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ABSTRACT. In this paper a new credit risk model for credit derivatives is presented. The model

is based upon the ‘Libor market’ modelling framework for default-free interest rates. We model
effective default-free forward rates and effective forward credit spreads as lognormal diffusion
processes, and recovery is modelled as a fraction of the par value of the defaulted claim. The
newly introduced survival-based pricing measures are a valuable tool in the pricing of defaultable
payoffs and allow a straightforward derivation of the no-arbitrage dynamics of forward rates and
forward credit spreads. The model can be calibrated to the prices of defaultable coupon bonds,
asset swap rates and default swap rates for which closed-form solutions are given. For options
on default swaps and caps on credit spreads, approximate solutions of high accuracy exist. This
pricing formula for options on default swaps is made exact in a modified modelling framework
using an analogy to the swap measure, the default swap measure.

1. INTRODUCTION

In this paper a new credit risk model is presented which effestive(simply compounded) for-

ward rates as fundamental model quantities, and not continuously compounded forward rates.
This approach is motivated by the so called Libor Market Models for default-free interest rates
by Miltersen / Sandmann / Sondermann (1997), Brace / Gatarek / Musiela (1997) and Jamshid-
lan (1997).

The most important risks involved in an investment in a defaultable bond or loan are the interest-
rate risk (the price risk introduced by changes in the general level of the default-free interest
rates), the spread risk (ultimately caused by changes in the market’'s assessment of the credit
quality of the obligor) and the default risk of the obligor which in turn involves recovery risk,

the uncertainty about the loss given default. The aim of this paper is to provide an integrated
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2 PHILIPP J. SCKONBUCHER

framework for all these risks which is flexible enough to allow easy calibration to the mar-
ket prices of traded assets and in which more exotic default contingent payoffs such as credit
derivatives can be priced in a consistent manner.

There is a large number of models which can be used to capture interest-rateamsing

which the interest-rate models of the market-model class (either Libor-based or Swap-based)
are amongst the most widely used in practice. Their popularity is due to several factors, one of
which is the ease with which these models can be implemented and calibrated to market data.
Instead of using a instantaneous short rate process as fundamental variable, directly observed,
discretely compounded money market rates are modelled, and because Caplets and Swaptions
can be priced in closed-form with the Black (1976) formula, the volatility parameters of the
model can be directly calibrated to market prices of traded instruments.

In this paper we chose discretely compounded (effective) forward rates and effective forward
credit spreads (or effective default intensities) as fundamental model quantities following the
market models for default-free interest rates. We equip them with the continuous-time dynamics
of lognormal diffusion processes. Because we assume that the credit spreads are only driven by
changes in the credit quality, we thus have already implicitly modelled the default risk in the
model.

An important tool to analyse this implicit default risk is a new probability measure7the
survival measuré?;,, which is the defaultable equivalent of tig-forward measure®,. The
associated numeraire asset to the survival measure gefaeltablezero coupon bonds with
maturity7},. Using theT,-survival measuré;, we can price all survival- and default-contingent
payoffs at timel,. Furthermore, we can easily derive necessary conditions on the dynamics of
the forward rates and forward spreads that ensure absence of arbitrage in the model. In a later
section of the paper a similar survival-based measure (the default swap measure) enables us to
price options on default swaps in closed-form.

The only remaining risk factor is recovery risk. In this model, recovery is not modelled on
the basis of defaultable zero-coupon bonds (as in most competing models) but on the basis of
defaultable coupon bonds and loans. Here, recovery is a default-contingent payoff of a (possibly
random) fraction of the par value of the defaulted bond. This approach for the modelling of the
recovery rate was chosen because it reflects the real-world recovery mechanisms more closely
than many competing models. After deriving the prices of elementary Arrow-Debreu securities
for payoffs at default, we can then give the pricedefiaultable fixed and floating coupon bonds
default swapsndasset swaps the model. In a practical implementation, these securities can

be used to calibrate the model.

In the last part of the paper this model setup is used to derive closed-form solutions for the prices
of options on default swaps (default swaptions) and caps on credit spreads. Here, a defaultable
version of the Swap Market Model by Jamshidian (1997) is introduced and applied. Options
of the above mentioned type frequently occur as embedded options in other securities, e.g.
prepayment or extension options in loan contracts or callability provisions in callable default
swaps.

Related Literature. The literature on market models has grown substantially in recent years,
and itis impossible to give a full list. Apart from the standard references (Miltersen / Sandmann

/ Sondermann (1997), Brace / Gatarek / Musiela (1997) and Jamshidian (1997)), the mathemat-
ical methods in E. Scbhbl's (1999) multicurrency extension of the Libor market model are
related to the methods in this paper. Sdtlalso analyses the problems that arise when several
numeraires and martingale measures have to be used in parallel. While his work concentrates

For a survey and introduction see e.g. Rebonato (1998).
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on the foreign exchange sector, this paper has the additional complication of default risk. The
paper by Lotz and Scbgl (2000) treats the valuation of money market instruments under coun-
terparty default risk, but they do not use the market-model framework to describe defaultable
term structures of interest rates. References to techniques for the numerical implementation of
market models are given in the section on implementation.

If the literature on market models is large, the literature on credit risk modelling is even larger.
This paper is in the tradition of the intensity-based default risk models which all exhibit a close
relationship to default-free interest rate models. Representatives of this approach are Jarrow
and Turnbull (1995), Madan and Unal (1998), Duffie and Singleton (1997; 1999), Lando (1998)
and Sclinbucher (1998; 1999). In these papers the reader can also find references on the dif-
ferent approaches for recovery modelling: fractional recovery (Duffie/Singleton (1997; 1999)),
multiple defaults with reorganisation (Satbucher (1998)), recovery of equivalent default free
bonds (Jarrow/Turnbull (1995), Madan/Unal (1998), Lando (1998)) and recovery of par (Duffie
(1998)). For a survey of the different modelling approaches for default risk the reader is referred
to Sctonbucher (1997).

Structure of the Paper. The rest of the paper is structured as follows: After the introduction
of some notation in the next section, we give a description of the no-arbitrage conditions in the
continuous-time setup. This follows Heath / Jarrow / Morton (1992) for the default-free term
structure of interest rates and $civucher (1998) for the defaultable case.

The analysis of market models of interest rates makes extensive use of the change-of-measure
technique. For each pricing problem the numeraire asset and corresponding probability measure
Is identified. Therefore we introduce several new probability measures in the following section,
where each default-free probability measure has a survival-based defaultable counferpart:
forward measure arifl-survival measure, swap-measure and default-swap measure and discrete
Libor measure and discrete defaultable Libor measure. We give the changes of drift that are
associated with the respective changes of measure, and identify the dynamics of defaultable and
default-free forward rates, interest-rate swap rates and default swap rates under these measures.

In the next step, positive recovery is introduced. The recovery model used here is based upon the
fractional recovery of par model by Duffie (1998) which has the advantage of closely adhering
to real-world recovery proceedings and of recognizing the importance of the distinction between
principal and coupon claims. The value of the elementary Arrow-Debreu securities under this
model is derived.

In the following section some important payoffs are valued: defaultable fixed and floating
coupon bonds, default swaps and asset swap packages. For independence between defaults
and interest rates these are in closed-form, for non-zero correlation high-quality approximate
solutions are given. The next section considers the pricing of options on default swaps. Here,
we need to introduce thaefault swap measurender which the default swap rates become mar-
tingales. Using this probability measure we are able to derive option price formulae similar to
the well-known Black-formula. These pricing formulae can either be used in a direct default-
swap based model, or after some approximating assumptions in the Libor-based approach of
the previous sections.

The paper is concluded with a discussion of the strategy to numerically implement this model
for the pricing of more exotic credit derivatives.
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2. NOTATION AND MODEL SETUP

The model is set in a filtered probability spa€g (F;)>0), Q) where the filtration satisfies the
usual conditions, an@ is the spot martingale measure. For convenience we assume a large but

finite time-horizonT'. Usually, quantities that refer to defaultable bond prices or interest rates
carry anoverbar. All stochastic processes in this paper are adapted t@-o) and we omit the
dependence on the state of natures.g. we writelV/(¢) for W (¢, w) etc.

2.1. The Default Model.
Assumption 1(Defaults) (i) The default time is given by the stopping time
(il) Defaultis triggered by the first jump of a Cox proce§sét) which has an intensity process

A(t).

(i) The survival indicator function is denoted by

I(t) = 1{T>t}‘

The survival indicator functior(¢) is one before default and jumps to zero at the time of
default.

In most parts, the model does not depend on having a Cox process triggering the default, all
necessary information about the default process will be recovered from the term structure of
defaultable bond prices. The Cox process properties will only be at some points when the
recovery payoffs are valued.

It is well-knowr? that the survival probability fromto 7" in this framework is given by
E [6_ ftT A(s)ds } 7

andN(t) — [ A(s)ds is a martingale.

2.2. Bond Prices and Basic Rates.
The tenor structure:
We consider payoffs that occur on a discrete set of points in time

OZTo,Tl,...,TK

These dates could be coupon and repayment dates for bonds or loans, fixing dates for rates
and settlement dates for derivatives. The distance between two tenor dates is derpted by
Tiq1 — Ty

The functionk(t) = min{k |7}, > t} gives the next date in the tenor structure afteirhus
Tiy—1 <t < Ty

Bond prices:

(i) Default-free zero coupon bond prices at tim&ith maturity 7, are denoted by
By(t) = B(t, Ty).
(i) Defaultable zero coupon bond prices at timeith maturity 7, are
I(t)By(t) = I(t)B(t, Ty,).
These defaultable zero coupon bonds have zero recovery in default

2For more details on point- and Cox-processes in default-risk modelling see Duffie and Singleton (1997; 1999) or
Lando (1998).

3Note that the influence of the defaults(€)) and the pre-default pricBj(¢) are separated3 (t) need not jump

to zero at default becaugé¢t) already does.



A LIBOR MARKET MODEL WITH DEFAULT RISK 5
(i) The default-risk factor at time for maturity 7} is
By (t)
Dy(t) = D(t,Ty) = ——.

The default-risk factor® allow to separate the influence of default risk from the standard
discounting with default-free interest rates. It will be shown later ihdt) is the survival
probability until 7, under thel,.-forward measure.

Forward Rates:

(i) The default-free effective forward rate ovt;, T, 1] as seen from timeis

1 By(t) )

1 Fi.(t) = — —-1].

o 0= 5 (520

(i) The defaultable effective forward rate ovi&i;, 7).,1] as seen from timeis

_ 1 [ Bt

) Fr(t) = — (_ () 1) :
Ok \ Bry1(t)

(iii) The forward credit spread ovéTy, Ty.1] as seen from timeis

(3) Se(t) = Fi(t) — Fi(t).

(iv) The discrete-tenor forward default intensity oyég, 7;..1] as seen from time
1 Dy (t) )

4 Hy(t) = — —1]).

@ (1) Ok (Dk+1(7f)

The defaultable forward rat€,(t) is the rate at which a lender would agree at tinte lend
to the obligor over the future time-intervdly, T}.. 1], conditional on the obligor’s survival until
Ty

From these definitions follow the following relationships between bond prices and forward rates

k—1
=1+ 90,F% By, = B, H<1+6ij)71

Jj=1

B
(5) i
k+1

(6) Sk = Hip(1 + 0 Fy),

and calculation rules similar to (5) apply tB @ndF) and (D and H).

2.3. Dynamics. In this subsection the volatility structure of the forward rate processes is spec-
ified. The Brownian motio®V is ad-dimensional standar@-Brownian motion, and all volatil-
ity processes aré-dimensional vector processes.

Assumption 2 (Default-Free Interest Rate Dynamic3)he default-free forward rates,, have
a lognormal volatility structure
dF,
(7) —* = pfdt + o dW,
Fy,
whereos] are constant vectors. The driftg are more complicated and their full form under
the respective martingale measures will be derived later on.

There are two alternatives in the specification of the dynamics of the defaultable interest-rates.
Either we model the spreadsor the discrete intensitied as lognormal processes.
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Assumption 3(Defaultable Interest Rate Dynamics)

Modelling Alternative (a)

The discrete default intensitid$, have a lognormal volatility structure
dH,

8) — = gl dt + of dW,
Hj,

wheres ! are constant vectors.

Modelling Alternative (b)

The forward credit spreadS,, have a lognormal volatility structure

dSk

— = pdt + o dW,
Sk

)
whereo? are constant vectors.

Of the two modelling alternatives, alternative (a) withas model primitive with lognormal
volatility structure is usually more convenient, and we will use this alternative unless alternative
(b) is explicitly specified.

We also define the parameters of the dynamics of the defaultable forward rates

dF = =
(10) —E = yldt + oFdw

Fy
but here the volatilities are not assumed to be constant. The relationships between the volatilities
are

0 Fy
(11) o =0} — maf
(12) FkO',f = O'Ika + O';SSk = (1 + 5ka)Hk0'£{ + (1 + 5ka)Fk0']Z:

The choice of lognormal forward rate volatilities for default-free interest rates is market stan-
dard, in this case the Black Caplet volatilities can be used directly to calibrate the model (for a
thorough dicussion of the issues in the calibration of market models see Rebonato (1998) and in
particular (1999b)). Directly prescribing lognormal dynamics fordeéultableforward rates

I on the other hand is problematic because then it cannot be ensured any more that defaultable
bonds are always worth less than the equivalent default-free bonds. Therefore we choose either
H or S to have a lognormal volatility structure, and this potential arbitrage opportunity is ruled
out.

3. DRIFT RESTRICTIONS FOR THECONTINUOUS TENOR CASE

To motivate the rest of the paper we use the Heath / Jarrow / Morton (1992) framework as
starting point, where continuously compounded default-free and defaultable forward rates are
used to describe the term structures of interest rates

f(t,T) = _a% In B(t,T) ft,T) = —8% In B(t,T).

In this framework the conditions for absence of arbitrage are well-known (see Heath / Jarrow /
Morton (1992) and Sdnbucher (1998) for the proofs):

To ensure absence of arbitrage, the dynamics of the defaultable and the default-free continu-
ously compounded forward rates and the short credit spread must satisfy the following equations
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under the spot martingale measdye

(13) df(t,T) =o' (t,T) ( / ' o’ (t, s)ds) dt + o (t,T)dWy,,
tT

(14) df(t,T) = o/ (t,T) ( / o’ (t, s)ds) dt + o’ (t, T)dWy,

(15) Ft,t) = Xt) + f(t,1).

These conditions are sufficient to ensure absence of arbitrage in the market. The solutions to
the stochastic differential equations for the bond prices are then

(16) B(<(t)—1TT>) = exp {/0 r(s) — %QQ(S,T) ds — /0 a(s,T)dWQ(s)}
¢, T)
B(0,T)

@l @

4. FORWARD- AND SURVIVAL MEASURES

There are two types of probability measures which are particularly well suited for the analysis
of this model: thel,.-forward measurend theT.-survival measureThe associated numeraire
assets to these probability measures are the default-free and defaultable zero coupon bonds with
maturity 7;,. The probabilities under the respective measure may be regardgdtagrices
expressed in units of the numeraire.

The default-free probability measures of this section are well-known. The spot-martingale mea-
sure is described in most textbooks on quantitative finance, and,tferward measure is a
standard tool in models of the term structure of interest rates, particularly in Gaussian term
structure models and in the market models. The introduction of tHerward measure goes
back to Jamshidian (1987), tlsairvival measuren the other hand has not appeared in the
literature in this form.

4.1. Girsanov’'s Theorem: Girsanov’s theorefrdescribes how the Radon-Nikodym dendity

of a change of probability measure determines which processes are Brownian motions under
the new measure, and which form the compensator of the jump process takes under the new
measure. We give a general form of this theorem which is valid for probability spaces that
support marked point processes and diffusions. The markéthe point process can be used

to model uncertainty in the recovery rate.

Theorem 1 (Girsanov Theorem: Marked Point Processesit (€2, (F;)>0), @) be a filtered

probability space which supportsadimensionall)-Brownian motioni¥,(¢) and a marked
point process:(dg; dt).

The markerg of the marked point process is drawn from the mark sgdcef). The compen-
sator of u(dg, dt) is assumed to take the formg(dq, dt) = Kqo(dg)A\g(t)dt under@. Here

Ao (t) is the intensity of the arrivals of the point process, dtig(dq) is the conditional distri-
bution of the marker o~ &).

Let# be an-dimensional predictable process afdt, ¢) a nonnegative predictable functidn

4See Jacod and Shiryaev (1988) andrRj Kabanov and Runggaldier (1996).
5In functions of the markey (like ® here)predictability means measurable with respect to thalgebraP :=
P ® . HereP is thes-algebra of the predictable processes. See Jacod and Shiryaev (1988) for details.
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with
t t
/ 10(s)||?ds < oo, / / |D(s,q)| Ko(dg) Ag(s)ds < oo
0 0 JE
for finite t. Define the process(t) by L(0) = 1 and

zé(f)) = 0(t)dWo(t) + E(Cb(t, q) — 1)(u(dq, dt) — vo(dg, dt)).

Assume thaE? [ L(t) | = 1 for finite t.
Then for the probability measuie with

(19) dP(t) = L(t)dQ(t)

it holds that

(20) dWg(t) — 0(t)dt = dWp(t)

definedVp» as P-Brownian motion and

(21) vp(dg,dt) = ®(t, q)vq(dg, dt)

IS the predictable compensator @funder P.

Defineg(t) := [, ®(t,q)Kq(dg), and Lg(q) := O(t,q)/d(t) for ¢(t) > 0, Lg(q) = 1 other-
wise. Then

(22) Ap(t) = B(H)Ag(t)

ist the intensity of the arrival rate of the marked point process urtieand
(23) Kp(dg) = Lr(q)Kq(dg)

ist the transformed conditional distribution of the marker under

4.2. The Subjective MeasureP. The subjective (or historical) probability measuregives

the ‘real’ probabilities of the events. Because it does not take risk premia into account it cannot
be used for pricing. A detailed account of the change of measure from the historical probabil-
ity measure to the spot martingale measure in the case of credit risk models can be found in
Schdnbucher (1998), it is not repeated here. Apart from the usual change of drift in the Brow-
nian motions, this change of measure typically results in a significantly higher default intensity
Aq under@ which reflects the high risk premia on default risk in the market.

4.3. The Spot Martingale Measure(). The spot martingale measugeis the probability mea-

sure, under which the discounted security price processes become martingales. The numeraire
to the spot-martingale measure is the continuously compounded savings algguitis in-

verse is the continuously compounded discount fag{oy

(24) B(t) = e~ Jar@ds  p(p) = ehor(s)ds

Under the spot-martingale measuethe time# price of a random payofk at timeT}, is

@ oow[P]s)-w [

)

Thusg(t)p(t), i.e. the pricep(t) normalized with the)-numeraireh(t), is a@)-martingale, as
claimed.
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4.4. The Change of Measure / Change of Numeraire TechniqueAny given pricep(t) under
the spot numerairg(t) can be transformed to a prig&t) under a different numerairé(t) via
p'(t) :== p(t)b(t)/A(t) (or p’(0) = p(0)/A(0)). Using equation (25) the price under the new
numeraire is

o MO W) o [ A
0= et = 3 < | 7
(26) :EQ{%X/ ]—"t}:EPA[XW}}]

whereX’ = X/A(Ty) is the payoff (final value)X of the contingent claim in terms of the new
numeraire assed. In equation (26) a new pricing measurg is defined by the Radon-Nikodym
density process 4(t).

1AW

dP4 B o
aQ |, = Aoy

BecauseA(t) is theb-price of a traded asset, the procésgt) is a nonnegativé)-martingale
with initial value L4(0) = 1. La(t) is therefore a valid Radon-Nikodym density process and
P, is a well-defined probability measure.

(27)

By equation (26), priceg’ in the numeraired are P,-martingales. Thus the calculation of the
initial price p’ can be reduced to the calculation of the expected final v&@luender a changed
probability measuré’,.

This change of measure technique would not be useful if there was no way to calculate the
new expectatiorE” [ X ] in (26) other than going back and evalud¥ | L,(T})X ]. Here,
Girsanov’s theorem allows us to derive the dynamics of the stochastic processes ufiger the
forward measure and thus to directly evaluate expectations under

We can also see whi, can be considered to be a set of state prices: Consider a state security
pp for stateE’ € Frp,. Then by equation (26)?4]E] is the A-price p/, of a payoff of1 units of
A(0) in eventE.

4.5. TheT,-Forward Measure P,. TheT)-forward measure is used to price payoffs that occur
at time7y. The associated numeraire iy is the default-free bond,(¢) that matures afy.
Equation (25) for the price of payoX at7} is in this case

p B(T3) By (1) } P
28 p=—L_=E| 22V X | = EX[X].
28) B.(0) B.(0) .
becauseB,(7;) = 1 we do not have to transform the final payoffs to the new numeraire. The
Radon-Nikodym density process is

Bt)Bi(t) _ db
By (0) dQ | 5
As required, this process is a nonnegative martingale with initial value one. By the change of

measure the discount fact8(7}) was removed from the expectation in equation (29). This is
often a crucial step in the derivation of prices for derivative securities.

(29) Li(t) :=

Analyzing the Radon-Nikodym density (29) yields the change of drift to reack;tigrownian
motiondW(t) from the@-Brownian Motiond WV (t):
(30) dWi(t) == dWo(t) + au(t)dt.

The processy(t) is defined in equation (18) as minus the volatility of the default-free zero-
coupon bondBy,(t). Note that the default intensity it affected by the change of measure,
Ao = Ap,.
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In the Libor market-model setup, the primitive quantities are the simply compounded forward
ratesFy(t). In terms of these rates, the(¢) are recursively related to each other through

onFu(t) p

(31) apr1(t) = ap(t) + T4 o) (t)

(see e.g. Jamshidian (1997) or Brace, Gatarek, Musiela (1997)). Thus, once the dynamics are
given in one forward measure, the change to a different forward measure can be done if only the
forward rates and their volatilities are known. The change ffgnto P, is straightforward

1

(32) B™[X]= + 6, F4(0)

Ef1 [(1 4 6, F(Th) X .
4.6. Default Probabilities under P,: Under theP,-forward measurel),. is the probability of
survival until 7y

Dy(0) = Be(0) ~ Bu(0) EC[B(T)I(T) ]| = E™ [ [(Ty) ] = Pilr > Ty,

In general
which also proves that(t) D (t) is a P,-martingale.

At one tenor datd, the P, , default probability until the next tenor dalg ., is

A _ Ok l(Ty)Hy(Tr)  0xI(Ti) Sk(Th)
(34) EP [1{T§Tk+1} | ka] - (1 - ](Tk)Dk—l-l(Tk)) - 1 +5ka(Tk) - 1 —|—(5kfk(Tk) .

Thus, the default probability per time is the credit spread discounted with the defaultable for-
ward rate. For small time step&.(— 0) the default probability divided by the time interval
converges td{(71y):

1
The default probability for the next infinitesimal small time step is known asléfiault inten-
sity. Therefore H,, was called theliscrete-tenor default intensitg section 2.

4.7. The T)-Survival Measure Py

4.7.1. Definition: In the same way tha_Lt thB,-forward measuré’, is used to price default-free
payoffs atT}, theT},-survival measure®, is used to pricelefaultablepayoffs at7,. Assume,
the payoff in equation (25) is defaultable, i.e. it is only paid if the obligor is still alivé,at
Then it can be written a¥ /(7)) and equation (25) becomes
To)I(T},) Br(T, P

(35) p ==L — go| FIITL B k)X]::EP’“[X],

By, (0) By, (0)
where we used thas, (7)) = 1. The Radon-Nikodym density process for the change f&m
toPis

- I(t)B P
By(0) dQ | £,
This process is a nonnegatigemartingale with initial value one, but it is not strictly positive:

Ly (t) jumps to zero at default’(7) = 0). This means, that the measupg attaches a weight
of zero to all events that involve default befdrg

(37) Fk(T S Tk) = EQ [Zk(Tk)l{Tng} } =0.
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Because it only attaches probability to survival events, this measure is termég-sievival
measure The survival measurg,, is not equivalent t@) any more, but it is absolutely contin-
uous w.r.t.(0, so Girsanov'’s theorem can still be applied.

There is another intuitive interpretation of tiig survival measure: It is the measure that is
reached when th&).-forward measure isonditioned on survivalintil 7. Consider an event
A e Fr, and calculate its expectation conditionalon- 7j:

E% (1 I(T) ] E™ [ 1 (Th) ]
E™ [ I(T) ] Dy, (0)
1 B(Ty) } Q [ BTk (1)
Dy(0) Bi(0) “B0)
The P,-probability of A conditional on survival equals the probability df under theP,-

survival measure. This relationship will provide the basis of the simulation-implementation
later on.

(38) E™ 114y |7>T}] =

— B9 | 101(T3) = B [ 14 ].

4.7.2. Change of Drift: Analysing L, yields the components of the change of measure in the-
orem 1. The intensity factor is zer@(t) = 0 (which again shows that undét defaults have
zero probability). The change of drift for the Brownian motions is

(39) AW i (t) :== dWq(t) + ag(t)dt,

where by (18) the drift correctioi,(¢) is minus the volatility ofB, (). Again, thea,(t) are
recursively related through

F(t)oF (t
1+ 6, F ()

As the defaultable forward ratds are not the primitives of our model, we would like to find a
representation afi,(¢) in F' and H. Definea? (t) as minus the volatility of thé,,
dDy(t)
Dy(t—)
(This definition is independent from the measure under whiidh is a Brownian motion.)
Because o3, (t) = By(t)Dx(t), the By, volatility in (39) can now be written as follows:

(42) ap(t) = ap(t) + af (t).
There is again a recursion formula for thg (¢)

=

(40) i (t) =@

(41) = ...dt —ap (t)dW.

SpHy(t)oH (t)
4 D _ D ki1E k _
( 3) ak+1(t) Q <t> + 1+ 5ka(t)
The following formula is similar to equation (32), it describes the change #@rto P, ;:
_ 1 = —
(44) EF: [ X ] EPs [ (14 6 FR(Th)X |

1 + 05 F%(0)

4.7.3. Change of Measure from Forward- to Survival Measuigy. (30) and (39) the Brownian
motions under th&}, forward measuré’, and theT}, survival measuré’;, differ by

(45) AW (1) = dW(t) + af (t)dt.

Thus we can change betwe&nandP,, directly, without having to go through the spot martin-
gale measuré). The density for this change of measure is

1
Dy(0)

(46) ETF[X]= EP [ I(H)De(t)X ] = B0) g, {[(t)Bk(t)X} .

~ Bi(0)
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The drift change (45) to the dynamics of the Brownian motions can also be achieved using a
different probability measurF;C with the following densityZ? (¢)

o) = 1p () = e 0w 20

AP, Dy(0)

Using equations (16) and (17) it is easily shown th@t?) is a P,-martingale with initial value
one and thaf.”(¢) satisfies the stochastic differential equation

dLY (t) = —ap (t)dWi(t).

/

(47)

This new measur?ﬁC has the same effect on the Brownian motion®asFor random variables
X that are measurable with respect to the filtration generated by the Brownian rAotiens
expected values under both of these measures will coincidel?bmhy be used instead &f;.

4.8. Further Probability Measures. Following the introduction of the survival measure, the
definition and analysis of further, survival-based probability measures is straightforward. To
save space we refrain from introducing a defaultable analog wptbie_ibor measuré)’, which

is useful in many numerical implementation algorithms. Later on we will need a defaultable
swap measureo price options on default swaps. The default-free versions of these probability
measures were introduced by Jamshidian (1997).

5. DRIFT RESTRICTIONS FOR THEDISCRETETENOR CASE

Using the results of the previous section we can now derive the dynamics of the defaultable and
default-free forward rates under the new probability measures. We only give the dynamics of
each process under one of the measures, the dynamics under the other measures follow from
the respective change of drift formulae.

5.1. Default-Free Forward Rates: By/ By is a Martingale under thé, , ;-forward measure
Hence
1 By
Or  Bry1
Is also a martingale under th#g  ,-forward measureand its dynamics are (according to the
lognormal assumption)

(48) B —1)

(49) dFy(t) = Fp(t)of dWy 1 (t).
Under theT}, . ; survival measure, the dynamics Bf are
(50) dFy(t) = Fi(t)oy (AW (t) — aipy (t)dt).

5.2. Defaultable Forward Rates: For the defaultable forward rates we use tBaf B, is a
martingalé under thel’, ., -survival measurgtherefore

- 1 B
(51) Fr=—(="
O By
is a martingale under thE, . ;-survival measureAgain, its dynamics are
(52) dF(t) = Fr(t)ol dW i ().

—1)

6Intuitively speaking, ifX does not contain any direct reference to default and survival evéntd satisfies this
condition. l.e.r, N(¢) or I(¢) do not occur inX, but.S or B may occur inX.
7Strictly speakingBy /By 1 is only defined up to default. After default we consider the process stopped.
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Calculating the dynamics d@f,, under default-free forward measures does not make much sense,
as the defaultable forward rates are only meaningful in survival events.

5.3. Forward Spreads: The dynamics of the forward spreads underfje, survival measure
are

(53) dSy = Fyop af dt + Syoy dW gy

5.4. Forward Intensities: The forward discrete default intensitiés have the following dy-
namics undery :

(54) de = +—k ((1 -+ 5ka)OékD+1 - 5kaO'£{) dt + HkadeH-

5.5. Independence: If the default-free bond priceB(¢) and the time of default are indepen-

dent underQ), then it is easily seen that also the default-free forward ratesd the discrete
default intensitied? are independent undérand under all other pricing measures. In this case,
many of the relationships above simplify significantly. Independence in this sense means zero
covariation between forward rates and default intensities:

(55) ofofl =0  VEI<K

In particular independence is given when the default-free forward Fataad the discrete-time
default intensities?,, are driven by different components of the vector Brownian mokisf.
Note that by equation (11) credit spreagisand default-free forward ratds, have a nonzero
covariation even i, andF}, are independent.

Under independence” s = 0 holds, hence by equations (49), (53) and (54), the default-free
forward rateF, the credit spreads, and the discrete default intensitiés, are martingales
under thel},,; survival measure

dF, __ dH _

(56) T: = ol dW 1 ?: = o dW s
dF e ds _

(57) = = AW 2k — S AW 1.
Fk Sk

Even if independence does not hold, the drift of of the default intendifjeand of the credit
spreadsS; is of a small order of magnitude: risk-free interest rates times the covariation between
credit spreads and thieth risk-free forward rate. A good strategy for model calibration under
correlation is to first calibrate the model to the closed-form solutions that are reached under
the assumption of independence, and then to iteratively adjust the parameters to the case of
correlation, which should be not too far away. For pricing purposes, closed-form solutions
under independence can be used as control variates to increase the accuracy of simulations.

6. POSITIVE RECOVERY OFPAR

6.1. The Recovery Model: Most recovery mechanisms in intensity-based models of default
risk prescribe the recovery on defaultable zero coupon bonds. Then all defaultable claims (in
particular all defaultable coupon bonds) are decomposed into defaultable zero coupon bonds,
and their recovery payoff is determined by summing up the recovery values of the individual
zero coupon bonds.

8By an orthogonal transformation &F this structure can always be achieved if (55) holds.
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Representative of this approach is thguivalent recovery(or recovery of treasufymodel,
where one defaultable borigl(t, ') has a recovery of equivalentdefault-freebondsB(t, T')

at the time of default. Another popular zero-bond recovery model igréntional recovery
model (orrecovery of market valuenodel) used in Duffie / Singleton (1997; 1999) and the
multiple-defaults model by Sémbucher (1998). Here a defaulted bond pays off a fractioh

its pre-default value.

Unfortunately, by decomposing coupons and principal of defaultable coupon bonds into the
same asset class, these modelling approaches ignore the fundamental difference between prin-
cipal and coupon claims in real-world default proceedings. The claim of a creditor on the
defaulted debtor’s assets is only determined by the outstanding principal and accrued interest
payments of the defaulted loan or bond, any future coupon paymenmistdater the consider-

ation. The recovery rate gives the fraction of this claim that is paid off after a default, and this
payoff is measured in cash and not in terms of default-free bonds or pre-default market value.

This distinction becomes important when it comes to the calibration of the model to the prices
of traded coupon bonds or default swaps. Here, using a structurally incorrect recovery model
can yield misleading results. This can happen for defaultable bonds with high coupons, for
defaultable bonds that trade far from their par véluer when defaultable bonds of similar
maturity but different coupon size are used.

Instead of the zero-bond approach we propose to view the recovery value of a defaultable se-
curity as adefault-contingent payqft (possibly random) payoff at default. In particular, de-
faultable coupon bonds and loans should be decomposed in two distinct classes of elementary
claims: zero-recovery claimB(t, T), and positive recovery claimB” (¢, 7)) which have a re-

covery ofr times their face value in cash at default.

Formally, the recovery of par model in the discrete-tenor setup is as follows:

Assumption 4 (Recovery of Par)If a defaultable coupon bond defaults in the time interval
Ty, Ti+1] then its recovery is composed of the recovery ratames the sum of the notional of
the bond (here normalised t9 and the accrued interest ovéfy, Ty.11]. The accrued interest
can be

(a) ¢, a constant in the case of a fixed-coupon bond with coupon
recovery isr(1 + ¢)

(b) F, in the case of a floating rate boH
recovery ist(1 + 6, Fi(T%))

The recovery payoffs occur in cash’/gy i.e. at the next tenor daté; ., if a default was in
]Tk}a Tk-i—l] .

We denote with, (¢) the timet value of receiving at 7}, if and only if a default has occurred
in the preceding time interval’,, Ty 1]

Modelling the recovery of a defaultable bond as a fraction of its par value was first suggested by
Duffie (1998), who used this model in an affine term-structure setup but did not model recovery
of accrued interest. For a comparison of traditional recovery models see e.gnbBcher
(1999).

9This model is used in Jarrow / Turnbull (1995), Jarrow / Lando / Turnbull (1997), Lando (1998) and many others.
191 particular bonds of issuers that are close to default tend to trade around their expected recovery value irrespec-
tive of their maturity or coupon amount.

Upefaultable floating rate notes usually pay Lidoplus a constant spread In this case recovery i8(1 + = +

Ok Fr(Tk))
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We assume that all claims of the same seniority have the same recoveryattbe time of
default. The recovery rate can be stochastic if0, 1] but its distribution is assumed to be
independent of the default-free interest rates, and time-invariant. For pricing purposes it is then
sufficient to work with the expected recovery rate which we will do from now on.

Using the notation of assumption 4 the price of a claim with matdrityno coupons, notional
1 and positive recovery can be represented as follows:

(58) B'(0) = By(0) + 7> _ei1(0).

The price of a defaultable fixed coupon bond wiHixed coupons ot at7;, i = 1,... N and
a notional of 1 is

(59) Bn(0) + Z (¢B;(0) + (1 + c)me;—1(0)) .

At a default there is positive recoveryon the notional of and on the next outstanding coupon

c. Positive recovery has the effect of enhancing the coupon. fléating coupondebt the
decomposition is slightly different but the fundamental idea remains the same: The coupons
have zero recovery, and the recovery depends only on the notional and the coupon that was
outstanding at the time of default. By adjusting the numbers of the recovery claiotiser,
non-standard exposure profiles like amortising debt or can be represented in this framework.

6.2. Discrete-Tenor Defaults. We restricted recovery payments to the next tenor datg
following default. This is not a strong restriction for a number of reasons: First, most defaults
do indeed occur on payment dates — at least, they become pudgtiphrentwhen a payment

has to be made and cannot be made. Even if strictly speaking the default had happened between
two payment dates, many debtors tend to hang on and hope for resurrection until the next
payment is due. Some credit derivatives even define a default event as the event of a missed
payment on one or several defaultable bonds. A missed payment can obviously only occur on a
payment date. Second, if the tenor dates are spaced reasonably closely (i.e. quarterly or closer)
the error will be very small. Third, given the large uncertainty that prevails about recovery rates,
the error committed by restricting defaults to the tenor dates is of second order importance.

Finally, the effect of this assumption ismostponemenof the default from somewhere in
Ty, Tr41] to Ty41. There is an approximate correction to this error by adjusting the recov-
ery rate upwards as follows: We assume that continuously compounded shortaradede-
fault intensity A are constant ovelT}, Ty 1]. Then, givenH = Hg(Ty), F = Fy(T;) and

0 := Ty — T}, the default-intensity i3 := %111(1 + 0H) and the continuously compounded
short rate isr := §ln(1 + §F). Given a default happens iy, T).1], the T} ,,-value of &
received at default and investedraintil 7} is

, A F(1+0H)
(60) T NTrH(110F)

T > .

Thus, as a correction we can usenstead ofr and work with recovery payoffs at the next tenor
dateT},,. Typically, this adjustment amounts to a factdfr of 1.005 to 1.02, it increases with

high interest rates and long time stefas and is rather insensitive to changes in the default
intensity A. A similar adjustment can be constructed for the alternative case when only accrued
interest untilr is taken into consideration for the recovery, i.e. for a defautt@l7y, 7;] the
recovery ist(1 + (7 — T} )c) wherec is the coupon. In this case the adjustment will be even
smaller.
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6.3. Valuation of the Recovery Payoffs under IndependenceThe disadvantage of this re-
covery of par’ modelling approach is that we now have to do some work to reach even the
price of a simple defaultable coupon bond. Compared to this, the derivation of the prices of
fixed-coupon bonds is much easier in the equivalent recovery model or the fractional recovery
model. Nevertheless, this is not lost labour for two reasons: This analysis is also a necessary
ingredient to price credit default swaps, and for defaultdélolating coupon debt there are no
simple formulae in the alternative recovery models either.

The following two propositions give the prices of the recovery payoffs for the two most impor-
tant cases: fixed payoff and fixed plus floating payoff. The time arguffigwas suppressed to
simplify the notation. The proofs can be found in the appendix.

Proposition 2 (Recovery Payoffs under Independence)
Under independence @&f, and F}, V k, [ we have:

(i) Fixed Payment at Default:
The value of a payment ofat 7}, if a default occurs ifTy, Ty11] is
(61) € = E1<:+1(51<,Hk
(i) Floating Payment at Default:
The value of a payment of+ i, F.(T}.) at Ty if a default occurs inTy, Ty..4] is
(62) §k+15k5k
(i) Floating Coupon in Survival:
The value of a payment &i.(7}.) at 7., if no default occurs untily,; is
(63) Bjs1Fy.

If independence between defaults and default-free interest rates does not hold we need to resort
to approximative solutions for the pricing equations. The error of these approximations should
be very low for reasonable parameter values. It will certainly be an order of magnitude lower
than the approximative correlation correction itself which in turn is of the order of a few basis
points. The following proposition gives these approximations.

Proposition 3 (Recovery Payoffs under Correlation)

If H, and F; are not independent then:

() The approximate volatility of.? over|T;, T,,] is
— & Hiol!
(64) AP =Y =T
=

(i) Fixed Payment at Default:
The value of a payment ofat 7}, if a default happens ifil}y, T1] is

€ — Ek+15k ]Ef’l€7L1 [ Hk ]

_ _ 1
=0.H.B B vie(rory ——
OxHy By + By co ( w (1) 1+5ka(Tk>>
= -  OFy o ARk
65 ~&0.H.B.,.1— B,——— — = % —1
( ) k1 Dgy1 k1+6ka (exp{1_5ka )

(i) Floating Payment at Default:
The value ofl + 0, F(T}) at Ty if a default occurs ifTy, Ty41] is

Bi10, EP1 [ Sy ] = Bry10xSk — 03 By g covii+ (LkD+1(Tk) ; Fk(Tk)>
~ §k+16k8k - Ek+15ka (exp {AkD+17k0]f} - 1) .
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(iv) Floating Coupon in Survival:
The value ofFy(7},) at T}, if no default occurs untily,; is

(66) EkJrl :Eﬁlﬂ'1 [ Fk ] ~ §k+1erAI?+1,ko'£

7. BAsic CREDIT DERIVATIVES

In naming the counterparties for credit derivatives we will use the convention that counterparty
A will be the insured counterparty (i.e. the counterparty that receives a payoff if a default
happens or the party that is long the credit derivative), and counterpasiil be the insurer

(who has to pay in default). Par€ will be the reference credit.

7.1. Default Swap.

7.1.1. Description: In adefault swapalso known asredit swap) B agrees to pay the default
payment tAA if a default has happenedf there is no default of the reference security until the
maturity of the default swap, counterpaBypays nothing.

A pays a fee for the default protection. The fee can be either a lump-sum fee up front (default
put) or — more commonly — a regular fee at intervals until default or maturity (default swap).

Different types of default swaps usually only differ in the specification of the default payment.
Here we only consider the standard default swap without going into the problems of the fine
print of the specification of the default payment.

o (fee streamA payss atT; until Ty or default.
¢ (default paymentB pays the difference between the post-default price of the reference
asset (usually a bond issued Gy and its par value at default.

7.1.2. The Fee.The value of the fee stream can be directly determined as

N
(67) s> Bi(0)

k=1

This valuation is valid for all fee streams of credit derivatives that pay fees until default.

7.1.3. The Default PaymentThe typical reference asset is a defaultable coupon bond with
fixed couporr. In this case the value of the reference asset in defaultlis- ¢), so the default
paymentisl — 7(1 + ¢) at default. The value of this contingent payoff is

F

(68) DPPU— (1 _7(14¢))) e

=
Il
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7.1.4. The Default Swap Ratelhe default swap rate is the levelof the fee payment that
makes the default swap fairly priced.

(69) 5= (1—m(1+c) =0k Z’f =0
k 0 Bk+1
N—-1
(70) s=(1-m(l+0¢) Z WO Hy, (for independence), and

k=0
N—-1

(71) se(1-7(1+e)S m (5ka (1 4+ 0 Hy) (1P ARyl 1))
k=0

under correlation, where,, := B,/ ij:_ol PjH. Thus, under independence the default swap
rates is a weighted average of thé, with weightsw,. There is an equivalent representation
of a plain vanilla fixed-for-floating interest rate swap rate as a weighted average of default-free

forward rates
N-1
S = Z wkéka
k=0

with weightswy, := By.1/ ij:})l i+1. This property will be useful later on in the pricing of
options on default swaps.

7.2. Asset Swap Packages.

7.2.1. Description: An asset swap package a combination of a defaultable fixed coupon
bond (the asset) with a fixed-for-floating interest rate swap whose fixed leg is chosen such that
the value of the whole package is the par value of the defaultable bond.

The payoffs of the asset swap package are:
B sells toA for 1 (the nominal value of th€-bond):

e a fixed coupon bond issued Wy with couponc payable at coupon dates i =
1,...,N,
¢ afixed for floating swap (as below).

The payments of the swap: At each coupon daté < N of the bond

e A pays toB: ¢, the amount of the fixed coupon of the bond,
e B pays toA: Libor + a.

a is called theasset swap spreadnd is adjusted to ensure that the asset swap package has
initially the value of 1.

The asset swap is not a credit derivative in the strict sense, because the swap is unaffected by any
credit events. Its main purpose is to transform the payoff streams of different defaultable bonds
into the same formkt.ibor + asset swap spreafbiven that no default occursh still bears the

full default risk and if a default should happen, the swap would still have to be serviced.

7.2.2. Pricing: To ensure that the value of the asset swap package (asset swap plus bond) to
is at par at time¢ = 0 we require:

(72) C+(s+a—c)A=1

whereC' is the initial price of the bond is the fixed-for-floating swap rate for the same maturity
and payment datés, and A is the value of an annuity paying 1 at all timés i = 1,..., V.
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All these quantities can be readily observed in the market atttim@. To ensure that the value
of the asset-swap package is one, the asset swap rate must be chosen as

a:%(l—C’)—i—c—s.
Note that the asset swap rate would explode at a defa@t because thefil — C(t)) would
change from being very small to a large number. Using the definition of the fixed-for-floating
swap ratesA = 1 — By this can be rearranged to yield:

(73) ACL:BN+CA— C ,
H/_/ v
def. free bond defaultable bond

the asset swap rateis the price difference between the defaultable bénand an equivalent
default free coupon bond (with the same couppit has the priceBy + cA) in the numeraire
assetA.

Asset swap packages are very popular and liquid instruments in the defaultable bonds market,
sometimes their market is even more liquid than the market for the underlying defaultable bond
alone. They also serve frequently as underlying assets for options on asset swaps, so called
asset swaptionsAn asset swaption gives the right to enter an asset-swap package at some
future datel” at a pre-determined asset swap spread

8. OPTIONS ONDEFAULT SWAPS

Options are frequently embedded in defaultable securities and credit derivatives. Many loans
and bonds feature options for the obligor: prepayment options (which amount to a call option
on the bond at face value) or extension options (which are equivalent to a put of the bond to
the creditors). Credit default swaps also often have extension- or callability options which are
basically call or put options on default swaps. Many of these options can be reduced to options
on credit default swaps, for which closed-form and semi-closed form solutions are given in this
section.

The semi-closed form approximation is based upon the weighted-average representation of the
default-swap rate in equation (70) and (71). Similar approximations for prices of options on
interest-rate swaps in default-free Libor market models were given by Brace / Gatarek / Musiela
(1997), Andersen and Andreasen (1998) aabIZdorff (1999). Here, we only consider the case

of independence betweéi and I, and to remain in the Libor-modelling framework we need

to make some approximations regarding the dynamics of the forward default swap rates. These
simplifications arenot central to the derivation of the pricing formulae (85) and (87).

We will also show how these formulae can be derived without needing approximations if the
volatility of the default-swap rate is known.

8.1. Description and Payoffs: A call on a default swapdefault swaptiohgives the buyeA
the right to enter a default swap at at pre-determined spreattimeT .

There are two alternatives for the treatment of an early default before the exercigétwhthe

option. Either the option is knocked out and its value drops to zero, or the option remains valid.
The former case will be treated below, the pricing problem in the latter case can be reduced to
the valuation of an option that is knocked out at default as follows:

If the default swaption is still alife af; even though a default has happened before gaiil
certainly exercise the default swaption7a¢, enter the default swap and immediately receive
the payoff(1 — 7). The value of this default-protection component of the default swaption is

(74) (1—7T>(BK—§K).
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The full value of the default swaption consists thus of the sum of value of the value of the
default payment given above, and the value of the right to enter the default swap if no default
has happened befofé, i.e. the value of the default payment and a default swaption which is
knocked out at default. Therefore we will concentrate on the pricing of this option.

As mentioned before, options on default swaps frequently appear as components of more com-
plicated credit derivatives. A typical case is a standard default swap to whagttian to extend

is added. If the underlying default swap runs frégto 7 andA can choose afy to extended

its maturity untilTy, A effectively holds a plain default swap froifiy to 7 and a call option

with exercise timél, on a default swap frorii to Ty. If a default has already triggered the
default swap befor& then it obviously cannot be extended any more, so the option is knocked
out at a default of the reference credit. In many cases the default swap rate at which the default
swap can be extended is higher than the rate for the first protection ggriod’x, in this case

the structure is known as@llable stepup default swasimilarly, earlycancellation rights
constitute put options on default swaps.

To price the default swaption we first have to derive the value of its payoff at maturity of the
option. Attimet < Tx < Ty, a default swap with maturity’y that is entered at timéy at a
default swap rate of* and that is knocked out at defaults bef@ie has the value

N-1

(75) (5(t, T, Tn) —5°) > _ By(1).

j=K

Heres(t, Tk, Tv) is the forward default swap rate. The forward default swap rate is the market
rate at time of a default swap for the future protection peri@g, 7v]. According to equation
(70) the forward default swap rate is given by

_ =Y N-17 12
where noww;, = By1/ Y. g Byt

If no default has occurred befof®; the default swaption will only be exercised if it is in-the-
money atTy, i.e. if s* < 5(Tx,Tk,Ty). Then the payoff function of the default swaption
is

N-1

(76) (5(Tk) —35%)" Z B

k=K

8.2. Dynamics of the Forward Default Swap Rate.To price an option on the default swap

we need to know the dynamics of the default swap rate, and most importantly its volatility (the
drift will follow from a no-arbitrage argument). Léf” := (Hy, Hx 1, ..., Hy_1) denote the
vector of forward spreads, amtf := (Wx, Wk 41, - .., Wy_1) the vector of the weights of these
rates in the forward default swap rate. Without loss of generality we set the tenor distances
0r = 1 equal to one (for general distances the following orthogonality argument would become
only slightly more complicated), and we ignore the constant introduced by the positive recovery
and the coupon. We also writdfor the forward default swap rate. Note, that

N-1
(77) s=H'w and w, =1 =1,
k=K

2This holds under independence, in general the forward default swap rate will be defined similar to (69) and (71).
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wherel” = (1,1,...,1) is a vector composed of ones. Then (given survival) the dynamics of
s are given by
(78) ds=w'dH + H'dw+d < w, H >,

and the dynamics off are
(79) dH; = ...dt + HyodW,

wheres ! ared-dimensional row vectors. For now we are only concerned with the volatility of
5, so we do not yet specify the measure under whildhis a Brownian motion.

In the next step we make two approximatiths
Assumption 5. (i) “The effect of the changes in the weights are negligible.”

H"dw ~ 0
(i) “The H; are only driven by parallel shifts.”

d
Hio!'dW = H;»  olldW; ~ Hoy dW,

j=1

Wherell is a Brownian motion that is reached by a suitable rotation of the olttigr. . . , Wy,
such that the first column of the volatility mateiX equalsog'1.

Note that by equation (77), we ha¥éw = 0, so the first approximation is exact when the term
structure of intensitie#/ is flat. The quality of this approximation therefore depends on

(a) the deviation off from a flat structure (should be small)
(b) the volatility ofw (should be small).

Both conditions are usually satisfied in practice.

In the second approximation, the other components of the rotated variance-covariance matrix
are ignored. The error of this approximation depends on the weight that higher order compo-
nents have in the dynamics of the term structure of default intengtieRrincipal component
decompositions of the variance/covariance matrix of interest-rates typically exhibit a strongly
dominating first component which is almost flat. The larger such a component is for credit
default swaps, the better the approximation will work.

These approximations have been tested for interest-rate swap rates and have proven to be highly
precise. This gives us reason to expect similarly good performance in the default-risk setting.
After these approximations the resulting volatility of the forward default swap rainistant

From (78) follows

N—-1
(80) ds=...dt+»  Haol dW, = ... dt + 5o dWy,
=K

where the drift of the default swap rate is left unspecified.

Instead of going through the approximations above, one couldiaisctly specify the dynam-

ics (80), i.e. aonstantvolatility o’ for the forward default swap rate. This amounts to chang-
ing from a Libor-based market-model framework to a swap-based market model framework, a
common technique introduced by Jamshidian (1997).

BThe approximation argument in this subsection is based uptsdorff (1999) and also Andersen and An-
dreasen (1998).
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8.3. Pricing the Option, the Default Swap Measure. The key point to note for pricing is that

s(t) ,Jf:}i I(t)By(t) is a traded asset in the market: It is the value of the default-protection
component of the forward default swap oVé&j, 7v]. Thus, in analogy to the swap-market
measure introduced by Jamshidian (1997) and to the introduction of the survival measure be-
fore, we can take

(81) X(1) = 10) S Belt)

as numeraire asset for a new probability meageire We call this measure théefault swap
measure.

We do not go through the derivation of the Radon-Nikodym density of this measure with respect
to the other martingale measures which is exactly analogous to the derivations in the previous
sections. The measur® is associated with the Brownian motiéti, and under this measure
prices of (defaultable) traded assets divided by the new numeXdireare martingales. The
measure is again survival-basedmeasure, i.e. the probability of a default uritit is zero

under the default swap measure.

Starting from the dynamics in equation (80) we now know tha a martingale undepP’
because is a price in terms of the associated numeraire assétherefore its dynamics under
P’ exhibit no drift:

(82) ds = 5olldW”.

As mentioned before, we could take the direct specification of the dynamicsmderP’ in
equation (82) as starting point without having to go through the approximations in the previous
subsection, and also without having to use independenéeasfd F'.

Using the measur®’, we can now directly price the option. Starting from
N-1

B(T)I(Tk) >  Bi(Tk)(5(Tk) —5°)"

(83) C(0) = E¢

the change of measure 0 yields

(84) - (Z E(@) E” [ (5(T) —5)" .

Evaluating the expectation yields the following proposition:

Proposition 4. The value of a European Call option to enter at tiffie a default swap with
maturity 7y and strike default swap rat&, which is knocked out at defaults befares

(85) C = (Z §k<0>> {5(0)N (dr) — "N (d2)}

whered, andd, are given by
In(s/5%) + ()T
UH\/ TK '

An European Put option to enter as protectisgilerthe same default swap at tirfig: has the
price

(86) d1;2 =

(87) P = ( 3 Fk(0)> {s"N(=dz) = S(0)N(=d1)}.
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The recovery rate does not enter this pricing formula explicitly. The reason is, that the value
of the payoff of the default swap does not directly involve the recovery rate: It is the value
of the swap at the strike* minus the value of an offsetting default swap at the marketgate
Thus, only the difference between the fee streams is paid out, until a default happens. Before
maturity, the default swap can be knocked out at default, but the recovery rate does not enter
directly either. Of course, the recovery rate is still present, but in indirect form: Depending on
the assumed recovery rate, the calibrated values of the zero-recoveryBpoas vary much.

9. NUMERICAL IMPLEMENTATION

Because of their great importance in practice there is a quickly growing literature on the im-
plementation and calibration of Libor and Swap market models, and we cannot mention all
contributions in this area. The question of calibration is addressed by Rebonato (1998; 1999a;
1999b), advanced techniques for Monte-Carlo simulation can be found e.g. in Glasserman and
Zhao (2000) and the survey article by Broadie and Glasserman (1998). On the background of
this large literature we restrict ourselves to the details of the implementation that are specific to
the case of credit risk modelling.

9.1. Setup. First, a choice has to be made whether to model the discrete-time default intensities
H,, or the credit spreads; as lognormal. Given the scarcity of available data it is unlikely that

a statistical test would be able to decide between the two specifications because their effects on
the defaultable forward rates are very similar.

Spreads are more intuitive to work with and their drift modification under the survival measure
Is simpler, but thef{,, and their volatilities appear more frequently in the pricing formulae and
they are more closely associated with the numeraire of the survival measure and the change
between survival and forward measure. It seems that the advantages of having a logfiormal
outweigh the advantages of lognorntgl particularly for the simplification in calibration, but

this judgement depends on the security to price.

Next, the tenor structure has to be chosen such that all payoff relevant dates are covered and
the distances between the dates are not too large. Then the dimension of the driving Brownian
motion for the combined model has to be determined. Usually, given the scarcity of data, only
one Brownian motion is needed in addition to the Brownian motions that drive the default-free
term structure of interest-rates.

9.2. Calibration: For details to the calibration of the default-free part of the model the reader
is referred to Rebonato (1998; 1999a; 1999b). Second, the volatility vegtofsr the H,

have to be specified. Typically, these will involve correlation with the first principal component
('level’) of the default-free interest rates and the idiosyncratic movements of the credit spreads
/ intensities.

Given this information, the defaultable bond pric8s in the model can be calibrated to ob-
served defaultable bond prices, default swap rates and asset swap rates using the closed-form or
approximate solutions given in the paper. If independence betweend F' is assumed, this

fitting can be achieved without the need to refer to volatility input. In all cases the expected
recovery rater is needed as an input, too.

10. CONCLUSION

In this paper we showed how default risk can be incorporated in the modelling framework
of the so called market models for interest rates. The change of measure technique which
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already was important for default-free market models, now becomes the most important tool
for analyzing the relationships between forward rates, default intensities and credit spreads and
for the derivation of prices and implementation of the model. In particular, a new class of
probability measures, theurvival measuresprovides the appropriate tools for the pricing of
default-dependent payoffs. These survival measures can be viewed as the probability measures
that are reached, when the default-free forward measure is conditioned on survival.

In the modelling of the recovery of defaultable bonds we chose to use the ‘recovery of par’ mod-
elling approach. This recovery model has the advantage of being able to accurately represent
real-world recovery rules. We showed how to price a number of basic defaultable securities
in this setup, including defaultable fixed- and floating coupon bonds, asset swaps and credit
default swaps. For a fully general specification of the volatilities of credit spreads and interest
rates these prices were given by using approximate solutions, under independence of defaults
and interest-rate dynamics closed-form solutions are given.

The modification of this model to other specifications of the recovery at default is straightfor-
ward: For recovery in equivalent default-free bonds all pricing problems can be reduced to the
pricing of zero-recovery bonds (which is already solved here), and the extension to fractional
recovery (Duffie / Singleton (1999) and Setbucher (1998)) should not present any problems
either.

We then addressed the pricing of some popular credit derivatives. Most of the work for the
pricing of default swaps had already been done in the analysis of the par recovery model, and
the pricing formula for asset swap packages is entirely model-independent. To be able to price
options on default swaps we again had to transfer and extend notions from the default-free
market model world: The introduction of tlikefault swap measure- the defaultable analogy

of Jamshidian’s (1997) swap market measure — enabled us to derive closed-form solutions for
these second-generation instruments. As default swaps are becoming more and more liquid and
standardised, a modelling approach based on the default swap measure making default swap
rates to martingales has much potential for the future.
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APPENDIX
PROOF OFPROPOSITIONZ2 AND 3

To lighten notation, the time index is dropped fot 0, i.e. B, stands forB,,(0) etc.

Valuation of the Recovery Payoffs under IndependenceWe assume independence of de-
faults and default-free interest rates. The indicator function of defallfir{} 1] is (7)) —
I(Ty+1). We callel (X)) the value of receivind( atT}, if a default happens in this interval:

e (X) =E? [ B(Thy1)(I(T) = I(Th11)) X |
(88) —E®[B(Tps1)X | (Dy — Diy1) = 6, Hy By EFH1 [ X ]

We consider two cases:
X can either be (a) a fixed payment or (b) principal plus floating rate.

In case (a)X = 1. Equation (61) follows directly.

In case (b)we can use thak}, is a martingale undeP,_ ;. Therefore using (6) yields
(89) eh (14 6 Fi(Tk)) = 61 SkBry1.

Equation (63) follows fromE® [ 3(Ty 1)1 (Tii1)Ex | = EP+ [ Fy ] Diyy = Fi By

Valuation under Correlation of Defaults and Interest Rates. We start again from the repre-
sentation for} (X)

ei(X) =B [ B(Top1)(I(Tx) — 1(Ti1)) X |
(90) =E? [ J(Ti ) [(T1)X ] = E? [ B(Tir) [ (Ti1) X |
The first term in (90):.
(91) EQ[ A(Ti)I(Ty)X | = By B4 [ I(T})X |

1

Case (a)X = 1. Changing taP,, yields
(92) E? [ B(Tis1)[(Th) ] = Bina (1 + 8, BP0 [ Hy(Ty) ]) -
Case (b):X =1+ 6y Fi(T%). The solution is found directly

E? [ B(Ti1)I(Ti) X | = By.

— B,E" { X[(Tk)} — B,E™ [L} .

The Second Term of(90):

(93) E? [ B(Ti41)] (Tis1)X | = By EP [ X ],
Case (a)yields the resul3; ;.

In case (b)the value is

(94) Bipa(1+ 6, B [ F(Ty) ]).

Combining these results, the values of the payoffs are:
in case (a):(fixed payment)

(95) ¢, (1) = B0 BV [ Hy(Ty) ]
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in case (b): (floating coupon plus principal payment)

(96) er(1 4+ 6uFi(Ty)) = Br1op P [ Si(Th) |
The value of a floating coupon paymentéf}, paid at7}.,; in survival is
(97) E? [ B(Ti1)I (Ti41)01Fy | = B8, BV [ Fy(Ty) |

Thus, because of correlation the values of forward default intensity or credit spread have been
replaced with their expectation under the ;-survival measure.

Approximative Solutions under Correlation. In equations (95) and (96) we have to evaluate
the expectation of certain forward rates under the respective survival measures. This is done
in two steps: As all random variables are measurable w.r.t. the realisations of the Brownian

motions, we can consider the expectations under the survival meﬁlgg{eas expectations

under?ﬁﬁl. In a first step we transform the pricing problem to the problem of the calculation
of the covariance of a rate with the Radon-Nikodym densityof the change from the forward

—/ . « «
measure to the measufe. In a second step we give approximations to the values of these
covariances.

For equation (92) we change to thg-forward measure using equation (47) to reach

- 1 - 1 1
Efe | — = | —FEP | — | —EE|IP(T)— |
[1+@@@@1 [1+@&ﬁp] [k(”1+@ma@]

Both m andL? are martingales under thg-forward measure, thus

1 1
1+%HU@}_1+&&
Similarly, for (94) we change to thg, , ;-forward measure:

EFPr+ [ Fu(Ty) ] = Eﬁ;le [ Fe(Ty) | = EPs+1 [LkD+1(Tk)Fk(Tk) } .

+ cov'* (LkD(Tk) : ;)

Py,
(%8) E [ 1+ 0 F3(Th)

Again, both expressionk, andeDJrl are martingales under th , ;-forward measure

(99) EP [ Fy(Ty) ] = Fy, + covPe (LkDH(Tk) , Fk(Tk)).

There are no closed-form expressions for the covariances in the previous expressions. We are
going to use the following common approximation: We approximate both processes with log-
normal processes by setting the stochastic components in the diffusion parameters equal to their
values at time¢ = 0 and evaluate the covariance of these procésses

The volatility of L? is

al (t) = /t ) ol(t,s) — ol (t,s)ds

and approximated

N kz_i 0.H,(0)a(0)
2 TR 0)

YFor the default-free market models, Brace / Gatarek / Musiela (1997) interpret this approximation as a first-order
chaos expansion. Rebonato (1998) reports very good results for similar approximations.
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Integrating the approximated volatility yields the aggregate volatilitydfover [0, 7,,,]

k— 1

T"L
T = AP .
/0 Z 1 + 51Hl h Foym

=

In the approximation we séf, (¢ ) ando/’(t) to their values at = 0. If H and notS is taken
as fundamental process, thefl is constant anyway. Furthermore we set the volatilities at the
short end (before the next tenor time) to zero.

The dynamics ofX (t) := 1547 are easily found by &s lemma asdX = —X(1 —
X)aFdWy. We choose to usg (t) := 1 — X (¢) instead, which follows
(100) AY (1) = Y()(1 = Y(£)ol dW, ~ Y (t)(1 — Y (0))oF dW,

The values ot/ (¢) are typically close to zero, thus the lognormal approximation should be very
accurate and better than approximatixi¢) as lognormal.

This yields the following approximative value for the covariance in equation (98)

k D ; — k D
cov’ <Lk (T) g 5ka(Tk)> = —cov” (Lk (T%) Y(Tk:)>
210 1 b r
(101) ~ T3 0. FL(0) eXp 77 5ka<0)Ak,k0k 1
and for the covariance in equation (99)
(102) cov+ (LkD—o—l(Tk)’ Fk(ﬂ:)) ~ F.(0) <€AE+M”’§ - 1> .

The error of these approximation should be very low for reasonable parameter values. It will
certainly be an order of magnitude lower than the approximative correlation correction itself
which in turn is of the order of a few basis points. The sign of the correction depends on the
sign of the correlation between the default intensifieand the default-free interest raté's
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