Frömmel, Michael; MacDonald, Ronald; Menkhoff, Lukas

Working Paper
Markov switching regimes in a monetary exchange rate model

Diskussionspapiere der Wirtschaftswissenschaftlichen Fakultät, Universität Hannover, No. 266

Provided in Cooperation with:
School of Economics and Management, University of Hannover

Suggested Citation: Frömmel, Michael; MacDonald, Ronald; Menkhoff, Lukas (2002) : Markov switching regimes in a monetary exchange rate model, Diskussionspapiere der Wirtschaftswissenschaftlichen Fakultät, Universität Hannover, No. 266

This Version is available at:
http://hdl.handle.net/10419/78367

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Markov Switching Regimes in a Monetary Exchange Rate Model*

Michael Frömmel, Universität Hannover a
Ronald MacDonald, University of Strathclyde
Lukas Menkhoff, Universität Hannover

Diskussionspapier Nr. 266
Draft: November 2002
ISSN 0949-9962

Abstract:
This paper extends the real interest differential (RID) model of Frankel (1979) by introducing Markov regime switches for three exchange rates over the years 1973 - 2000. Evidence of a non-linear relationship between exchange rates and underlying fundamentals is provided. One of the regimes represents exactly the RID case. Decisive fundamentals in determining regimes turn out to be mainly interest rates. The established relationship is shown to be stable in several respects: regimes are highly persistent, provide a much better description of the data than alternatives and are robust towards several modifications.

JEL classification: F31

Keywords: Markov switching model, monetary model of the exchange rate, real interest differential model (Frankel 1979)

* We would like to thank Olaf Hübner and Stefan Niermann for helpful suggestions. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

a Corresponding author.
Department of Economics, Universität Hannover, Königsworther Platz 1, 30167 Hannover, Germany; email address: froemmel@gif.uni-hannover.de
Introduction

Exchange rate modelling has received a new lease of life as a result of simple monetary models having well-defined long-run properties (see, for example, MacDonald and Taylor, 1993). Knowing that fundamentals matter in the long-run (see also Mark, 1995, MacDonald, 1999), attention has shifted to shorter-term horizons. Although the verdict on the importance of fundamentals is still ambivalent (see, for example, Frankel and Rose, 1995) new approaches, many of them building on non-linear relationships between fundamentals and exchange rates, seem to offer more hope at this horizon. In this paper we contribute to these efforts by re-examining the monetary model in a time-varying coefficients context using a Markov switching approach. Amongst other things, we show that for a relevant sample of exchange rates regime switching properties provide substantial explanatory power beyond a constant coefficients approach.

The poor explanatory power of structural exchange rate models (see, for example, Frankel and Rose, 1995) provides a natural motivation to search for a more sophisticated modelling of the fundamental determinants of exchange rates. Many of these approaches incorporate non-linearities, which have been indicated for exchange rates for some time now (see, for example, Hsieh, 1989). There are at least four strands in the literature, each postulating a characteristic link: first, linear models can be modified by allowing for the non-linear formulation of coefficients (see, for ex-
ample, Meese and Rose, 1991). Second, the relation between fundamentals and exchange rates can be expressed in an error correction framework, based on statistically derived cointegration vectors (MacDonald and Taylor, 1994; MacDonald and Marsh, 1997; for a more recent analysis of Euro exchange rates see van Aarle et al., 2000). Third, a similar idea of the long-term stable influences and short-term dynamics is captured in threshold approaches which assume mean-reverting properties of exchange rates (e.g. Taylor and Peel, 2000; Kilian and Taylor, 2001). Fourth, there has been a presumption in the literature that coefficients may be time-varying. Whereas earlier studies assume these coefficients evolve smoothly (Wolff, 1987, Schinasi and Swamy, 1989), we draw on the idea of changing regimes. This approach seems to be more appealing for two reasons. First, it fits in with the observation that exchange rate models perform well for some subperiods, whereas they do not for other periods (Meese, 1986, 1990), and, second, there is recent empirical support for the view that fairly sudden regime changes occur (Frydman and Goldberg, 2001).

The power of the Markov switching approach for exchange rate modelling was first demonstrated by Engel and Hamilton (1990) and Engel (1994). These studies used an time series approach, with two regimes, and applied their models to three currencies. Despite the success of these studies in capturing the dynamic evolution of exchange rates there are very few studies which have applied the Markov-switching approach to a fundamental exchange rate model. The exceptions are Marsh (2000), who uses a Markov switching model for daily exchange rate data with interest rate differentials as the only fundamental. He concludes that this approach does not provide superior forecasts for exchange rates in comparison with a pure time series Markov Switching Model. Clarida et al. (2001) apply a Markov switching
multivariate model to weekly spot and forward rates of four major exchange rates. They come to the conclusion that allowing for regime switches in an error correction framework provides forecasts which significantly outperform linear models. De Grauwe and Vansteenkiste (2001) use monthly data for high and low inflation countries' exchange rates for the period 1973 to 1998. Regressing the exchange rate on a set of fundamentals, they show that the coefficients switch significantly between the two states examined for high inflation countries but not for industrialised countries.

In this paper we demonstrate significant regime changes in a monetary exchange rate model for the three most important markets, i.e. the US-Dollar versus D-Mark, Yen and Pound (see Bank for international Settlements, 2002). Our paper differs from the study of De Grauwe and Vansteenkiste (2001) – which is similar in considering several fundamentals – in several respects: first, the use of a regime switching approach in modelling exchange rate fundamentals is explicitly based on a market microstructure approach. This provides a substantial motivation for applying regime changes to the major markets. Second, the modelling follows Frankel's (1979) real interest rate differential exchange rate approach, which has been a widely used variant of the monetary approach. Third, our findings are seen to be robust to several modifications. Fourth, the Markov switching monetary exchange rate model does not systematically provide forecasting power. In summary, our results can be seen as further evidence in favour of non-linear modelling of fundamentals.

The paper is structured as follows: Section 1 motivates the approach of time-varying fundamentals and in particular regime switching fundamentals by referring to the market microstructure literature. In Section 2 the Markov switching methodology is described. Section 3 presents the estimation results for three major exchange
rates, which are further discussed in Section 4. Robustness checks are performed in Section 5 and Section 6 summarizes our main findings.

1. On the regime switching character of fundamentals

Traditional applications of the monetary exchange rate model rely on a single state relationship between fundamentals and exchange rates. As we have noted, our application of the monetary model relaxes the assumption of a single state. The monetary models can be derived on an ad hoc basis, using Cagan style money demand functions or from an optimising model. In this paper we use the extended monetary model, first established by Frankel (1979), and referred to as the "real interest rate difference model (RID)". This model nests both the flexible price and the sticky price monetary model, within it, and may be represented by the following equation:

\[e_t = c + \alpha (m_t - m_t^*) + \beta (y_t - y_t^*) + \gamma (i_t^s - i_t^s*) + \delta (i_t^l - i_t^l*) + \epsilon_t \]

where \(e_t \) denotes the log of the spot rate at time \(t \), defined as the home currency price of a unit of foreign currency (in our study the US-Dollar is the foreign currency), \(m_t \) the log of the money supply, \(y_t \) is the log of output, \(i_t^s \) is the short-term interest rate, which captures liquidity effects in this model, and \(i_t^l \) is the long-term interest rate which captures expected inflation. The asterisk represents the foreign country which is the United States in our study. From a monetary perspective one would expect the estimated coefficient on the relative money supply term to be close to one and the income elasticity, \(\beta \), should be estimated negative. The coefficient on the short-term interest rate is also expected to be negative, while the expected inflation term should exhibit a positive influence on the exchange rate.
An abstract relation as simple as the monetary model is perhaps most useful as a long run relationship but is unlikely to capture the full dynamic interrelationships between fundamentals and exchange rates. One major criticism in this respect is the observation of foreign exchange market professionals that the importance of fundamental factors appears to change over time. What has been anecdotal evidence of the market in the past has recently become the subject of systematic market microstructure research (see, for example, Lyons, 2001). Three studies can be used to substantiate the claim of an unstable relationship between fundamentals and exchange rates. In similarly designed questionnaire surveys in the US (Cheung and Chinn, 2001) and in the UK (Cheung et al., 1999), foreign exchange dealers were asked which announcement of fundamentals they regarded as most important for their market. The fundamentals referred to were, unemployment, an interest rate, the inflation rate, the trade deficit, GDP, and a category "other". The response from these surveys is summarised in Table 1 and it reveals some interesting insights. First, fundamentals are of different importance to professionals, second, the relative importance of fundamentals between the two countries is very similar, but the difference over time is enormous. Indeed – as the lower part of Table 1 indicates – the difference over time is clearly larger than the difference between the two countries. To put this last finding into numbers, the average absolute difference between countries for the ten cases (five fundamentals times two points in time) is 5.7 percentage points, but the average absolute difference over time for ten cases (five fundamentals times two countries) is 15.4 percentage points and thus three times larger.

INSERT TABLE 1 ABOUT HERE.
These findings substantiate convincingly that market participants regard the importance of fundamentals as time-varying. What is not clear, however, are possible reasons for this instability. In this respect another questionnaire survey conducted in 1992, and analysed by Menkhoff (1998), provides further illumination. In this survey FX dealers and international fund managers in Germany were explicitly asked why fundamentals might attract different attention over time. Table 2 presents the exact question and response statements which the professionals were asked to evaluate with different degrees of (dis)agreement. Consistent with the evidence given above is the fact that the "no change over time" statement is denied by almost 85% of respondents.

Interestingly, moreover, is the evaluation of the other two statements which formulate alternative sources of instability. The first alternative stresses that changing attention reflects the "most urgent problem", whereas the second alternative regards changing attention as a sign of "fashions", that is of non-fundamental influences. Although both answers attract clear agreement, the "most urgent problem" alternative receives even more than 85% agreement, and the "fashions" alternative more than 75%. In addition, the latter responses show more extreme responses at both ends of the possible spectrum, thereby indicating less consensus. We interpret these additional findings as not only supporting time-varying importance of fundamentals, but also as linking changing importance to fundamental real world problems. Changing fundamental scenarios can in principle be detected by a regime switching approach.
The identification of regimes is simplified by the limited number of relevant fundamentals that is quite stable over time and that can be related to the monetary model. Regarding the number of fundamentals, the list in Table 1 includes a category "other" which would capture further factors but which hardly received any attention by respondents. As additional information, the German survey study also includes a list of ten fundamentals, where (for the year 1992) interest rates rank first, closely followed by growth and unemployment. The money supply and inflation rate are ranked jointly in third place and a fourth factor attracting wide agreement is the trade balance. This short list of fundamentals is clearly reflected in the variant of the monetary model chosen here: the survey items "unemployment" and "growth" address the state of the real economy and are thus captured by the model’s "income" term. "Inflation" and "money" are fundamentals addressing the longer-term inflation prospects of the economy. This aspect is covered in the RID-model by the money supply term and the long-term interest rate. The interest rate is identical in the surveys as well as in the model. The only fundamental from the surveys which is not captured in our variant of the monetary model is the "trade balance" or "trade deficit". We believe that this variable is better suited to model the real exchange rate and leave this on the agenda for future research. In summary, survey evidence on the behaviour of foreign exchange participants strongly suggests that instability over time in the relationship between fundamentals and exchange rates matters. In summary, the modelling of time-varying fundamentals is more than justified from this literature and the particular regime-switching approach seems to be reasonable.
2. The Markov switching methodology

The Markov Switching Model (MSM) has been popularised by Hamilton (1989), although it was originally motivated by Goldfeld and Quandt (1973). For our aim it is convenient to consider it as a switching regression (for this particular form of the MSM see Hamilton, 1994, chapter 19):

\[
rt = \begin{cases}
\beta_1 \cdot z_t + \epsilon_t, & \text{if } s_t = 1 \\
\beta_2 \cdot z_t + \epsilon_t, & \text{if } s_t = 2
\end{cases}
\]

(2)

where \(r_t\) is the time series to be explained, in our case the 12-months percentage change of an exchange rate, \(z_t\) is a vector of exogenous regressors, \(\beta_i\) is a vector of real numbers, whose values depend on the non-observable state variable \(s_t\), and \(\epsilon_t\) is Gaussian white noise. The state variable \(s_t\) is assumed to follow an ergodic first-order Markov process and is characterised by the matrix \(\Pi\) consisting of the transition probabilities \(p_{ij}\) from state \(i\) to state \(j\):

\[
\Pi = \begin{bmatrix} p_{11} & p_{12} \\
p_{21} & p_{22} \end{bmatrix}, \quad p_{ij} = \Pr(s_t = j | s_{t-1} = i)
\]

(3)

Once the coefficients of the model and the transition matrix have been estimated, the probability \(\Pr(s_t = j | r_1, ..., r_T)\) of being in state \(j\), based on the knowledge of the complete series, can be calculated for each date (for details of the algorithm see Kim and Nelson, 1999). This series of probabilities will be referred to as the \textit{smoothed probabilities}, in contrast to the series of probabilities \(\Pr(s_t = j | r_1, ..., r_t)\) of being in state \(j\) based on the information up to date \(t\) - the \textit{filter probabilities} - which is also calculated. It is straightforward to show that for the last date, that is \(t = T\), the smoothed probability equals the filter probability.
In our investigation the vector z_t of fundamentals in equation (2) is chosen according to the real interest differential monetary model (RID), as presented in the previous section. In this context the set of fundamentals covers relative changes in money supply (Δm_t), industrial production (Δy_t), the money market rate (Δi_t^s) as the short term interest rate and the government bond yield (Δi_t^l) as the long term interest rate. Equation (1) can therefore be rewritten as:

$$
\begin{cases}
 c_1 + \alpha_1 \cdot \Delta m_t + \beta_1 \cdot \Delta y_t + \gamma_1 \cdot \Delta i_t^s + \delta_1 \cdot \Delta i_t^l + \epsilon_1, s_t = 1 \\
 c_2 + \alpha_2 \cdot \Delta m_t + \beta_2 \cdot \Delta y_t + \gamma_2 \cdot \Delta i_t^s + \delta_2 \cdot \Delta i_t^l + \epsilon_1, s_t = 2
\end{cases}
$$

with state-depending coefficients. For comparative purposes the RID variant of the monetary model is also estimated with constant coefficients, which serves as a benchmark model and the null hypothesis for the tests.

Testing a MSM against a linear alternative is not straightforward because under the null hypothesis of a constant coefficient model without regime switches, only one regime governs the exchange rate and the transition probabilities are not identified. Garcia (1998) gives asymptotic critical values for Hansen’s (1992, 1996) test for a couple of simple MSMs with two regimes. The set of models discussed by Garcia, however, does not include a model with exogenous regressors and a constant variance over the two regimes as used in our investigation. So his critical values are not valid for our model.

We therefore rely on Wald tests as used by, for instance, Engel and Hamilton (1990), Engel (1994) and Dewachter (1997). The Wald tests allow for testing two hypotheses. The first one tests against the null of $p_{11}+p_{22} = 1$; that is, it tests for systematically alternating regimes (as opposed to arbitrarily switching between regimes). The second one tests against the null of identical parameters in the different states.
The latter test also facilitates testing which coefficients differ for the regimes. Both tests in combination test for Markov switching against the null hypothesis of a linear model. However, due to the problems mentioned above, the results have to be interpreted cautiously.

3. Data and estimation results

For the estimation we use monthly data from January 1974 to October 2000\(^1\) for four industrialised countries (the United States, Germany, United Kingdom, Japan) from the IFS database by the International Monetary Fund\(^2\). The estimation was performed in GAUSS.

Each fundamental is calculated as the difference of the percentage change during the last twelve months in the home country versus the percentage change for the same horizon in the United States. This approach is applied for two reasons: first, it avoids seasonal effects in the data and reduces the noise from short-term movements in the exchange rates and the fundamentals and therefore promises more stable results. Second, Frankel's model is based on a version of purchasing power parity PPP (Frankel, 1979, p. 612). Absolute PPP, however, is not a particularly useful construct, due to well-known market imperfections. Therefore, it is straightforward to work with changes in exchange rates and fundamentals, as is done in empirical work on PPP.

\(^1\) For Germany a shorter series up to December 1998 was used due to the introduction of the EURO in January 1999.

\(^2\) The following series have been used (replace ccc by country code): ccc.RF.ZF (exchange rate); ccc.39MBC (money for Germany and the US), ccc.59MC.ZF (money for the UK), ccc.34.BZF (money for Japan), ccc.66...CZF (industrial production), ccc.60B...ZF (short term interest rate); ccc.61...ZF (government bond yield)
For example, the relative change in the money supply is calculated as (the other fundamentals are calculated analogously):

\[
\Delta m_t = \frac{m^\text{home}_{t-12}}{m^\text{home}_{t-12}} - \frac{m^\text{USA}_{t-12}}{m^\text{USA}_{t-12}}
\]

(5)

Table 3 shows the estimation results for the constant coefficients RID for the exchange rates of the Deutsche Mark (DEM), the Japanese Yen (JPY) and the Pound Sterling (GBP), all against the US Dollar (USD).

The results are heterogeneous and hardly consistent with theory. The expected signs from the theoretical model are given in the last column for comparison. First, we note that the coefficient on the money supply term is significant, but wrongly signed, relative to the theoretically derived expectation, for the Deutsche Mark and the Pound Sterling, whereas it is correctly signed but not significant for the Yen. Second, the sign of the coefficient on the short-term interest rate differential is significantly positive for the Deutsche Mark, significantly negative for the Yen and insignificant for the Pound. The long-term interest rate differential has the correct sign and is significant only for the Pound, but not for the other exchange rates. Only for the coefficient on industrial production do we find the correct sign and significance in accordance with theory. These results are in line with early empirical findings. For example, Dornbusch (1980), Boothe and Glassmann (1987) find that the initial relationship reported by Frankel breaks down as soon as the sample is extended beyond 1978.
The results are substantially better when the restriction of constant coefficients is abandoned. Table 4 provides estimation results for the real interest differential model with Markov switching coefficients.

Table 4 about here.

It seems worth mentioning that the MSM distinguishes regimes which are highly persistent. The probability of remaining in the present state is always between 91 and 97 per cent, most probabilities being close to 95 per cent. The smoothed probabilities are given in Figure 1 in graphical form and show the low number of regime switches due to the high persistence: 7 for the DEM/USD, 11 for the JPY/USD and 10 for the GBP/USD. This result is in line with the findings of Frydman and Goldberg (2001), who also find 7 switches for the DEM/USD between 1973 and 1998, using a different methodology.

Figure 1 about here.

For all exchange rates one regime is identified within which the estimations are fully consistent with Frankel's model: all coefficients are correctly signed and, except for the short-term interest rate for the Pound Sterling, significant at least at the 10 per cent level. The RID regime is given in Table 4 as 'State 1' and covers, respectively, 47 and 57 per cent of the whole sample for the DEM/USD and the GBP/USD, but only 24 per cent for the JPY/USD. This finding is consistent with the notion that the RID model is a useful explanation of exchange rates in certain periods. There are
other periods, however, where exchange rate determinants either have a clearly different degree of influence – leading to different coefficients – or have a different sign. According to the approach chosen there is always a second regime, that is ‘State 2’ which we now discuss.

A first insight in this respect is that the signs in state 2 are different from state 1 and are heterogeneous for the three exchange rates. Turning to each exchange rate, the JPY/USD is different concerning the significance of the parameters in state 2. Except for the constant, which is significant at the 1 per cent level for each single estimation, only the changes in output are significant at the 10 per cent level. This means that the JPY/USD rate is characterised by regime 1 which is consistent with theory but occurs less frequently, and a more dominating one which is hardly connected to any changes in the fundamentals considered here.

The picture is different for the DEM/USD and GBP/USD rates, which also show highly significant estimations in the second regime. But whilst the signs for changes in output are in accordance with the RID model for both rates, the GBP/USD shows a negative coefficient on the changes in the money supply. This particular result is contrary to what was to be expected. Another interesting result is that for the DEM/USD the signs of the coefficients for the short- and long-term interest rates are reversed in comparison with regime 1, that is the coefficient for the long-term interest rate is negative in regime 2, whereas the short-term interest rate's coefficient is positive.

In summary, the MSM has proved to be useful in several respects. First, there are two significant regimes which can be identified and this indicates the usefulness of a regime switching approach. Second, regimes have a length of roughly two years, which leaves open the possibility that they are caused by major real world economic
issues whose impact is lasting for some time. Third, one of these regimes has coefficients which conform to the RID model, confirming earlier findings of appropriate monetary exchange rate modelling in certain periods only. Fourth, the second regimes reveal some complexity as coefficients have different signs from regime 1 and are heterogeneous for the three exchange rates. This complexity fits in with the failure of simple models to explain exchange rates. Despite these results, two more challenges have to be overcome: from a statistical viewpoint, does the MSM provide a superior modelling to alternatives, and from an economic viewpoint, can the regimes identified be linked to economic characteristics?

4. Discussion of results

Using a univariate exchange rate specification, Engel and Hamilton (1990) were the first to demonstrate the power of MSM in explaining exchange rate behaviour. One may thus expect that our fundamental-based version of the MSM provides a better fit to the data than competing models do.

Table 5 shows some conventional measures of fit for the MSM with fundamentals, a standard MSM without fundamentals, a constant coefficients model and a simple random walk with drift. For all models the coefficients have been estimated based on the whole sample period and the expectations based on these models have been compared with realised exchange rate changes. The expected returns for the two Markov switching models are calculated as:
Calculating the expected returns for the linear model and the random walk with drift is straightforward.

Both, MSM models, with and without fundamentals, generate lower errors than the classical models and the MSM with fundamentals performs best. Figure 2 shows plots of the estimated exchange rate changes from the constant coefficient model and the MSM with fundamentals in comparison with the actual exchange rate changes. The MSM tracks the data much better than the constant coefficient model.

![Insert Figure 2 about here.]

Statistical superiority is, however, a necessary but not a sufficient condition for satisfying model adequacy. It is therefore of interest to determine if the regimes can be linked to some characteristics of the economic environments. As a first step in examining this issue we refer to the Wald tests, reported in Table 6, which allow us to better assess the significance of differences in the coefficients. It can be seen that the intercepts differ significantly between the states for all of the exchange rates. The many significant results for the slope coefficients show that the regime changes are in fact caused by different fundamentals for the exchange rates. In addition to the insights from Table 4, we are now in a position to say something about characteristic differences between regimes, indicating which differences in fundamentals are decisive.
The DEM/USD and the JPY/USD differ in the coefficients for the short- and the long-term interest rates, whereas there is no significant difference in the coefficients for changes in money supply and production between the regimes. This means that the regime dependence is mainly driven by the assessment of interest rates, whereas the influence of money and output does not differ substantially. The case of the GBP/USD is somewhat different, as only long-term interest rates are also significantly different between regimes but not short-term rates. Some of the dynamics for this currency are instead captured by money supply and output. As an interim summary, the most important although not all relevant differences between regimes appear to be linked to differences in interest rate changes.

5. Robustness checks

To ensure our results are stable, and in particular to confirm the existence of two significantly different regimes, we check the robustness of our results. In particular, we vary four elements of our baseline model: the exact definition of variables, the differencing frequency (originally 12-month changes), the fundamental variables set and the sample period. Finally, we test for out-of-sample forecasting power.

First, we check, whether the results are related to the exact definition of fundamentals. For this reason several fundamentals are substituted for similarly defined ones. There are no major differences in the results, when M2 is substituted by M3 for the money supply. This also applies when other proxies for inflation expectations are
used, such as realised inflation data. For both indices of producer and consumer prices, the results do not differ.

Second, using 6-months or 3-months changes, instead of 12-month changes, does not affect most of the signs of the estimated coefficients, but the coefficients mostly become insignificant. This may indicate that exchange rates fluctuate around the model-based estimations in the short run or that there are time lags of several months between changes in the fundamentals and those in the exchange rate.

Third, the set of fundamental variables is changed by omitting the second interest rate, thus converting the RID approach to the standard monetary model, and by adding a proxy for trade volume. Adding the relative percentage changes of imports and exports as a proxy for trade volume only slightly affects the values of the existing variables. However, imports as well as exports are significantly related to changes in the exchange rate for all rates and regimes other than regime 2 for the JPY/USD rate. Omitting the long-term interest rate does not substantially influence the coefficients of the remaining variables, but the fit of the model gets slightly worse.

Fourth, we re-estimate the results shortening the sample period successively for two years each. For regime 1 this does not affect the signs of the estimated coefficients, but their size differs over time. While the influence of the money supply and the output variable becomes larger when the sample is shortened, there are only minor changes for the short-term interest rate. The long-term interest rate, which serves as our proxy for inflation expectations, finally becomes insignificant when the sample ends before 1990. For regime 2 the results are different: the coefficients for relative

1 The results are given for the DEM/USD rate. Results for the other rates are similar and available from the authors on request.
changes in the money supply and output become insignificant, whereas the interest rates do not change their sign, being highly significant. This behaviour suggests that the structure of our findings is somewhat sensitive with respect to the exact sample period. In particular, when sample periods differ markedly, some characteristics of the regimes may change and this is perhaps to be expected in light of the earlier literature claiming high instability in the exchange rate fundamentals relationship.

This finding raises doubts about the ability of the RID model with Markov switching coefficients to provide out-of-sample forecasts which significantly outperform those of a random walk. To explicitly assess the models forecastability, we estimate the model over a rolling sample of ten years and calculate the conditional expectations of the returns for the next one to 12 months. The monetary model with time-varying coefficients is slightly outperformed by random walk forecasts in the short-run (see the results in Table 7). This leads to the conclusion that, although the MSM captures most of the structural instability in the coefficients, there is still some additional source of time-variation left. It has, however, to be stated, that our results are strongly in favour of a non-linear relationship between exchange rates and macroeconomic fundamentals. These findings are in line with other recent studies as surveyed by Neely and Sarno (2002).

6. Conclusions

In this paper we have re-examined the RID variant of the monetary model using a Markov-switching framework. The motivation for our work is based on three

INSERT TABLE 7 ABOUT HERE.

- 18 -
strands in the exchange rate literature: a number of studies indicate some influence of the monetary model’s fundamentals on exchange rates, results from the market microstructure literature suggest a time-varying influence of a limited set of fundamentals on the exchange rate, and, finally, an MSM approach has proved much better at describing exchange rates than linear approaches. The overall results are highly supportive of our chosen approach.

First, there appear to be two highly persistent regimes that can be identified for the three exchange rates under investigation. Second, one of the regimes shows exactly the coefficients as forecast by the RID model. Third, the MSM model significantly improves the quality of the estimation over some alternatives and the best model is the model combination of a RID approach with Markov switching regimes. The fundamentals that differentiate the two regimes are in large part but not only interest rates. Finally, we demonstrate that this outcome is quite robust against several modifications to sample periods, definitions, measurement and even the exact set of variables.

However, our results also show that there is always a second regime that is difficult to explain theoretically. Moreover, the other regimes are heterogeneous which is consistent with earlier literature indicating that there are complex influences in exchange rate determination. Finally, structural stability is not good enough to systematically produce out-of-sample forecasting ability.

Taking Rogoff’s (2001) verdict as a benchmark that "explaining the yen, dollar and euro exchange rates is still a very difficult task, even ex post", we claim some progress. Fundamentals matter and despite limitations mentioned, our contribution is in line with high frequency studies which indicate some non-linear fundamental influ-
ences on exchange rates. It is up to further research in improving exchange rate explanation beyond the present promising indications.

References

TABLE 1. The impact of economics announcements on the FX market

<table>
<thead>
<tr>
<th></th>
<th>Unemployment rate</th>
<th>Interest rate</th>
<th>Inflation</th>
<th>Trade deficit</th>
<th>GDP</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA 1996/97</td>
<td>33.0</td>
<td>30.9</td>
<td>18.3</td>
<td>9.9</td>
<td>2.1</td>
<td>4.2</td>
</tr>
<tr>
<td>UK 1998</td>
<td>27.0</td>
<td>46.7</td>
<td>19.7</td>
<td>2.5</td>
<td>0.0</td>
<td>1.6</td>
</tr>
<tr>
<td>USA 1991/92</td>
<td>16.3</td>
<td>22.8</td>
<td>10.9</td>
<td>37.5</td>
<td>3.8</td>
<td>0.5</td>
</tr>
<tr>
<td>UK 1993</td>
<td>9.2</td>
<td>29.2</td>
<td>9.2</td>
<td>45.8</td>
<td>3.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Differences between countries:
- USA-UK Now: 6.0 -15.8 -1.4 7.4 +2.1 - 5.65
- USA-UK 5y ago: 6.9 -6.4 1.7 -8.3 +0.5 -

Differences over time:
- Change USA: 16.7 8.1 7.4 -27.6 -1.7 -
- Change UK: 17.8 17.5 10.5 -43.3 -3.3 - 15.39

Data sources: Cheung and Chinn (2001) for USA, Cheung, Chinn and Marsh (1999) for UK
TABLE 2. Time-varying importance of fundamentals as seen by FX professionals

Question: Are economic variables regarded differently over time by market participants? Do you agree with the following statements?

() There are often variables in the foreground, which emphasise the actually most urgent problem.
() There are often variables in the foreground, which are just fashionable but not directly related to fundamental problems.
() The attention does not change over time.

<table>
<thead>
<tr>
<th></th>
<th>Most urgent problem</th>
<th>Fashions</th>
<th>No change over time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree fully</td>
<td>20.6</td>
<td>23.6</td>
<td>3.6</td>
</tr>
<tr>
<td>:</td>
<td>40.0</td>
<td>32.7</td>
<td>3.0</td>
</tr>
<tr>
<td>:</td>
<td>24.8</td>
<td>19.4</td>
<td>9.1</td>
</tr>
<tr>
<td>:</td>
<td>9.1</td>
<td>13.3</td>
<td>5.5</td>
</tr>
<tr>
<td>:</td>
<td>3.6</td>
<td>6.7</td>
<td>16.4</td>
</tr>
<tr>
<td>Disagree fully</td>
<td>1.8</td>
<td>4.2</td>
<td>62.4</td>
</tr>
<tr>
<td>Number n</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
</tbody>
</table>

Data source: Menkhoff (1998)

TABLE 3. Estimation results for the constant coefficient RID model

<table>
<thead>
<tr>
<th></th>
<th>DEM/USD</th>
<th>JPY/USD</th>
<th>GBP/USD</th>
<th>Expected signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept:</td>
<td></td>
<td></td>
<td></td>
<td>n.a.</td>
</tr>
<tr>
<td>(c)</td>
<td>-0.0166**</td>
<td>0.0108***</td>
<td>0.0239***</td>
<td></td>
</tr>
<tr>
<td>Money:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-0.1922*</td>
<td>0.0006</td>
<td>-0.8296***</td>
<td>> 0</td>
</tr>
<tr>
<td>Industrial production:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>-0.5023***</td>
<td>-0.0627***</td>
<td>-0.4233***</td>
<td>< 0</td>
</tr>
<tr>
<td>Short term interest rate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.0435**</td>
<td>-0.0292***</td>
<td>-0.0006</td>
<td>< 0</td>
</tr>
<tr>
<td>Long term interest rate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta)</td>
<td>-0.0890</td>
<td>0.0112</td>
<td>0.1086**</td>
<td>> 0</td>
</tr>
</tbody>
</table>

Asterisks refer to level of significance, *: ten per cent, **: five per cent, ***: one per cent
\textbf{TABLE 4.} Estimated coefficients for the MSM

<table>
<thead>
<tr>
<th>State 1</th>
<th>DEM/USD</th>
<th>JPY/USD</th>
<th>GBP/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>0.0893***</td>
<td>-0.0414***</td>
<td>-0.0688***</td>
</tr>
<tr>
<td>α_1</td>
<td>0.1600*</td>
<td>0.0082***</td>
<td>0.2045</td>
</tr>
<tr>
<td>β_1</td>
<td>-0.5958***</td>
<td>-0.1845***</td>
<td>-0.7344***</td>
</tr>
<tr>
<td>γ_1</td>
<td>-0.0860***</td>
<td>-0.0272**</td>
<td>-0.0006</td>
</tr>
<tr>
<td>δ_1</td>
<td>0.1654***</td>
<td>0.1172***</td>
<td>0.1762***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State 2</th>
<th>DEM/USD</th>
<th>JPY/USD</th>
<th>GBP/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2</td>
<td>-0.1179***</td>
<td>0.0282***</td>
<td>0.1290***</td>
</tr>
<tr>
<td>α_2</td>
<td>0.0390</td>
<td>0.0003</td>
<td>-0.8722***</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.3895***</td>
<td>0.0204*</td>
<td>-0.5401***</td>
</tr>
<tr>
<td>γ_2</td>
<td>0.0317**</td>
<td>-0.0028</td>
<td>-0.0088***</td>
</tr>
<tr>
<td>δ_2</td>
<td>-0.1022**</td>
<td>-0.0070</td>
<td>0.2810***</td>
</tr>
</tbody>
</table>

p_{11} | 0.9494*** | 0.9137*** | 0.9697*** |
p_{22} | 0.9556*** | 0.9726*** | 0.9590*** |

$p(s_1=1)$ | 0.4676 | 0.2410 | 0.5747 |
$p(s_1=2)$ | 0.5324 | 0.7590 | 0.4253 |

Expected duration of the regimes (in months)

Regime 1 | 19.8 | 11.6 | 33.0 |
Regime 2 | 22.5 | 36.5 | 24.4 |

Asterisks refer to level of significance, *: ten per cent, **: five per cent, ***: one per cent.
TABLE 5. Fit of the MSM in comparison with competing models

<table>
<thead>
<tr>
<th></th>
<th>DEM/USD</th>
<th>JPY/USD</th>
<th>GBP/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markov switching RID model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>0.06075</td>
<td>0.02324</td>
<td>0.06042</td>
</tr>
<tr>
<td>MAE</td>
<td>0.04767</td>
<td>0.01822</td>
<td>0.04663</td>
</tr>
<tr>
<td>Pure Markov switching model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>0.06527</td>
<td>0.02449</td>
<td>0.06486</td>
</tr>
<tr>
<td>MAE</td>
<td>0.04692</td>
<td>0.01995</td>
<td>0.05102</td>
</tr>
<tr>
<td>Constant coefficient RID model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>0.11992</td>
<td>0.03821</td>
<td>0.11367</td>
</tr>
<tr>
<td>MAE</td>
<td>0.09872</td>
<td>0.02869</td>
<td>0.09059</td>
</tr>
<tr>
<td>Random walk with drift</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>0.12402</td>
<td>0.04123</td>
<td>0.12434</td>
</tr>
<tr>
<td>MAE</td>
<td>0.10230</td>
<td>0.03026</td>
<td>0.10167</td>
</tr>
</tbody>
</table>

RMSE: root mean squared error. MAE: mean average error

TABLE 6. Wald test results for transition probabilities and coefficients

<table>
<thead>
<tr>
<th>H₀</th>
<th>DEM/USD</th>
<th>JPY/USD</th>
<th>GBP/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁₁=1-p₁₁₂</td>
<td>10.058***</td>
<td>7.300***</td>
<td>8.433***</td>
</tr>
<tr>
<td>c₁=c₂</td>
<td>8.745.685***</td>
<td>66.358***</td>
<td>1.829.783***</td>
</tr>
<tr>
<td>α₁=α₂</td>
<td>0.984</td>
<td>0.002</td>
<td>308.819.285***</td>
</tr>
<tr>
<td>β₁=β₂</td>
<td>0.980</td>
<td>1.023</td>
<td>23.680***</td>
</tr>
<tr>
<td>γ₁=γ₂</td>
<td>24.862***</td>
<td>8.276***</td>
<td>0.453</td>
</tr>
<tr>
<td>δ₁=δ₂</td>
<td>15.935***</td>
<td>4.809**</td>
<td>15.467***</td>
</tr>
</tbody>
</table>

The Wald statistics given in the table have been calculated using the asymptotic covariance matrix. Asterisks refer to level of significance. **: five per cent. ***: one per cent
TABLE 7. Mean average errors of out-of-sample forecasts based on competing models

<table>
<thead>
<tr>
<th>Model</th>
<th>DEM/USD</th>
<th>JPY/USD</th>
<th>GBP/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markov switching RID model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>0.0291</td>
<td>0.0093</td>
<td>0.0298</td>
</tr>
<tr>
<td>6 months</td>
<td>0.0945</td>
<td>0.0188</td>
<td>0.0754</td>
</tr>
<tr>
<td>9 months</td>
<td>0.1724</td>
<td>0.0379</td>
<td>0.1159</td>
</tr>
<tr>
<td>Pure Markov switching model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>0.0239</td>
<td>0.0079</td>
<td>0.0250</td>
</tr>
<tr>
<td>6 months</td>
<td>0.0817</td>
<td>0.0147</td>
<td>0.0718</td>
</tr>
<tr>
<td>9 months</td>
<td>0.1239</td>
<td>0.0234</td>
<td>0.1001</td>
</tr>
<tr>
<td>Constant coefficient RID model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>0.0264</td>
<td>0.0083</td>
<td>0.0419</td>
</tr>
<tr>
<td>6 months</td>
<td>0.0936</td>
<td>0.0655</td>
<td>0.0983</td>
</tr>
<tr>
<td>9 months</td>
<td>0.1917</td>
<td>0.2006</td>
<td>0.1835</td>
</tr>
<tr>
<td>Random walk with drift</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>0.0228</td>
<td>0.0076</td>
<td>0.0237</td>
</tr>
<tr>
<td>6 months</td>
<td>0.0736</td>
<td>0.0142</td>
<td>0.0623</td>
</tr>
<tr>
<td>9 months</td>
<td>0.1141</td>
<td>0.0203</td>
<td>0.0843</td>
</tr>
</tbody>
</table>
FIGURE 1. Smoothed Probabilities of being in State 1 (lower line) and Exchange Rate (upper line)

a) DEM/USD

b) JPY/USD

c) GBP/USD
FIGURE 2. Fit of Estimated Models to actual percentage 12-months changes

a) DEM/USD

Bold line: actual percentage change in exchange rate, thin line: fitted by constant coefficient RID, dotted line: fitted by RID with Markov switching coefficients.

b) JPY//USD

c) GBP/USD