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Abstract

Except for special cases, passport options do not have closed-form solutions. Here we show how to derive
approximate solutions using finite element methods. We also show that finite elements offer advantages in
computing the hedge parameters.
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1 Introduction

Passport options are a new kind of financial instrument introduced by Bankers Trust in 1997. They are used
to protect trading accounts. The basic passport option allows the holder to take the profit from a trading
account while any losses are covered by the writer of the option. The maximal amount a trader can go either
long or short is limited to the same pre-specified amount. To make passport options cheaper, or to reduce the
risk to the writer, certain exotic features such as caps, floors and barriers have been employed. The concept
of passport options has been extended to general options on trading accounts where the limits for going short
or long do not necessarily have to be equal anymore. This concept of an option on a trading account contains
many special cases such as plain vanilla European and American options, passport options, and Asian options.

Passport options can be used to:
e protect the trading account of inexperienced traders;
e to price life insurance claims contingent on the performance of a reference fund [4];

e to develop new commodity hedging strategies [14].
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2 The Pricing Model for Passport Options

2.1 Different Approaches

Currently, there are three approaches to pricing passport options which differ in the assumption on interest
rates:

e Ahn/Penaud/Wilmott ([1], [2], [30]): There is only one interest rate for borrowing and lending. The
underlying does not pay any dividends.

¢ Andersen/Andreasen/Brotherton-Ratcliffe [3]: There is only one interest rate r for borrowing and lend-
ing. The underlying pays a continuous dividend yield +.

e Hyer/Lipton-Lifschitz/Pugachevsky [16]: There are different rates for borrowing and lending.

We have chosen the approach by Andersen/Andreasen/Brotherton-Ratcliffe because it can be extended easily
by different interest rates for borrowing and lending ([3], S. 16). Also, we have adapted the notation of that
paper. Different interest rates for borrowing and lending are a rather unusual assumption; even the authors
of this approach discuss the special case of equal rates (the so-called symmetric case) in much more detail
than the general case ([16], S. 129f). The approach by Ahn/Penaud/Wilmott is, therefore, obviously a special
case of the model by Andersen/Andreasen/Brotherton-Ratcliffe with v = 0.

2.2 European Passport Options

The starting point is the Black-Scholes framework, in which the underlying S follows the following stochastic
differential equation; see [3]:

dSt

—~
~—

= (r—7)dt + odW(t) (1)

\/,\

5(t)
Consider an investor in ¢; holding wu(t;) € [-1,1] in this underlying. From ¢; to t;11 the investor gains
w(t;) [S(tix1) — S(t;)]. Summing up over all periods, the total investor’s total gain w is

H—
Z i) [S(tim1) — S(t:)] (2)
=0

Assuming continuous trading, i.e. lim;_,o(¢; — #;21) = 0 the gain can be expressed as:

t
w(t) = / u(3)dS (s) (3)
0
< dw(t) = wu(t)dS(t) with w(0)=0 (4)

The European passport option gives the holder the right but not the obligation to receive w in T'. In case
w < 0 the rational investor is not interested in delivery so that the payoff equals

[w(T)]" = max [0, w(T)] (5)

For deriving the pricing equation we will use a similar argument as Black and Scholes: An instantaneously
riskless portfolio I consists of one passport option and —k& units of the underlying.

n=v -kS (6)
Within the time interval (¢,t + dt) the value of this portfolio changes by
dll = dV — k(dS + vSdt) (7

We assume the existence of an optimal strategy u* and the derivatives Vsg, Viyw, and Vg,,. We also presuppose
that the holder of the option maximizes his revenues without being hindered from taking «* by hedging
necessities or other superimposed circumstances. Then the following holds:

v v v 10%*V o’V 10%*V
dV = —dt + —=dS + —dw + = (dS)? + asaw(d‘gdeiW

2
ot 35 w 2952 (dw) 8
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To simplify this equation, two more results are needed. Squaring eq. (1) gives:
(dS)? = o*S%dt (9)

The profit-maximizing behavior of the holder turns eq. (4) into:

dw = u*dS (10)
Plugging these results into eq. (8) leads to:
av av % 0%V o*V 0%V
dV = —dt ds + = 2u — | 0?S%dt 11
V= +<as+ a)S (as2+ asanraw?)”S (11)
The parameter k£ has to be chosen for the portfolio IT to become instantaneously riskless.
8V 8V
k= 12
85’ 4w (12)

Because of the absence of arbitrage the riskless portfolio IT has to grow by the same rate as a money market
account r.

dll = rIldt (13)
Combining above results:
oV o25% (0°V . 02V w0 2V ov LOV\
TR <852 +2u asaw+(“>W)*““”S(as*“%)”v (14)
With the following final condition:
V(T,S,w) =wt | (15)

the substitution of variables & = w/S, reduces the dimensions of the problem by one. Using this substitution
generates the following PDE:

* 1 * _
S =) =) g + 3 = )P g = (16)
with 5 52
* o v 2 (%
u* = sign ((r - 'y)a—x — 0 @> (a7
where v(T') has to be monotonously increasing and convex in z.! Equivalent formulations of eq. 17 are:
v ov 1 , 0% Ov 0*v
— — —+ =(1 — —)=— ) = 1
= alr =gty (-G - ) = (18)
and:
Ov ov 1 9y 2 0% v ,0%v|
E—x(r—’y)a—x—ki(l—kz)a @—F(r—'y)a—x—zaﬁ =y (19)
with:
o(T,2) = vr(x) (20)

as a final condition. Only for r = =y a closed-form solution is known (compare sec. 4.1.1). For r # v we have
to resort to numerical techniques.

Eq. (19) is the PDE for the passport option value, given a strategy u*. It is also possible to view this problem

from a different perspective by looking for an equation that defines the optimal strategy p*. Via the principles

of dynamic programming, a PDE, called the Hamilton-Jacobi- Bellmann equation (HJB), can be derived which
defines this optimal strategy [18]:

252

(r—+)SVs +rwVy —rV —

max [VSS + 2/L*V5w + (N*)2wa:| =V (21)

—1<p*<1

INon-convex Payoffs are discussed below in sec. 2.3.
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This equation has to be used as a basis for numerical computations when u* and p* are not known. Such
problems arise when caps or barriers on either w and/or S are introduced. A transformation as z = w/S is
then not possible anymore.

The Hedge Ratio k is slightly different to the Black-Scholes framework. The basic idea is that a portfolio II
consisting of a long call C' and a short position in k shares S

n=C—-kS (22)
is riskfree for an infinitesimal amount of time.? The hedge parameter in the Black-Scholes model is

oC
355 (23)
Portfolios containing passport options can be immunized against infinitesimal changes in the share via eq.
(22). For k we have (compare ([3], S. 33f)):
Ov
k=v+ u" —x)=— 24
vt (0 = 2) g (24
This implies that numerical difficulties arising in computing A are also present in computing k. Finite elements
provide approximate solutions to the entire domain consisting of simple algebraic functions. Whenever u*(S)
changes its sign, k(x) shows a jump.

2.3 Non-Convex Payoffs
2.4 A Correction

According to ([3], PROPOSITION 5) the result of the previous section can be generalized to non-convex payoffs
by changing the control to u* € [-1,1]:

R if (x,t) € [-1,1] and 2273 <0 (25)
sign(y(z,t)) otherwise
with
oy
Y(z,t) =2 — o2 azxv (26)
oz2

With the help of a simple counterexample it can be shown that this proposition is wrong. Convex payoffs are
supposed to be a special case of eq. (25). This is not the case. We consider the special case of r = v which
can easily be extended to r # . The unique optimal control u* for convex payoffs is according to eq. (17)
(see also [3], PROPOSITION 2):

u*(z,t) = sign <(r - 'y)g—; — zo? %) (27)
Inserting r = - simplifies the expression:
u*(z,t) = sign <—$02%> (28)
8% 8%

Convexity of v in x implies -5 > 0. For ¢+ < T' even strong convexity holds: 5—z > 0. Together with o > 0 it
has to hold in ¢t € [0,T]

2
sign <—x02%> = sign (—z) (29)

Inserting r =« into the general payoff eq. (25) gives:
u* = sign(vy) = sign(x) (30)

Therefore, the convex payoff is not a special case of the general payoff. That shows that ([3], PROPOSITION
5) is wrong.

2To be exact: Black and Scholes [5] consider a portfolio short in the call and long in the share. In order to keep conformity
to [3] we have changed the positions.
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2.5 General Payoffs

We will present the general control u* for arbitrary payoffs in this section first.> Then we will deduce the
special controls for convex and concave payoffs.

The general control is:

. 2
wd ] if Y(z,t) € [-1,1] and $% < 0 (31)
sign( — ¢ Z%) otherwise
For strictly concave payoff functions (% < 0) eq. (31) simplifies to:

S if (z,t) € [-1,1]
_{ sign(¢y)) otherwise (32)

For (strictly and simply) convex payoff functions the following control function holds:

w = sign (-u3%) (33)
. ([ o _ng: g—> 51)
= sign <% [(r - v)g—m + 23:%}) (35)
= sign <(r - 7)2—; + o%%) (36)

since 02 > 0. This is eq. (18) from [3].

2.6 Integrating Early Exercise

Early exercise of the option can be integrated with a penalty function p. This function p ensures that in areas
of the (¢, S) space where early exercise is optimal, the pricing eq. (19) is forced to take on the intrinsic value of
the option while it vanishes on the rest of the domain. For details of this technique and various specifications
of p see [8] and [19].

_Ov ov 1 5, 0% Ov , 0%
L T P LR = R L P Tl e 37
D = Cpenalty {min[max (S — E,0),0]} (38)

According to [8], cpenaity depends on the type of the element; according to our experience, it suffices to choose
Cpenalty Sufficiently large such as cpenaity = 10%. Computing the value of American passport options can be
greatly simplified when all interest rates in the model are identical and there are no dividends. Since you can
always emulate early exercise with an European option by entering a zero position in the stock, the American
option is worth the same.

2.7 Extending Passport Options to General Options on Trading Accounts

The defining property of an option on a trading account is that the control is not restricted to the closed
interval [—1, 1] anymore ([23], [24]). Besides, we generalize eq. (4) to
dw(t) u*(t)dS(t) + 7 [w — u*(t)S(t)] dt (39)
w(0) = wo (40)

The initial wealth is represented by wg, and 7 is the interest rate corresponding to reinvesting the cash
position w — u*(¢)S(t) (possibly different from the risk-neutral interest rate r).

2 Q2

rSVg —rV — max <[rw +u*(r—7)]+ g

2u* *)? = 41
Jhax, [VSS + 2u*Vsy + (u™) wa]> Vi (41)

3For the results of this section I want to thank Leif Anderson.
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The plain vanilla passport contract is defined by the payoff function

V(T,S,w) = w" (42)
The optimal control is known to be

u* = a—sign (% — a) B (43)

b—a
= 44
o = =5 (44

b+a
g = = (45)
(46)

Using the substitution 2 = w/S this HIB equation becomes [28]:

2

o~ * U_ * 2
vy +a1§ﬁ>§b (r—7)(u* —z)+ 5 (u* — 2) ugy (47)

0

w(T,z) = z7 (48)
Again the change of the variable has reduced the dimensionality of the problem by one.

It can be shown in several ways that Asian options are a special case of the general option on a trading
account. Two approaches leading to simple PDEs have been explored by [28] and [29].
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3 A Numerical Solution with Finite Elements

3.1 One Spatial Variable

Most passport option models have to be solved numerically since they are non-linear parabolic PDEs For
this reason we have chosen a collocation finite element method. First, we consider the stationary problem
L (u(z)) = f, L being a non-linear differential operator. Time is integrated in a later step. We look for an
approximate solution @ for the following problem:

L(U) = f’ u(xmzn) = Umin, u(xmaz) = Umaz (49)
An approximate solution % is of the following form:

N+1

=Y arpy(z) (50)

k=0

The task is to find values for a; which make 4 the “best” approximation. While the Galerkin finite element
methods normally used in derivative pricing (cf. [17], [9], [25]) determine the a; by solving

/wmw(L(ﬂ)—f)qbk de=0 k=1,...N (51)

min

collocation finite element methods take the following approach:

The collocation points for each element [z;; x;+1] in the method used here are

1 1
&iv12i42 = T + (5 + ﬁ) (Tip1 — ;) (53)
The approximate function is defined by
N+1
U = Z adek (54)
k=0
= a0H0+a150+a2H1+a351+...+aNH%+aN+1S% (55)
for
r—x 2 T—x 3
Hy(z) = 3 <#> -2 <#> for 1 <z < x4
Tk — Th—1 Tk — Tk—1
2 3
_ 3<M) _2<M> for 24 <o < zx
Tht1 — Tk Tp4+1 — Tk
= 0 elsewhere (56)
_ 2 _ 3
Sp(z) = _(ac L)) + (@ wk_1)2 for zp_1 <z < 74

(xp —2p—1)  (Tk — Tp—1)

2 3
_ (e o) (e — ) for o <o < Tpsy

(Th1 — k) (Trpr — 2p)?
= 0 elsewhere (57)

The integration of the boundary conditions is achieved by

a = u(Tmin) (58)
an = u(Tmaz) (59)
Finding the N parameters a1, ...,an—1,an+1 results in a system of non-linear equations:
filar,...;an—1,any1) = 0
(60)

fn(ar,...,an—1,an41) = 0
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This system of non-linear equations is solved via Newton’s method. The integration of time is similar to the
Galerkin finite element methods. Spatial variables are discretized with finite elements while time is treated
with finite differences. This can be visualised as the non-linear elliptic operator L(u) evolving through time.
Each equation corresponds to a collocation point. The dynamic counterpart to eq. (60) is given by

a
‘1 g1 (a1, s, AN—1, GN+1)
a=| - = : (61)
an_
Nt gy (ai,...,an_1,an+1)
GN+1

This stiff system of non-linear ordinary differential equations can be solved with various time-stepping
procedures. We have choosen a second order Adams-Moulton and a first order backward difference imple-
mentation. The initial conditions to eq. (61) are given by a discretization of the final condition belonging to
the PDEs. The final conditions as well as the boundary conditions depend on the type of contract.

Approximating the solution of a PDE using finite element methods (Galerkin or collocation), using piece-
wise polynomials of degree n, the approximation to the solution itself should be of the order O(h™*1); the
approximation to the m-th derivative should be O(h"T1=™)  i.e. one is losing one order of precision for each
derivative. Why is this? Let us assume a smooth function f(z) in the interval 0 < z < h. We want to
approximate this function using a Taylor approximant on degree n:

1 n
T(x) = £(0)+ 'Oz + 3£"(0)a” + ...+ FP(0) = (62)
By the Taylor series remainder theorem, the error is
I A (O
f@)=T@) = o (63)
0 < ¢ < = (64)

which is O(h"*!) when 0 < z < h. If the first derivative of T'(x) is taken, it can be noted that it is exactly
the Taylor polynomial approximant of degree (n — 1) to f'(x), and thus f'(z) — T'(x) is of O(h™). Similarly,
f'"(xz) — T"(x) is of O(h™ 1), etc. Though it requires a little more work to prove other cases, similar error
bounds on f'(z)—T"'(z), f""(x)—T"(z), etc. can be derived when T'(z) is the Lagrange polynomial interpolant,
Hermite polynomial interpolant or spline interpolant of degree n.

3.2 Two Spatial Variables

We again consider the stationary problem L (u(z,y)) = f, L being a non-linear differential operator. We
search for an approximate solution u(z,y) for the following problem:

Lw) = f, (65)
U(xmzn) = Uming, u(xmaz) = Umaz, > (66)
Uf(ymin) = Uming> U(ymaac) = Umaz, > (67)

That is, we consider a rectangular domain with Dirichlet conditions. This method can easily be generalized
for non-rectangular domains and Neumann and mixed boundary conditions [21]. An approximate solution @
can take the following form:

N
i=Y appi(,y) (68)
k=1

Again, the task is to find values for a; which make @ the “best” approximation. While the Galerkin finite
element methods sometimes used in two-asset derivative pricing (cf. [9], [25]) determine the a;’s by solving

Tmazx ymam
/ / C Pérdydr=0,k=1,....N, (69)

min min

collocation finite element methods take the following approach. They enforce that at certain points in the
domain, the so-called collocation points, the PDE is exactly satisfied.

(L(a) = f) (&) =0, k=1,...,N (70)
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Figure 1: Structured and Unstructured Grids

The domain is divided into disjoint elements, the finite elements. These finite elements are usually either
rectangular or triangular. The latter type of element can form either a structured or an unstructured grid.
Here we employ rectangular elements which are not necessarily of the same size.

The four collocation points for each element [z;; z;1+1] X [yi;¥i+1] in the method used here are

<$z’ + (% + %) (Tit1 — 23);yi + (% + %) (Yi+1 — yz’)) (71)

Let s; denote the number of gridlines in direction i. The approximate solution is defined by a linear combi-
nation of 4s,s, basis functions

H;(z)H;(y), Hi(x)S;(y), Si(z)H;(y), Si(z)S;(y) (72)
with
T—z 2 T—z 3
Hp(z) = 3 <#> -2 <#> for zp_1 <z < x4
Tk — Th—1 Tk — Tk—1
2 3
_ 3<M> _2<M> for o < < Tpay
Thy1 — Tk Tr+1 — Tk
= 0 elsewhere (73)
(r -2 1) (z—xp1)
Sp(z) = -— + for z; 1 <z <z
k() (xr —xp—1)  (@h — Tp—1)? A
_ ;)2 _ \3
= (@h41 — @) — (Trt1 — 7) 3 for zp <z < R4
(Th1 — k) (Thy1 — Ti)
= 0 elsewhere (74)
2 3
Hiy) = 3 (w) i (w) for ooy <y < u
Y — Yr—1 Y — Yr—1
2 3
_ 3<M> _2<M> for yp <y < yies
Yr+1 — Yk Ye+1 — Yk
= 0 elsewhere (75)
_ 2 _ 3
Sily) = — (y —yx-1) + (y —yr—1) for yp_1 <y < Uk

(Yr — yr—1) (Yr — yr—1)?
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— )2 — )3
= Gen v len -y for yr <y <yrt1

Wr+1 —yx)  Yr+1 — 9x)?
= 0 elsewhere (76)

The approximate solution @ (z,y) has the form

Sz Sy

i(x,y) =YY (AijHi(z)H;(y) + BijHi(x)S;(y) + CijSi(x) H;(y) + Di; Si(x)S; (y)) (77)

i=1 j=1

so the N = 4sty unknowns are Aii, Bii, Ci1, D11, A2, Bz, Ci2, D1a, ..., Asmsy; Bszsy; Csmsy; Dszsy
which are relabeled to ai,...,an for notational convenience. The approximating function 4(z,y) has a
continuous mixed derivative %, since the mixed derivative of each of the basis functions is continuous. To
be succesful in this setting, the key feature of continuous mixed derivatives has to hold. This feature is not
common to most FE methods in use today. The basis functions normally used by Galerkin methods do not
even have continuous @, or .

The approximate solution is required to satisfy the PDE exactly at the four collocation points in each of
the (s — 1)(s, — 1) subrectangles, and to satisfy the boundary conditions at certain points. The number of
boundary collocation points plus the number of interior collocations points 4(s; — 1)(s, — 1) is equal to the
number of basis functions 4s,s,, which is equal to the number of unknowns V. Finding the N parameters
ai,...,an results in a system of non-linear equations:

fl(al,...,aN) = 0

(78)

fN(alv"'vaN) =0

This system of non-linear equations is solved via Newton’s method. The integration of time is similar to the
Galerkin finite element method. Spatial variables are discretized with finite elements while time is treated
with finite differences. This can be visualised as the non-linear elliptic operator L(u) evolving through time.
Each equation corresponds to a collocation point. The dynamic counterpart to eq. (78) is given by

al gl(alv"'aaN)
a={ : |= 5 (79)
dN gN(ala"'vaN)

This stiff system of non-linear ordinary differential equations can be solved with various time-stepping pro-
cedures. We have chosen the same routines as for the problem with only one spatial variable. The initial
conditions to eq. (79) are given by a discretization of the final condition of the PDEs of ch. 2. All computa-
tions have been performed with PDE2D, a general purpose finite element solver described in [22].
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4 Applications
4.1 Plain Vanilla Passport Options

4.1.1 European Passport Options
A Linear Model For r = eq. (16) reduces to:

ov 1 5 20%
E+§(l+|w|) 0 om =

For the payoff function v(7T') = max(0, X) = X an analytical solution has been found [3]:

w(t,z) = e~ (T [a:+ FN(d) - (1+|z) N (d - a\/ﬁ) + Q]

with

—In(1+ |z|) + 20*(T — t)
oVT —1t
0 = %[do\/T—t—l] N(d)

+% (1+]z)) N (d—o\/ITt)
+%0\/T —tN'(d)

13

(83)

N and N’ denote the cumulative function and the density function of the normal distribution respectively.
This analyitcal solution is to be used as a benchmark. We will repeat the example from ([3], Table 1). Some of
our results do not agree with the results reported there because some of the results in [3] are erroneous.* Eq.
(81) is sensitive against the accuracy of the approximation of the normal distribution. We show the results
using approximations which are accurate to four and seven digits, resprectively; compare ([15], S. 243f).

| Parameter | Value |
Spot S 100.0
Dividend yield v 0.0
Interest rate 7 0.0
Volatility o 0.3
Time to maturity | 1 Year
w Result Correct Solution: N(-) accurate to ...
from [3] ... 4 digits | ... 7 digits
100 | 100,1566 100,15580 100,15660
50 51,6456 51,58188 51,58181
20 | 25,9063 25,88776 25,88757
0 | 18,3846 18,87984 18,88084
0 13,1381 13,13906 13,13810
10 | 8,8808 8,87984 8,88084
-20 5,8876 5,88776 5,88757
-50 1,5893 1,58188 1,58181
-100 0,1566 0,15576 0,15660

For the numerical solution of the PDE (80), besides the initial condition given by eq. (15), two boundary
conditions are necessary which turn the unbounded domain of the PDE —oco < z < oo into a compact one.

Andersen et al. suggest ([3], S. 23f)

o(t, —ehoVT=t) = 0
8’1)(t, ehow/T—t) _ e—r(T—t)
ox
h = 4

(84)

(85)
(86)

4 Andersen et al. compare a Crank-Nicolson FD Schema with the analytical solution in ([3], Tab. 3). Seemingly, the numerical
values do not converge to the analytical solution esp. for high values of w. However, the numerical algorithm does converge, but

not to the wrong analytical solution.
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We solve this problem several times using different numbers of elements and time steps to observe the
convergence behavior.

Time Steps

25 50 100 200 400 800 1600 3200

25 13.0824 | 13.1120 | 13.1268 13.1342 | 13.1379 13.1398 | 13.1407 | 13.1412
50 13.1860 13.2150 | 13.2290 13.2369 | 13.2405 13.2423 | 13.2433 13.2437
Spatial 100 13.1047 | 13.1341 13.1488 13.1561 13.1598 13.1617 | 13.1626 13.1631
Steps 200 13.0853 13.1148 | 13.1295 13.1369 | 13.1406 13.1425 | 13.1433 13.1439
400 13.0806 13.1101 13.1249 13.1322 | 13.1359 13.1378 | 13.1387 | 13.1392
800 13.0795 | 13.1089 | 13.1236 | 13.1311 | 13.1348 | 13.1366 | 13.1376 | 13.1380
1600 | 13.0791 13.1086 | 13.1234 | 13.1308 | 13.1345 13.1363 | 13.1373 13.1377

For the following computations we employ 400 spatial steps (equaling 399 elements) and 800 time steps. For
the time integration a first order backward difference metod is used:

w Analytical | Numerical
Solution Solution
100 100.15660 100.1575
50 51.58181 51.5833
20 25.88757 25.8878
10 18.88084 18.8881
0 13.13810 13.1378

-10 8.88084 8.8806
-20 5.88757 5.8878
-50 1.58181 1.5833
-100 0.15660 0.1575

A Non-Linear Model Here we solve eq. (18) with eq. (20). The data are taken from [3].

| Parameter | Value |
Spot S 100.0
Dividend yield v 5.0
Interest rate r 4.5
Volatility o 0.3
Time to maturity | 2 Years

This problem has been solved already with Finite Differences by [3] and a Galerkin Finite Element method
by [26]. For w = 0 no result can be given because of the jump there.

[ w [ FD[3] [ FE[26] | FE [ Hedge Ratio k [26] [ krp |
20 | 28.2277 | 28.2249 | 28.2295 -0,4674 -0.4679
10 | 22.3741 | 22.3734 | 22.3760 -0,3724 -0.3729
0 [ 17.4323 | 17.4423 | 17.4438 - -

-10 | 13.5100 | 13.5113 | 13.5135 0.5180 0.5176
-20 | 10.4261 | 10.4293 | 10.4320 0,4302 0.4300

4.1.2 American Passport Options

Here we introduce early exercise to the non-symmetric example from above. Again, this problem has already
been solved with Finite Differences by [3] and a Galerkin Finite Element method by [26].

[ w [ FD[3] [ FE[26] | FE [ Hedge Ratio k [26] [ krp |
20 | 29.1764 | 29.2110 | 29.2135 -0,5042 -0.5041
10 | 23.0050 | 23.0272 | 23.0298 -0,3974 -0.3871
0 [ 17,8418 | 17.8648 | 17.8668 - -

-10 | 13,7776 | 13.7873 | 13.7902 0.5330 0.5331
-20 | 10,6031 | 10.6124 | 10.6150 0,4406 0.4406

4.2 Relative Exotics

So-called relative exotics in the world of passport options have the exotic feature on z; i.e. the cap, floor
and/or barrier(s) is/are applied to the quotient of wealth and stock z = . Absolute exotics bear the exotic
feature(s) on w and/or S individually. These contracts are discussed further below.

As a numerical example we add a knock-out barrier at = 20 to the non-symmetric contract from above.
Note that by introducing a rebate of R = 20 the payoff function does not lose its convexity.
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o [ FE ]
20 20
10 16.5737
0 13.4722
-10 10.8090
-20 8.5884

4.3 Asian Options

It can be shown that Asian options can be interpreted as options on a trading account as well. For a derivation
see [28].

1
ve +r(q — z)v, + 5((1 —2)20%0, =0 (87)
with the final condition
o(T,z) =z (88)

The function ¢ depends on the contract at hand. This approach can be simplified leading to an even simpler
PDE [29].

Continuous Sampling For this type of sampling ¢ is a continuous function:

t
=1—-= 89
q T (89)
In order to be able to tackle the final-value problem eq. (87) and (88) numerically, it has to be converted into
a final-boundary-value problem, i. e. the infinite domain has to be cut off by replacing —oc and oo by taking
finite values for z. Also, these points have to be prescribed with values for u or its derivative. Following [28§]
we choose

w(zmin=-1) = 0 (90)
Ou(Zmae = 1)
e (91)

Additionally, to be comparable to [28] and [10] we take the same number of space and time points. The
spatial variable is discretized with 200 elements of equal length with cubic Hermite basis functions. Time is
integrated by a Crank-Nicholson scheme with 400 steps.

[ Parameter | Symbol | Value |
Interest rate r 0.15
Price of Underlying in t =0 So 100
Time to Maturity T 1
Parameter Method
o K FE FD Monte Carlo | Lower | Upper
(Coll.) [28] [10] [11] Bound [20]
95 11.094 11.094 11.094 11.094 11.094 11.114
0.05 100 6.794 6.795 6.793 6.795 6.794 6.810
105 2.746 2,744 2,744 2,745 2,744 2,761
90 15,399 15.399 | 15.399 15.399 15.399 | 15.445
0.10 100 7.028 7.029 7.030 7.028 7.028 7.066
110 1.415 1.415 1.410 1.418 1.413 1.451
90 15.642 15.643 15.643 15.642 15.641 15.748
0.20 100 8.409 8.412 8.409 8.409 8.408 8.515
110 3.556 3.560 3.554 3.556 3.554 3.661
90 16.513 16.516 16.514 16.516 16.512 16.732
0.30 100 10.210 10.215 10.210 10.210 10.208 10.429
110 5.731 5.736 5.729 5.731 5.728 5.948

Discrete Sampling This kind of sampling calls for a different ¢:

q:l_%%%} (92)

with [] denoting the integer part function. Note that this formula allows for non-equidistant time-steps
between the fixings.



4 APPLICATIONS 16
Parameter Method
o | K | FE | MC FE | MC FE | MC
3 Fixings 10 Fixings 50 Fixings

95 13.435 | 13.450 | 11.792 | 11.780 | 11.233 | 11.222
0.05 | 100 9.134 9.145 7.492 7.495 6.934 6.933
105 4.943 4.937 3.384 3.388 2.872 2.861
90 17.742 | 17.767 | 16.097 | 16.081 | 15.538 | 15.538
0.10 | 100 9.377 9.385 7.729 7.737 7.168 7.150
110 3.026 3.009 1.852 1.853 1.499 1.487
90 18.166 | 18.146 | 16.393 | 16.364 | 15.791 | 15.748
0.20 | 100 | 11.019 | 10.976 9.189 9.202 8.564 8.557
110 5.772 5.762 4.196 4.199 3.682 3.673
90 19.429 | 19.522 | 17.383 | 17.392 | 16.687 | 16.622
0.30 | 100 | 13.237 | 13.325 | 11.116 | 11.081 | 10.391 | 10.327
110 8.512 8.502 6.547 6.540 5.892 5.851

The details of the numerical implementation are the same as in the previous section. The Monte Carlo results
are achieved in a most simple fashion as described in [13]. We use 100,000 sample paths for all examples
so that these results are rather crude estimates. Obviously, the computational burden of solving the PDE is
much smaller than generating the Monte Carlo paths.

Sensitivy Analysis: Delta With another example from the literature [27] we will show that finite elements
can be used to compute A directly from the numerical solution for the option premium.

| Parameter | Symbol | Value |
Interest rate r 0.09
Price of Underlying in t =0 So 100
Time to Maturity T 15 days
Equidistant Samplings 14

For the only run necessary for the finite element computation we use 199 elements of equal length; time
integration is performed with an adaptive second order Adams-Moulton scheme using 1000 time steps. For
details of this time integration technique, see [21], [6].

Premium Delta
Strike | Approximation | MC | FE Approximation [ MC [ FE
95 5.202 5.194 | 5.203 0.979 0.974 | 0.975
100 1.139 1.135 | 1.144 0.536 0.534 | 0.523
105 0.038 0.038 | 0.039 0.037 0.030 | 0.036

4.4 Absolute Exotics
4.4.1 The Algorithm

Absolute exotics refer to passport options with a cap, floor or barrier put on either the current value of the
trading account w(t) or the underlying S. Putting a barrier or cap on w(t) seems natural because beyond
some limit the interest in further hedging should be small. Besides, it makes the option cheaper [2]. For this
kind of option, the HJB equation has to be solved directly since no control is known a priori. In this section,
we outline the idea of the algorithm which involves some basic ideas from (static) optimization.> Then we
apply this algorithm to a problem which has already been solved above.

Starting point is the HJB equation as in eq. (21):

2q2
(r —v)SVs + rwV,, —rV — g

* *) 2 _
_jmax [Vss + 20 Vsw + (11%)* Vaw | = Vi (93)

We slightly generalize this problem by allowing the control to vary within [a,b]. Then, one has to solve the
following optimization problem for each node in each time step:

max (Vss + 2u"Vsy + (N*)Qwa) (94)
asp*<b

This is just a quadratic polynomial in u*, so that the existence of a maximum is guaranteed. The maximum
has to occur at either p* = a, p* = b or p* = —¢2 (if a < p* < b), the latter point being the vertex of the

5For the fundamental idea of this algorithm T want to thank Granville Sewell.
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quadratic polynomial. All three values are calculated and the maximum is taken. Obviously, in case we do
not have a bang-bang solution,® accurate approximations of the second derivatives are needed.

As a first test, we recompute the symmetric problem from sec. 4.1.1. This problem cannot test all features of
the proposed algorithm since it is known that its optimal control is of the bang-bang type. The routine should,
therefore, never be forced to compute second derivatives. Since this problem has two spatial dimensions, we
also provide a numerical solution based on eq. (14) so that we have two numerical solutions based on two
spatial variables. For both problems the following boundary conditions have been applied:

V(0,w,t) = max(0,w) (95)
82V (200, w, 1)
V(S,—200,{) = 0 (97)
V(S,200,t) = w (98)

With a rectangular mesh of 19 elements in S and 42 in w and an adaptive second order Adams-Moulton
method for the integration of time, the following results are produced:

w Analytical Numerical Solution
Solution eq. (14) | eq. (21)
100 100.1566 100.1566 100.1581
50 51.5818 51.5804 51.5835
20 25.8876 25.8878 25.8904
10 18.8808 18.8820 18.8840
0 13.1381 13.1397 13.1414
-10 8.8808 8.8820 8.8840
-20 5.8876 5.8878 5.8904
-50 1.5818 1.5804 1.5836
-100 0.1566 0.1566 0.1581
[ Time Steps | - [ 31 ] 99 ]

The algorithm which computes the optimal control implicitly gives slightly less accurate results for the same
mesh while using about three times more time steps.

4.4.2 Knock-Out Barriers

Knock-out barriers can be applied to both stock and/or the account. In the second case the rationale is that
when the loss becomes too large the coverage is off; in the first case, the usual rationale for cheapening the
option is applied. As an example, we take the problem from above and introduce a knock-out barrier on
w. With a recangular mesh of 19 elements in .S and 42 in w and an adaptive second order Adams Moulton
method for the integration of time, the following results were produced:

w Location of barrier
w=-20 [ w=-30 [ w=—40
100 100.0000 100.1408 100.1602
50 51.4286 51.5643 51.5798
20 25.3353 25.7934 25.8769
10 18.0489 18.7373 18.8666
0 11.7753 12.9275 13.1203
-10 6.0061 8.3566 8.8363
-20 0.0000 4.3371 5.6642
-50 0.0000 0.0000 0.0000
-100 0.0000 0.0000 0.0000
[ Time Steps | 64 | 60 [ 104 ]

6Controls switching back and forth between their possible extremes are called bang-bang controls; compare [7].
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