure has a clear effect on the number of runs exhibited by players, and hence on 

the individual learning processes followed. 

Consider now the length of the runs (the number of periods that constitute the runs) of the less 

frequently chosen alternative (alternative B in the vast majority of cases). This gives an idea 

of the “quality” of the learning process. If, when choosing the less frequently chosen 

alternative, short runs are extensively used, the learning of the payoff structure of the two-

person Harvard game is seriously limited. Such a pattern of choice makes difficult to realize 

that repeated B-choice is best in terms of overall payoffs. Figures 6, 7, and 8 show the 

frequencies of these runs in terms of their length for the first, middle, and final third of the 
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experiment. The lengths of runs are between one period and six periods. Runs longer than 6 

periods have not been observed.  

 

Observation 6. In the three thirds of each of the three treatments there are more one-period 

runs than of any other length. Also, in the three treatments, the number of runs of any length 

tends to decline. 

 

Figures 6, 7, and 8 clearly show what is stated in Observation 6.  

 

Observation 7. While Treatment III shows a higher number of one and two-period runs than 

the other two treatments, it cannot be rejected that there is no difference in the number of runs 

longer than two periods among the three treatments.  

 

Table VI shows the results of the application of the Jonckheere test when, for each of the 

three thirds, the three treatments are contrasted on the basis of the number of runs of each 

length.7  It can be seen that, for each of the three thirds, the null hypothesis of no difference 

among the three treatments in the number of one and two-period runs is rejected at 

significance levels below 5%, in favor of an equal or higher number of one and two-period 

runs in Treatment III than in Treatment II, and in Treatment II than in Treatment I. The null 

hypothesis of no difference cannot be rejected in the case of three-period runs. Table VII 

reports the results of the multiple comparison analysis for one and two-period runs. 

Runs of the less frequently chosen alternative longer than two periods are rare in the three 

treatments. This holds even in the first third of the experiment. As it was previously argued, 

this shows a poor searching strategy on the payoff contingencies, that, of course, hinders the 

learning of best-reply. Moreover, the fact that Treatment III differs from the other two 

treatments only in the number of one and two-period runs of the less frequently chosen 

alternative, shows that the provision of information explicitly stressing the importance of 

repeated B-choice has only a superficial impact on behavior. 

 

4.3. - Classification of Players 

 

What follows is a proposed classification of players by the type of behavior exhibited. This 

must be taken as a suggested classification. Criteria other than the one followed here could 

also be applied. 
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For each player an analysis will be made of the final third of data, when some stabilization in 

behavior has been reached. Players are classified on the basis of the decision rule that most 

closely approaches their observed behavior. The decision rules considered are the 

melioration-reply function, the best-reply function, and the alternating decision rule. The first 

two are already known. The former calls for repeated selection of alternative A, while the 

latter calls for repeated selection of alternative B, except, of course, in the last 7 periods where 

A must be chosen. So, if a player chooses alternative A (alternatively B) 90% of the time or 

more, that player will be classified as following strict melioration-reply (strict best-reply). If a 

player chooses alternative A (B) between 75% and 90% of the time, that player will be 

classified as following melioration-reply (best-reply).8 

The alternating decision rule calls for a stable pattern of alternation between A and B-choices. 

In the post-experimental debriefing some players reflected the alternating decision rule. The 

argument of these players was that alternating between A and B-choices enabled them to 

maintain a reasonable level of payoffs on alternative A. B-choices, therefore, were somewhat 

like investments on which the payoffs were attached to the A-alternative. The specific version 

of the alternating decision rule varies across players. Some show behavior that closely 

approaches a symmetric pattern of alternation (a number of A-choices followed by the same 

number of B-choices, where the number of consecutive equal choices was primarily one or 

two), while others show asymmetry in the number of consecutive choices of the same sign. Of 

course, the same player may show different patterns of alternation over time. 

 

Observation 8. On aggregate, the majority of players (more than 75%), can be classified as 

exhibiting behavior consistent with melioration-reply, while only one player out of sixty can 

be classified as exhibiting behavior consistent with best-reply. Treatments I and II show a 

similar classification of players. It is in Treatment III where a significant change occurs; the 

percentage of players classified as exhibiting behavior consistent with melioration-reply falls 

from 90% to 45%, and the percentage of players classified as exhibiting behavior consistent 

with the alternating decision rule increases from practically zero to 50%.  

 

Table VIII shows the classification of players per treatment. As in previous sections, 

Treatments I and II show significantly similar results that clearly favor melioration. In these 

treatments the great majority of subjects (90%) is classified as exhibiting behavior consistent 

with melioration-reply. The provision of qualitative information on the payoff structure is not 

sufficient for players to learn to play best-reply. No player in Treatment III can be classified 
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as exhibiting behavior consistent with best-reply. However, 50% of the subjects in Treatment 

III, those classified as exhibiting behavior consistent with the alternating decision rule, seem 

to show some awareness of the payoff contingencies, but they are still too interested in the 

relatively high local payoffs of alternative A. It must also be mentioned that in the entire 

experiment only one player (in Treatment I) showed behavior consistent with the best-reply 

function. 

 

5. - Concluding Remarks 

 

The experimental results obtained favor the Stable Matching Equilibrium in Games, rather 

than the Nash equilibrium. The mean proportions of A-choices in the final third of the 

experiment in Treatments I and II are close to 90%, while in Treatment III a proportion of 

almost 70% is observed. With no information on the payoff structure (Treatments I and II), 

90% of the players were classified as exhibiting behavior consistent with melioration. The 

provision of qualitative information on the payoff structure (Treatment III) lowers this 

percentage to 45%. It must also be noted that, with the provision of such information, a new 

type of decision-making rule emerges, the alternating decision rule, held up by the fact that 

50% of the players in Treatment III are classified as exhibiting behavior consistent with it. 

Players following the alternating decision rule show some awareness of the payoff 

contingencies of the game in the sense that they choose B intermittently in order to prevent 

excessive reduction in A-payoffs. Only one player out of 60 apparently learnt to play best-

reply. It is remarkable that this player took part in Treatment I, where no information on the 

payoff structure was provided. The analysis of the learning processes exhibited by players 

also show some interesting results. First, it emerges that as the experiment proceeds 

individuals display a tendency to learn to play according to melioration, rather than according 

to best-reply. That is, not only does time fail to enhance intuition on the game, but it leads 

players to show even clearer meliorating behavior. Furthermore, the “quality” of the 

individual learning processes has been studied. It has been argued that the length in periods of 

the runs of the less frequently chosen alternative serves as an indicator of how hard players try 

to learn about the contingencies of the game. Hence, since the runs of the less frequently 

chosen alternative are mostly short, the learning processes exhibited by players are “poor” in 

the sense that they do not provide the chance to learn to play best-reply. 

More research on the Harvard game could be conducted. In particular it would be of interest 

to see the effect of increasing the degree of information provided on the payoff structure. It 
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has been shown in this experiment that explicitly describing the essential features of the 

payoff structure is not sufficient to induce behavior consistent with best-reply. It may be 

hypothesized that the provision, for example, of tables relating different patterns of choice 

with the corresponding payoffs would favor best-reply. 

Also, the hypothesis that imitation may shift behavior in the direction of Nash equilibrium 

could be further analyzed. One possibility would be to give players information on a number 

of previous choices of the opponent, paired with the corresponding payoffs. The interest here 

would be to see whether the provision of this information is sufficient to promote searching 

strategies for choice patterns that provide the opportunity of learning best-reply. 
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FIGURE 1 

THE TWO-PERSON HARVARD GAME 
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FIGURE 2 
CUMMULATIVE RELATIVE FREQUENCY DISTRIBUTIONS 
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FIGURE 3 
FREQUENCY OF PLAYERS ACCORDING TO THE PROPORTION OF A-CHOICES IN 

THE FINAL THIRD OF THE EXPERIMENT IN TREATMENT I 
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FIGURE 4 
FREQUENCY OF PLAYERS ACCORDING TO THE PROPORTION OF A-CHOICES IN 

THE FINAL THIRD OF THE EXPERIMENT IN TREATMENT II 
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FIGURE 5 
FREQUENCY OF PLAYERS ACCORDING TO THE PROPORTION OF A-CHOICES IN 

THE FINAL THIRD OF THE EXPERIMENT IN TREATMENT III 
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FIGURE 6 
FREQUENCY OF RUNS OF THE LESS FREQUENTLY CHOSEN ALTERNATIVE BY 

LENGTH IN TREATMENT I 
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FIGURE 7 
FREQUENCY OF RUNS OF THE LESS FREQUENTLY CHOSEN ALTERNATIVE BY 

LENGTH IN TREATMENT II 
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FIGURE 8 

FREQUENCY OF RUNS OF THE LESS FREQUENTLY CHOSEN ALTERNATIVE BY 
LENGTH IN TREATMENT III 
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TABLE I 
PROPORTIONS OF A-CHOICES 

 
A) AT THE INDIVIDUAL LEVEL 

 
 Treatment I Treatment II Treatment III 

Game: 
Player 

All 
Data 

First 
Third 

Middle 
Third 

Final 
Third 

All 
Data 

First 
Third 

Middle 
Third 

Final 
Third 

All 
Data 

First 
Third 

Middle 
Third 

Final 
Third 

1:1 0.74 0.63 0.70 0.90 0.83 0.78 0.80 0.90 0.74 0.70 0.75 0.78 
1:2 0.82 0.78 0.90 0.78 0.84 0.78 0.85 0.90 0.65 0.50 0.75 0.70 
2:1 0.63 0.50 0.58 0.83 0.82 0.75 0.75 0.95 0.74 0.70 0.75 0.78 
2:2 0.95 0.90 0.98 0.98 0.79 0.58 0.88 0.93 0.68 0.60 0.70 0.75 
3:1 0.86 0.78 0.85 0.95 0.83 0.80 0.88 0.83 0.54 0.60 0.48 0.55 
3:2 0.96 0.90 1.00 0.98 0.80 0.63 0.85 0.93 0.82 0.75 0.80 0.90 
4:1 0.83 0.70 0.90 0.88 0.65 0.50 0.65 0.80 0.60 0.50 0.50 0.80 
4:2 0.83 0.73 0.95 0.80 0.78 0.55 0.80 0.98 0.51 0.53 0.50 0.50 
5:1 0.82 0.73 0.85 0.88 0.90 0.80 0.95 0.95 0.38 0.35 0.38 0.43 
5:2 0.81 0.68 0.88 0.88 0.88 0.85 0.85 0.93 0.41 0.40 0.48 0.35 
6:1 0.94 0.88 0.95 1.00 0.80 0.60 0.88 0.93 0.64 0.53 0.63 0.78 
6:2 0.96 0.93 0.98 0.98 0.72 0.58 0.85 0.73 0.68 0.63 0.68 0.73 
7:1 0.83 0.60 0.90 0.98 0.78 0.85 0.80 0.70 0.79 0.58 0.83 0.98 
7:2 0.80 0.60 0.88 0.93 0.74 0.75 0.75 0.73 0.56 0.60 0.55 0.53 
8:1 0.88 0.88 0.85 0.90 0.88 0.73 0.93 0.98 0.74 0.78 0.78 0.68 
8:2 0.87 0.78 0.95 0.88 0.93 0.95 0.90 0.95 0.38 0.40 0.38 0.38 
9:1 0.88 0.73 0.98 0.95 0.92 0.90 0.88 0.98 0.80 0.58 0.88 0.95 
9:2 0.89 0.78 0.90 1.00 0.81 0.55 0.88 1.00 0.70 0.58 0.75 0.78 

10:1 0.98 0.93 1.00 1.00 0.79 0.68 0.83 0.88 0.69 0.68 0.68 0.73 
10:2 0.56 0.68 0.85 0.15 0.61 0.43 0.55 0.85 0.43 0.43 0.45 0.43 

Aggregated Proportions of A-choices by Treatment 
 0.84 0.75 0.89 0.88 0.80 0.70 0.82 0.89 0.62 0.57 0.63 0.67 

 
 

B) AT THE GAME LEVEL 
 

Game 1 2 3 4 5 6 7 8 9 10  
Treatment I 

All Periods 0.78 0.79 0.91 0.83 0.81 0.95 0.81 0.87 0.89 0.77 
First Third 0.70 0.70 0.84 0.71 0.70 0.90 0.60 0.83 0.75 0.80 

Middle Third 0.80 0.78 0.93 0.93 0.86 0.96 0.89 0.90 0.94 0.93 
Final Third 0.84 0.90 0.96 0.84 0.88 0.99 0.95 0.89 0.98 0.58 

Treatment II 
All Periods 0.83 0.80 0.82 0.71 0.89 0.76 0.76 0.90 0.86 0.70 
First Third 0.78 0.66 0.71 0.53 0.83 0.59 0.80 0.84 0.73 0.55 

Middle Third 0.83 0.81 0.86 0.73 0.90 0.86 0.78 0.91 0.88 0.69 
Final Third 0.90 0.94 0.88 0.89 0.94 0.83 0.71 0.96 0.99 0.86 

Treatment III 
All Periods 0.65 0.68 0.82 0.51 0.41 0.68 0.56 0.38 0.70 0.43 
First Third 0.50 0.60 0.75 0.53 0.40 0.63 0.60 0.40 0.58 0.43 

Middle Third 0.75 0.70 0.80 0.50 0.48 0.68 0.55 0.38 0.75 0.45 
Final Third 0.70 0.75 0.90 0.50 0.35 0.73 0.53 0.38 0.78 0.43 
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TABLE II 
MULTIPLE COMPARISONS BETWEEN TREATMENTS ACCORDING TO THE PROPORTIONS OF A-

CHOICES* 
 

 First Third Middle Third Final Third 
Treatments I and II 3,10ª 6,25ª 0.4ª 
Treatments I and III 12,52b 16,70b 12.5b 
Treatments II and III 9,42b 10,45b 12.1b 

* Critical Value, 8.378. 
ª The null hypothesis of no difference in the proportion of A-choices cannot be rejected. 
b The null hypothesis is rejected in favor of a lower proportion of A-choices in Treatment III. 

 
TABLE III 

SPEARMAN RANK-ORDER CORRELATION COEFFICIENTS 
 

Player Treatment I Treatment II Treatment III 
Game 1-Player 1 0.84* 0.23 0.30 
Game 1-Player 2 0.17 0.48 0.52 
Game 2-Player 1 0.70* 0.72* 0.44 
Game 2-Player 2 0.44 0.87* 0.77* 
Game 3-Player 1 0.81* -0.11 0.03 
Game 3-Player 2 0.62* 0.95* 0.71* 
Game 4-Player 1 0.44 0.87* 0.70* 
Game 4-Player 2 0.45 0.98* -0.13 
Game 5-Player 1 0.28 0.55 0.34 
Game 5-Player 2 0.65* 0.21 -0.39 
Game 6-Player 1 0.62* 0.93* 0.86* 
Game 6-Player 2 0.38 0.32 0.31 
Game 7-Player 1 0.94* -0.35 0.90* 
Game 7-Player 2 0.88* -0.03 -0.65* 
Game 8-Player 1 0.15 0.91* -0.45 
Game 8-Player 2 0.30 0.09 -0.26 
Game 9-Player 1 0.69* 0.66* 0.91* 
Game 9-Player 2 0.81* 0.93* 0.92* 

Game 10-Player 1 0.70* 0.82* 0.68* 
Game 10-Player 2 -0.43 0.95* 0.47 

Aggregated Coefficients by Treatment 
 0.71* 0.98* 0.95* 

* Significant at the 5% level (one-sided). 
 
 

TABLE IV 
AVERAGE NUMBER OF RUNS PER GAME 

 
Game 1 2 3 4 5 6 7 8 9 10 Total  

Treatment I 
All Periods 32.5 35.5 20 30.5 37.5 12 29 20 23 14 25.4 
First Third 15.5 17.5 12 17 18 8 16 9 17 10 14 

Middle Third 12 11.5 6 5.5 9.5 4 9.5 7 5 2.5 7.25 
Final Third 7 8 4 9 11 2 5 6 3 3.5 5.85 

Treatment II 
All Periods 25 31 33 46.5 20.5 33.5 39.5 19 26.5 51.5 32.6 
First Third 12 16.5 16 21.5 10.5 17 12.5 9 17.5 22.5 15.5 

Middle Third 10.5 10 10 18.5 8 9.5 12.5 7 8 20.5 11.45 
Final Third 4.5 6 9 8 4 8.5 16.5 4 2 9.5 7.2 

Treatment III 
All Periods 52 56.5 60.5 91.5 77.5 54 63 60.5 56 65 63.65 
First Third 23 21.5 23.5 35 21.5 20.5 26 20 32 22.5 24.55 

Middle Third 14.5 19 22 33 30 20 21 20 14.5 21.5 21.55 
Final Third 15 17 16.5 23.5 26.5 15 16.5 21.5 10 21.5 18.3 
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TABLE V 
MULTIPLE COMPARISONS BETWEEN TREATMENTS ACCORDING TO THE NUMBER OF RUNS* 

 
Treatments First Third Middle Third Final Third 

Treatments I and II 2.55ª 6.4ª 2.3ª 
Treatments I and III 15.15b 17.15b 15.4b 
Treatments II and III 12.59b 10.75b 13.1b 

* Critical Value, 8.378. 
ª The null hypothesis of no difference in the number of runs cannot be rejected. 
b The null hypothesis is rejected in favor of a higher number of runs in Treatment III. 

 
 

TABLE VI 
TEST OF NO DIFFERENCE IN THE NUMBER OF RUNS OF THE LESS FREQUENTLY CHOSEN 

ALTERNATIVE BY LENGTH ACROSS THE THREE TREATMENTS (JONCKHEERE TEST)* 
 

 First Third Middle Third Final Third 
 J* Approx. P-value J* Approx. P-value J* Approx. P-value 

One Period Runs 3.232b 0.07% 4.544b 0.003% 3.783b 0.011% 
Two-Period Runs 1.882b 3% 2.414b 0.8% 3.042b 0.12% 
Three Period Runs -0.19ª 42.47% 0.456ª 32.64% 0.57ª 28.43% 

* Critical Value, 1.645. 
ª The null hypothesis of no difference in the number of runs among the three treatments cannot be rejected. 
b The null hypothesis is rejected in favor of an equal or higher number of runs in Treatment III, than in 
Treatment II, and in Treatment II, than in Treatment I. 

 
 

TABLE VII 
MULTIPLE COMPARISONS BETWEEN TREATMENTS ACCORDING TO THE NUMBER OF RUNS OF 

THE LESS FREQUENTLY CHOSEN ALTERNATIVE BY LENTH* 
 One-Period Runs Two-Period Runs 
 First Third Middle Third Final Third First Third Middle Third Final Third 

Treatments I and II 0.7ª 7.2ª 1.15ª 3.3ª 2.85ª 2.6ª 
Treatments I and III 12.8b 16.95b 14.75b 7.5ª 9.6b 11.8b 
Treatments II and III 12.1b 9.75b 13.6b 5.8ª 6.75ª 9.2b 

* Critical Value, 8.378 
ª The null hypothesis of no difference in the number of runs cannot be rejected. 
b The null hypothesis is rejected in favor of a higher number of runs in Treatment III. 

 
 

 TABLE VIII 
CLASSIFICATION OF PLAYERS 

 Treatment I Treatment II Treatment III Total 
Strict Melioration 13 (65%) 13 (65%) 3 (15%) 29 (48.3%) 

Melioration 6 (30%) 4 (20%) 6 (30%) 10 (26.7%) 
Strict best-reply 1 (5%) - - 1 (1.7%) 

best-reply - - - - 
Alternating - 1 (5%) 10 (50%) 11 (18.3%) 

Other - 2 (10%) 1 (5%) 7 (5%) 
Total 20 20 20 60 
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1 The term “Harvard game” was coined by Rachlin and Laibson in Herrnstein (1997, p. 189). 
2 The “almost” means that at the very end of the game it pays to make a few A-choices. This issue will be studied 

below, when the Nash equilibrium is derived. 
3 The representation in Figure 1 takes Xi as the continuum between zero and ten. 
4 However, for evidence on the contrary see Ostrom et al. (1994). 
5 The experimental data will be made available upon request. 
6 Note that the sum of the runs of the three blocks of data does not typically equal the number of runs observed in 

all the 120 periods taken together. This is because dividing data in blocks may divide a run into two, and hence it 

is counted in two blocks. 
7 Since the number of runs of four periods or more is practically concentrated around zero, the Jonckheere test is 

not applicable. However, this is a sign of the similitude among the three treatments on these types of runs. 
8 In the case of best-reply, those A-choices observed in the last 7 periods will not be counted in the 10% (strict 

best-reply) or 25% (best-reply) limit of admissible A-choices. 


