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Abstract

We report results of experiments designed to test the predictions
of the best reply process. In a Cournot oligopoly with four Þrms,
the best reply process should theoretically explode if demand and cost
functions are linear. We Þnd, however, no experimental evidence of
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several learning dynamics to explain this unpredicted stability.
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1 Introduction

It is well known that the adjustment process suggested by Cournot (1838)

for an oligopoly, namely that each Þrm plays a best reply to the other Þrms�

previous output, is not stable in the general case. Theocharis (1960) shows

that in oligopolies with more than two Þrms and with linear demand and

cost functions the best reply process does not converge: if there are three

Þrms, Þnite oscillations around the equilibrium positions occur, and with

four or more Þrms the process shows explosive ßuctuations.

Subsequently, it has been shown that this result is not robust to small

changes in the assumptions. In particular, the system can become stable if

adjustment to the best reply is only partial (McManus and Quandt, 1961),

or if marginal cost are increasing (Fisher, 1961).

In this experiment we test whether convergence to the equilibrium really

depends on such intricate details of the model. We propose two treatments

for a four�Þrm oligopoly with linear demand and cost functions which allow

to test for the stability of the Cournot adjustment process. Only in treat-

ment A is instantaneous and perfect adjustment possible. In treatment B,

Þrms must stick to last period�s quantity with a probability of 1/3. In Huck,

Normann, and Oechssler (1999) we prove that such a system with inertia is

stable. Thus, the predictions are clear. In the Þrst case, the process should

oscillate perpetually between two extreme values. In the second case, the

process should converge to equilibrium.

We Þnd, however, no noticeable difference between the two treatments.

In both cases average quantities are slightly above, but still rather close to

the Cournot equilibrium outputs. The modal choice of individual quantities

is at the Cournot outcome in both treatments. In experimental oligopoly

markets, Theocharis� instability result does not occur.

There may be several reasons for this (unpredicted) stability. One reason

could be that subjects follow a process that smooths best replies, e.g. like

Þctitious play. Another reason may be that subjects tend to imitate what

others do. Social psychologists (e.g. Asch, 1952) have shown a long time ago

that imitation is an important factor for explaining learning behavior.1 We

Þnd evidence that imitation of the average quantity of other Þrms plays an

important role in our experiment. Fictitious play, on the other hand, does

not explain the data particularly well. Our regression results suggest that,

1Recently, imitation (of last period�s most successful action) has also been studied in
the context of oligopoly by Vega�Redondo (1997).
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in the aggregate, subjects mix between playing best replies and imitating

others.

These results may be compared to an interesting experiment by Cox and

Walker (1998). They also analyze convergence of play in two treatments of

which only one is theoretically stable. In Cournot duopoly the best-reply

dynamic is stable only if Þrm 1�s reaction function is steeper than Þrm 2�s in

the neighborhood of the equilibrium (with Þrm 1�s quantity on the horizontal

axis). Cox and Walker show that there is a sharp distinction between these

two cases supporting the theoretical results. Play is almost never near the

theoretically unstable equilibrium but converges nicely to the theoretically

stable equilibrium.

Another related paper is by Rassenti et al. (2000) who ran several Þve-

Þrm oligopoly experiments. Their central issue is whether repeated play

will yield convergence to the unique and theoretically unstable static non-

cooperative Nash equilibrium. Surprisingly, and in contrast to previous

studies and our own, they observed convergence only at the aggregate level.

There is no convergence at the individual level. A possible explanation for

this is that Rassenti et al. introduce substantial asymmetries in cost. A

further difference to our paper is that they do not have a control treatment

which is theoretically stable.

The remainder of this paper is organized as follows: Section 2 introduces

the experimental design. Section 3 offers theoretical predictions, while Sec-

tion 4 presents the experimental results. In Section 5 we conclude.

2 Experimental design

In a series of computerized2 experiments we studied a homogeneous multi�

period Cournot market with linear demand and cost. There were four sym-

metric Þrms in each market. Quantities could be chosen from a Þnite grid

between 0 and 100 with .01 as the smallest step. The demand side of the

market was modelled with the computer buying all supplied units according

to the inverse demand function

pt = max{100−Qt, 0}, (1)

2We are grateful to Klaus Abbink and Karim Sadrieh for providing us with their soft-
ware toolbox �RatImage� (Abbink and Sadrieh, 1995) which we used for the programming
of the experiments.
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with Qt =
P
qti denoting total quantity in period t. The cost function for

each seller was simply

C(qti) = q
t
i . (2)

Hence, proÞts were

πti = (p
t − 1)qti . (3)

The unique Cournot Nash equilibrium of the stage game is given by

qNi =
100− 1
5

= 19.8, i ∈ I, (4)

yielding a price of pN = 20.8. The collusive outcome would be at qCi = 12.375

resulting in a price of pC = 50.5.

The number of periods was 40 in all sessions and this was commonly

known. Subjects possessed all essential information about the market, i.e.

they were informed about the symmetric demand and cost functions in plain

words.3 Furthermore, subjects had the possibility to use a �proÞt calcula-

tor�, which served two functions. A subject could enter some arbitrary �total

quantity of other Þrms�. Then he could either enter some amount as his own

quantity in which case the calculator informed him about the resulting price

and his resulting personal proÞt. Or, he could press a �Max��button in which

case he was informed about the quantity which would yield him the highest

payoff given the total amount of others. Additionally, the calculator com-

puted price and proÞt for this best response.4 This function was designed

to give the best-reply process the best chance possible. The calculator was

used, on average, in two of out three periods.

After each market period subjects were informed about the total quantity

the others had actually supplied, about the resulting price and their personal

proÞts. Additionally, they were reminded of their own quantity. When

deciding in the next period this information remained present on the screen.

Results of earlier periods were, however, not available, but subjects were

allowed to take notes and a few did.

There were two treatments. In treatment A subjects could adjust their

quantities in every period. In treatment B we introduced some inertia: Af-

ter round one, chance moves, which were independent across individuals,

determined in each period whether a subject was allowed to revise his quan-

tity decision. This was done by a �one�armed bandit� which appeared on

3Since we recruited many non-economics students as subjects, we were careful not to
use any formulas or technical terms in the instructions.

4In the experiments we did not use the expression �best response.�
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the screen showing three equiprobable numbers �0�,�1�, and �2�. If �0�

occurred no adjustment was allowed. Hence, the probability for allowing

revision was 2/3.

The experiments were conducted in April and May 1997 in the computer

lab of the economics department of Humboldt University. All subjects were

recruited via posters from all over the campus. Almost half of the sub-

jects studied Þelds other than economics or business and had no training in

economics at all.

In each session eight subjects participated, constituting two groups of

four Þrms. Subjects were randomly allocated to computer terminals in the

lab such that they could not infer with whom they would interact in a group

of four. For both treatments we had six groups of subjects � making a total

of 48 subjects who participated in the experiments.

Subjects were paid according to their total proÞts. ProÞts as in (3) where

denominated in �Taler�, the exchange rate for German Marks (500:1) was

known. Since we considered the Theocharis result as a possible outcome in

treatment A, we wanted to make sure � besides the usual bankruptcy prob-

lems � that subjects would not be frustrated by low or negative payoffs.5

So, additionally subjects earned a Þxed payoff of Taler 150 each round. The

average payoff was about DM 37.84 which at the time were roughly $21.

Experiments lasted 60 minutes including instruction time.

Instructions (see Appendix A) were written on paper and distributed in

the beginning of each session. After the instructions were read we conducted

one trial round in which the different windows of the computer screen (see

Figure 1 in Appendix B) were introduced and could be practiced. When

subjects were familiar with both, the rules and the handling of the computer

program, we started the Þrst round.

3 Theoretical predictions

In this section we analyze the implications of several learning dynamics �

best reply (BR), Þctitious play (FP), imitation of average behavior (AV), and

a mixed process. For each theory we analyze whether the process converges

and, if so, where it converges to. Furthermore, we calculate for each process

theoretical autocorrelations, which can then be compared to the empirically

5See Holt (1985, p. 317) for the argument that the usual promises in the instructions
that one can earn a �considerable amount of money� might bias subjects against zero-
proÞt outcomes.
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observed ones.

3.1 Best-reply processes

The basic best-reply process, suggested by Cournot, assumes that each Þrm

plays a best reply to the other Þrms� output from last period. If all players

use this rule, i.e. if for all i, qti =
1
2

³
99−Qt−1

−i
´
, we get the following process

for total quantities

Qt = 198− 3
2
Qt−1. (5)

Clearly, the system explodes. Due to the non�negativity constraint for quan-

tities, individual quantities eventually oscillate between zero output and the

monopoly output. Total quantities oscillate between zero and four times the

monopoly output, i.e. Qt = 198.

Consider now a best reply process with inertia and let θ denote the prob-

ability that a Þrm must stick to its previous quantity. The inertia stabilizes

the process. In Huck, Normann, and Oechssler (1999, Prop. 1) we show for-

mally that the resulting Markov process converges globally to the Cournot

equilibrium for any θ ∈ (0, 1). The proof is based on the theory of poten-
tial games (Monderer and Shapley, 1996) and proceeds by constructing an

improvement path from any arbitrary state to the equilibrium. The equilib-

rium is, of course, an absorbing state with respect to best-reply dynamics.

While the process with inertia is stochastic, we can calculate an average

autocorrelation coefficient by noting that (on average)

qti = θq
t−1
i + (1− θ)

Ã
99−Qt−1

−i
2

!
(6)

and so

Qt = 198(1− θ)− 3− 5θ
2

Qt−1. (7)

Thus, there should be negative autocorrelation as long as θ < 3
5 . In treat-

ment B we have θ = 1
3 . Hence, theory predicts a negative autocorrelation of

−2
3 if all subjects play best replies.

An alternative way of smoothing a best reply process is through Þctitious

play (FP) beliefs (Robinson, 1951). In its basic version players choose in each

round a best reply against the relative frequency of the combined quantities

Qτ−i of the remaining Þrms in periods τ = 1, ..., t − 1. Given the linear
structure of the Cournot oligopoly, this implies that player i chooses a best

reply against 1
t−1

Pt−1
τ=1Q

τ−i (after choosing an arbitrary strategy in round
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1). In particular, for t > 1

qti =
1

2

Ã
99−

Pt−1
τ=1Q

τ−i
t− 1

!
. (8)

It is well known (see Monderer and Shapley, 1996) that Þctitious play con-

verges to a Nash equilibrium in potential games, i.e. in our case to the

unique Cournot equilibrium. With inertia parameter θ, we have for total

quantities

Qt = 198(1− θ) + θQt−1 − 3
2
(1− θ)

Pt−1
τ=1Q

τ−i
t− 1 . (9)

Hence, for θ = 1/3 an autocorrelation of 1
3 − 1

t−1 results. Without inertia

(θ = 0) the process yields an autocorrelation of − 3
2(t−1) .

3.2 Imitation

Research in psychology and social biology shows that individuals often �learn�

by imitating others especially in complex environments. In a famous exper-

iment Asch (1952) found that people who are faced with similar decisions

tend to follow the decisions of other members in their group. In our exper-

imental setting subjects could not observe individual quantities. But they

were able to observe total � and therefore average � quantities of the re-

maining Þrms. It seems reasonable that subjects who are uncertain about

what to do and observe that the average quantity of the other Þrms deviates

from their own quantity, imitate this average quantity � thinking along the

line of �everyone else can�t be wrong�. A preference for cautious behavior

and a taste for conformity could be further reasons for imitating the average.

This would result in the following process:

qti =
Qt−1
−i
3
. (10)

If all subjects were to follow this rule, clearly the process is bounded above

and below by the highest and lowest initial quantities. Without inertia the

process would converge simply to the average of all starting values, as can

be seen by solving the system of equations (10) recursively, which yields

qti =
Q1

4
+
3q1
i −Q1−i
4

· (−1
3
)t−1. (11)

With inertia the process depends on the realizations of the randomization

device and is therefore path dependent. Nevertheless, on average quantities
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are given by

qt1 = θq
t−1
1 + (1− θ)Q

t−1
−i
3

(12)

which yields Qt = Qt−1 independently of θ. Thus, total quantities should be

constant on average and the autocorrelation coefficient should be 1.

3.3 Mixed process

In anticipation of our experimental results we derive here some properties

of a mixture of best reply and �imitate the average�. Apart from the fact

that such a mixed process seems to suggest itself given our data, it could

result because all subjects actually mix, or � more plausibly � because some

subjects play best reply and others imitate (see Gale and Rosenthal, 1999,

for a justiÞcation of a similar mixed process).6 Generally, if α denotes the

weight given to best replies and 1−α the weight given to the average quantity
of the other subjects, we get the following difference equation for the case

without inertia

qti = α
99−Qt−1

−i
2

+ (1− α)Q
t−1
−i
3
. (13)

Thus total quantities follow the process

Qt = 198α+
2− 5α
2

Qt−1. (14)

This difference equation is stable if α < 4
5 . If it is stable, it converges to

the Cournot equilibrium. Autocorrelation is positive for α < 2
5 and negative

otherwise.

With inertia the mixed process yields (on average)

qti = θq
t
i + (1− θ)

"
α
99−Qt−1

−i
2

+ (1− α)Q
t−1
−i
3

#
. (15)

Summing over i gives

Qt = 198α(1− θ) +
µ
1− 5

2
α(1− θ)

¶
Qt−1. (16)

Thus, for θ = 1/3 convergence is assured independently of α, and average

autocorrelation is given by 1− 5
3α. We summarize the convergence properties

and theoretical autocorrelations in Table 1.
6They consider a population in which most people imitate the average but some ex-

periment on a trial & error basis. Since the presence of experimenters has similar effects
as that of best-reply players, it is not surprising that they Þnd convergence to the Nash
equilibrium and stability in the large. However, due to the stochastic nature of experi-
mentation some interesting instabilities arise in the small.
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Table 1: Theoretical predictions

Treatment Process Convergence Autocorr.

A

best reply
FP

imitation
mix

no
yes
yes

if α < 4/5

−
− 3

2(t−1)

1
1− 5

2α

B

best reply
FP

imitation
mix

yes
yes
yes
yes

−2/3
1
3 − 1

t−1

1
1− 5

3α
Note: α denotes the weight given to best reply.

Table 2: Summary Statistics

Treatment Mean35 Mean20 Avg σ0−20 Avg σ20−40 Autocorr.

A
82.83
(6.17)

83.98
(6.79)

13.57 8.15 −.043

B
84.32
(4.56)

82.56
(2.48)

16.41 10.00 .387

Note: Mean35 (Mean20) is the average total quantity measured over the last 35 (20)

periods and over all six groups in one treatment. Standard deviations in parentheses.

Avg σt−t0 denotes the average standard deviation of total quantities from round t to t0.

4 Experimental results

Table 2 reports average total quantities for the last 35 and the last 20 periods,

respectively.7 The mean quantity in both treatments is only slightly above

the Cournot�Nash quantity of 79.2. Standard non�parametric tests show

that there are no signiÞcant differences between the mean quantities for

treatment A and B at any reasonable signiÞcance level.

Also shown are average standard deviations of total quantities over the

Þrst and the second half of the experiment.8 It can be seen that the standard

deviations of total outputs are considerably smaller in the second half of the

experiment. This is signiÞcant for both treatments (p = 5.8% in treatment

A, p = 1.4% in treatment B (Wilcoxon test)) and indicates convergence.

Clearly, there is no tendency for explosive behavior in treatment A. Some-

7The complete data set is available at http://www.wiwi.uni-bonn.de/with2/oechssler
8For each group of Þrms we calculated the standard deviations of total quantities over

time. Table 2 reports the treatment averages of these standard deviations. For the tests
below each group counted as one observation.
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Table 3: Hit ratios

Treatment z < 0
0 ≤ z
< .8

0.8 ≤ z
< 1

z = 1
1 < z
≤ 1.2 z > 1.2

A BR 21.5 52.0 4.6 5.2 4.1 12.6
FP 49.7 22.5 4.2 0 4.7 18.8
AV 35.3 46.3 2.5 0.5 2.4 13.0

B BR 26.4 43.0 5.4 5.4 3.1 16.6
FP 46.0 22.1 5.3 0 4.3 22.3
AV 35.7 44.6 4.1 1.0 2.3 12.3

Note: Only rounds in which subjects were allowed to adjust their quantities are

included.

what surprisingly, average standard deviations are even lower in treatment

A, although, this difference is not signiÞcant. Finally, Table 2 also reports

empirical autocorrelation coefficients which are analyzed below.9

So far we have only considered group outcomes. Individual quantities,

however, are also quite close to the Cournot Nash prediction of qNi = 19.8.

Figure 2 shows the frequencies of individual quantity choices over all periods.

The modal choice in both treatments is at the bracket containing the Nash

outcome.

[place Figure 1 about here]

We can analyze individual learning behavior further using the following

hit ratios. Let

zti :=
qti − qt−1

i

at−1
i − qt−1

i

,

where at−1 is the point prediction implied by playing myopic best reply (BR),

Þctitious play (FP), or imitate the average (AV), respectively. Obviously,

zti = 1 follows in case of perfect adjustment, while z
t
i < 0 implies a severe

qualitative violation.10 Table 3 shows the relative frequency distribution of

the z�values.

9Thus, there is a distinct difference between our results and those of Cox and Walker
(1998) as they Þnd a signiÞcant difference between a treatment that should theoretically
converge, if best replies are used, and a treatment which should not converge. Further
experiments are required to sort out this difference.

10In case of at−1
i − qt−1

i = 0 and qt
i − qt−1

i 6= 0 we set zt
i < 0. If also qt

i − qt−1
i = 0, then

we set zt
i = 1.

9



Some observations are immediate from Table 3. While in the majority

of cases subjects do adjust in the direction of BR (and to some lesser extent,

in the direction of AV), complete adjustments are rare. Only in about 5%

of cases do subjects adjust completely to the best reply. Fictitious play,

on the other hand, hardly seems to capture behavior adequately since for

both treatments almost 50% of adjustments are in the wrong direction.

Overshooting (z > 1.2) is also more frequent than for the other adjustment

rules.

These Þndings might be compatible with a model in which subjects ad-

just partially in the direction of BR (see also Rassenti et al., 2000),

qti = γ0 + γ1q
t−1
i + γ2r

t−1
i , (17)

where rt−1
i denotes subject i�s best reply given the other Þrms� quantities in

t− 1 and γ1, γ2 > 0. However, this model cannot explain the 21.5 or 26.4 %

of cases in which adjustment pointed away from BR (z < 0).

Therefore, we have estimated a model which allows for a combination of

adjustments to BR, FP, and AV,

qti−qt−1
i = β0+β1

³
rt−1
i − qt−1

i

´
+β2

³
it−1
i − qt−1

i

´
+β3

³
f t−1
i − qt−1

i

´
, (18)

where f t−1
i is the best reply against Þctitious play beliefs (given in (8)), and

it−1
i denotes the average quantity of the other Þrms� output in t − 1. Note
that a subject who strictly played a myopic best reply every period would

have β1 = 1 and βk = 0, k 6= 1. Analogously, β3 = 1 for someone who follows

Þctitious play and β2 = 1 for someone who always imitates the average.

We have estimated (18) with weighted least squares (WLS) using t0.2

as a weight for all observations.11 To account for individual differences in

learning behavior we added subject intercept and slope dummies.12 Table 4

shows the results of the regression with pooled data of all subjects.

The results for both treatments are quite similar. The coefficients β1

and β2 are signiÞcant at the 1% level in both treatments. The coefficients

for Þctitious play are not signiÞcantly different from zero in treatment A,

and signiÞcant only at the 10% level in treatment B. Given the size of the

coefficients it seems that subjects played a mixture of best reply and �imitate

11Goldfeld�Quandt tests indicated that variances were signiÞcantly lower in later
rounds, which can be expected if learning behavior converges. To correct for heteroscedas-
ticity we used WLS with weights chosen so as to maximize the log�likelihood function.

12Using a �backward� procedure to eliminate insigniÞcant dummies.
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Table 4: WLS Regressions with pooled data

Treatm. β1 β2 β3 β0 R2 DW Obs.

A
.428∗∗

(.059)
.315∗∗

(.045)
.037
(.089)

1.19∗∗

(.231)
.49 1.97 936

B
.264∗∗

(.063)
.148∗∗

(.044)
.173∗

(.090)
.293
(.458)

.46 1.99 626

Note: * signiÞcant at 10%, ** signiÞcant at 1% level; standard deviations in parentheses.

DW = DurbinWatson statistic. Only periods in which subjects were allowed to adjust

their quantities are included.

the average�, which is evidence in favor of the �mixed process� analyzed in

Section 3.3.

Doing simulations, we found interesting qualitative properties of the

mixed process (13) and Þctitious play. Both converge very quickly to the

Cournot equilibrium. Take, as an example, the values of β1 and β2 in treat-

ment A, but normalized such that they add up to one: α = 0.428/(0.428 +

0.315) ≈ 0.57. For this value, the mixed process would converge to a 1%

interval of the Cournot equilibrium values in only 6.5 periods on average.13

Similarly, Þctitious play takes between 4 and 12 periods to converge to this

1% interval. On the other hand, the pure best reply process (with iner-

tia) converges in 25.8 periods to the 1% interval on average. For a typical

simulation of these processes see Figure 2. While a pure best reply process

explodes, the best reply process with inertia converges to the Nash equilib-

rium but convergence is slow. The Þctitious play as well as the mix of best

reply and imitation converge much faster.

Finally, we can compare the theoretical autocorrelations given in Table

1 with the empirical ones shown in Table 2. Clearly, neither a pure best

reply process nor a pure imitation process comes even close to the empirical

autocorrelations.14 However, the mixed process does much better if we use

for α the estimated values from Table 4. Likewise, Þctitious play produces

autocorrelations quite close to what is observed in the experiment. For large

t, the theoretical autocorrelations with FP converge to 0 in treatment A and

to 1/3 for treatment B.

13For starting values uniformly distributed between 0 and 100.
14A similar observation is made by Rassenti et al. (2000) who conducted oligopoly exper-

iments with Þve Þrms. They Þnd convergence at the aggregate level, but autocorrelation
is positive, too. Like us they conclude that a pure best-reply process cannot explain the
data.
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5 Conclusion

In this paper, we report results of an experiment designed to test whether

the best reply adjustment process causes unstable markets as predicted by

Theocharis (1960). We Þnd no sign of instability. Play converges roughly to

the Cournot equilibrium prediction in both treatments, whereas a best-reply

process would predict stability in treatment A and explosive ßuctuations in

treatment B.

We explore several explanations for our result based on alternative learn-

ing processes. In particular, we test a basic version of Þctitious play and

a process based on a mix between playing best replies and imitating the

average quantity of the other Þrms. While Þctitious play captures the over-

all properties of our data quite well (convergence to Nash equilibrium and

the autocorrelations), it does not capture the individual round by round

decisions of subjects as shown by the very low hit rates and insigniÞcant co-

efficients in the regressions. The regression results rather support the mixed

process between best reply and imitation. Of course, one should not judge

such an ad hoc learning theory based on just one experiment. Further ex-

perimental research is needed to assess the explanatory power of the mixed

process.
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Appendix A: Translation of instructions

Welcome to our experiment. Please read these instructions carefully. In the

next 1 or 2 hours you will have to make some decisions at the computer. You

can earn some real money. But please be quite during the entire experiment

and do not talk to your neighbors. Those who do not follow this rule will

have to leave and will not get paid. If you have a question please raise your

arm.
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You will receive your payment discretely at the end of the experiment.

We guarantee anonymity with respect to other participants and we do not

record any information connecting your name with your performance.

You can operate the computer with the keyboard or the mouse. Before

the experiment there is enough time to make yourself familiar with the

computer in a trial round. Money in the experiment is denominated in

�Taler�. At the end we exchange your earnings into DM at a rate of 500 T

= 1 DM. The experiment is divided into several rounds. As said we start

with a trial round. The real experiment starts with round 1.

You represent a Þrm which produces and sells a certain product. Besides

you there are 3 other Þrms which produce and sell the same product. Your

task is to decide how much to produce of your good. The capacity of your

factory allows you to produce between 0 and 100 units each round. Produc-

tion cost are 1T per unit. All units (also those of the other Þrms) are sold

on a market (like on a stock exchange or in an auction).

For this the following important rule holds: The price can be between

100T and 0T. The more is sold on the market in total, the lower is the price

one obtains per unit. To be precise the price falls by 1T for each additional

unit supplied. If � this is only an example � the other Þrms supply together

10 units and your Þrm supplies 3 units, then total quantity is 13. The

resulting price is 100 − 13 = 87. If the total quantity were 90, the price

would be 100 − 90 = 10. Profit per unit is the difference between the price

and the cost per unit of 1T. Note that you make a loss if the price is lower

than the per unit cost. Your proÞt in a given round results from multiplying

the proÞt per unit with your supplied quantity.

In each round the quantities of all Þrms are recorded and the resulting

proÞts are calculated. In each round you will be told your proÞt. ProÞts

from all periods are added and the sum is paid out to you in cash at the

end. Additionally you receive a Þxed payment of 150T each round. This

will be added to your proÞt each round.

In the Þrst round you decide on a quantity you want to produce and sell.

In all further rounds chance decides whether you have the opportunity to This ¶ for treat-

ment B only.revise your quantity. The computer has a mechanism which is comparable

to a �one�armed bandit�: If you draw a �1� or a �2�, you may change

your quantity. If you draw a �0�, you may not. That is, you may change

your quantity in 2 out of 3 cases. With a �0� the quantity of last period is

supplied automatically again. Note, that your quantity might be Þxed for
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several rounds. Following a �1� or a �2� you may revise your quantity.

In this case you will receive the following information. You are told the

total quantity of the other Þrms last period, and last period�s price.

Additionally, you have access to a proÞt calculator. The proÞt calculator

is shown on the last page of the instructions. It has two functions: 1. It

calculates your proÞt for arbitrary quantity combinations. That is, you can

enter two values, a total quantity for the others (button �A�) and a quantity

for yourself (button �I�), and the machine tells you how much you would

earn. 2. You can let it calculate for arbitrary quantities of others (button

�A�) the quantity at which you would make the highest proÞt (button �M�).

You can use the machine as much as you want before each decision. Before

we start you will have enough time to get to know the proÞt calculator

directly at the computer.

Everything we have explained to you holds for the other Þrms as well.

In fact, you are all reading exactly identical instructions.

The experiment lasts for 40 periods in total. Afterwards you will receive

your payments in DM. We want to reassure you again that all data will be

treated conÞdentially.
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Appendix B: screenshot

Figure 3: Screenshot

Translation (from top to button, left to right):

Bar at top: Firm 3, Round 2, Balance: 341.88 T

Window at top: Result of round 1, Total quantity of other Þrms: 71.10,

The price: 16.60, Your quantity: 12.30, Your proÞt: 191.88 T, Fixed

payment: 150.00 T.

Lower left window: Profit calculator, Enter total quantity of other Þrms,

Enter your quantity, Price, ProÞt, Exit proÞt calculator: Esc.

Lower right window: Enter quantity, Please enter your quantity, open

proÞt calculator.
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Figure 1: Frequencies of individual quantities: treatment A and B
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Figure 2: BR + Imit shows the simulation of equation (11) with α = .57.
BR is the regular best reply process, and BR with inertia is the best reply
process with θ = 1

3 . FP is Þcticious play.


