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Thinking in Terms of System Hierarchies and 

Velocites. 

What makes Development Sustainable? 

Jörg Köhn1 

Abstract 

In order to understand the context for sustainable development policies it is necessary to understand how 
different rates of evolution and velocities of change within social and ecological systems affect 
interactions between  and the co-evolution of those systems. Sustainable development policies will bear 
fruit only when we can discuss sustainable development not only of separate interdependent or nested 
systems in a global hierarchy, but also in relation to their widely varying, but interrelated rates and 
courses of development and evolution. 

1 Introduction 

Politics, economics and science the sustainable development concept in various ways. 

No universally accepted definition exists, nor have reliable indicators been identified. 

This is  surprising as the concept was first mentioned in the writings of MILL (1848) and 

MALTHUS (1836, cf. GOODLAND 1995). As early as 1849 FAUSTMANN used a similar 

concept to calculate the forest rotation period to maximize returns (LUDWIG 1993).  

The concept has also attracted more recent attention with more diverse interests in 

mind. Following up earlier attempts, economists developed the Maximum Sustainable 

Yield concept (MSY, cf. PEARCE and TURNER 1990) for managing renewable resources. 

However, their approach is strongly reductive in its treatment of environmental 

                                                 
1 University of Rostock. The paper is based on a manuscript „Models for Sustainable Policy“  presented 

at the Brown University, R.I., the Rensselear Polytechnic Institute, Troy, N.Y., and the University of 
Wisconsin, Madison. The later paper has been split into four parts. The other three will be published 
under the titles „Hierarchy and velocity of systems. What makes a development sustainable?“, 
„Institutional economics, multi-species resource uses and sustainability“, and „Sustainability, carrying 
capacity and resilience in a systems hierarchic approach“.  
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variability. Moreover, it can only be applied to a one resource-as-commodity approach. 

Hence, the definition reflects only one component of the sustainability concept, that of 

„carrying capacity“ and the „non-overexploitation“ rule. Though these ideas are 

certainly needed to define sustainable development, they do not themselves explain what 

makes a system sustainable (GOODLAND 1995, p.11).  

GOODLAND (1995, p.2ff) distinguishes economic sustainability from its more 

comprehensive social and environmental counterparts. He recognizes the varying 

degrees with which sustainability can be understood and implemented, describing the 

various target states as weak, strong and absurdly strong sustainability. In this 

classification, economic sustainability tends to be associated with weak sustainability, 

while social and environmental sustainability are considered stronger concepts. 

In a political sense, however, social and environmental sustainability can not be 

considered separately from economic sustainability. Sustainable development policy 

must focus on providing a framework for broader social and environmental decisions 

rather than on capital substitution alone. In its political context, sustainable development 

becomes a set of political actions aimed at „development that meets the needs of the 

present without compromising the ability of future generations to meet their own needs“ 

(cf. THE BRUNDTLAND COMMISSION 1987). This necessarily implies other targets than 

simply maintening the overall capital stock. It implies that social (intra- and 

intergenerational) and environmental equity, ethics, social institutions, conservation of 

cultural diversity and biodiversity are all components of the concept of sustainability.  

Our paper begins with concepts for sustaining the resource base for the economic 

system by appropriate institutions and takes this as its basis to discuss the sustainability 

of economic systems. The second section deals with the contributions of BOULDING 

(1966, 1969), GEORGESCU-ROEGEN (1971, 1975) and DALY (1973, 1977, 1987, 1990, 

1992), focusing on the thermodynamic and socioethical aspects of sustainable 

development, i.e. on the relations between material, energy and information vectors in 

system evolution. Almost all literature on sustainable development has focused mainly 
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on material and energy approaches. This paper, therefore, broadens the discussion by 

focusing on information and its partial codification in institutions. In other words, it 

integrates DAWKIN´s concept of information replicators (genes and memes) needed to 

analyze and explain evolutionary and co-evolutionary processes. Taken together, these 

concepts allow us to compare and rank systems in hierarchies. Moreover, they permit 

velocities of change in nested systems to be compared and conclusions to be drawn 

about feedback mechanisms in such systems. 

It should be noted that the development of appropriate mathematical models is 

hindered by the complexity and nonlinear adaptational and evolutionary processes in the 

systems and the inherent uncertainties they introduce (cf. COSTANZA et al. 1993, p.546). 

Therefore the paper adopts a primarily - though not entirely - literary description rather 

than a mathematical approach to draw its conclusions on feedback mechanisms, the 

driving forces for adaptation and evolution, and the stabilizing mechanisms within 

systems. Finally, due to the inherent and lasting uncertainties of systems, the paper 

utilizes aspects of institutional economics.   

2.  Sustaining the resource base for the economic system  

Neoclassical economics supplies models allowing intertemporal (physical and 

economic) scarcities (of resources) to be considered. Physical scarcity is a consequence 

of the need to distribute a finite resource, e.g., among a growing population (the problem 

of allocation and re-allocation). The „capacity of the earth“ describes in model form a 

calculated „optimum population size“ and the corresponding „per capita amount of 

resources available for consumption“. It assumes that, in an ideal world, exhaustible 

resources can and will be replaced by renewable or recyclable substances. They also 

assume that price signals will modulate the behaviour of the players (demand) in the 

event of economic scarcity: economic subjects will decide rationally in response to price 

signals, and demand for a scarce resource will therefore decrease as prices rise. Since 

this will reduce consumption of the residual stock, the resource will be conserved. 

Besides rational decisions, this model presupposes that the economic subjects possess 

(complete) knowledge concerning the resources endogenized in a product and its 
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substitute (with the same or enhanced properties in the form of a comparable product) 

and also concerning their own preferences. In addition, the subjects must also be able to 

maximize the calculated use to themselves within this framework - related here to a 

product. In other words, such models do not allow incomplete information. They are 

abstractions from real world phenomena (cf. DALY 1992, p.185). This is particularly 

evident when considering the sustainable management of a single-resource-commodity 

as a concept for global application: levels of knowledge would have to be the same all 

over the world.  Apart from that, however, uncertainties also arise from questions for 

which we have no answer: 

 How large is the stock of each exhaustible resource? 

 How much environment/of a resource does a person need? 

 How many people can the earth support? 

To these uncertainties and the corresponding transaction and information costs resulting 

from incomplete information must be added the general uncertainties caused by the 

factor time in relation to economic activities (variations in interest rates, levels of 

knowledge, etc.). These uncertainties are unavoidable and system inherent (e.g. non-

linear causal chains, singularities in chaotic systems). In human societies this problem is 

usually solved or ameliorated by creating suitable institutional structures or institutions 

(e.g. NORTH 1988).  

Institutions have already been set up to handle some of the uncertainties associated 

with resource use -- such as international treaties regulating the exploitation of various 

fish stocks under the supervision of the International Council For Exploration of The 

Seas (ICES). Treaties such as these regulate national quotas in a quasi-monopolistic 

market, but are still unable to take uncertainties stemming from environmental and 

social perturbations or simply moral risk behaviour into account in their resource 

management models.  
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Elinor OSTROM (1993, p.8,9) shows that other institutions may be very effective in 

regulating local resource scarcities by cooperation.2 These „... simple, small, and 

isolated natural resource systems are characterized by:  

− a small and stable set of users able to communicate on a face to face basis, 

− predictable and easily measured flows of benefits and costs, and 

− symmetry of information, asset structures, capabilities, and preferences.“ 

It is scarcely conceivable, however, that the local, lowly social and environmental 

sustaining systems which OSTROM described can be scaled up to provide rules for larger 

systems such as world stocks involving heterogeneous players, multi-species or multi-

product resources and longer time scales. 

When designing institutions to regulate multi-species resource use and defining 

flexible frameworks for action, the system structures and functions must be faithfully 

reflected in and incoporated into those institutions. Institutions established to achieve 

sustainable resource use must therefore take into account system-inherent uncertainties, 

i.e. factors that exist outside the economic system but may at least influence the players 

in their decisions and actions (for instance religion, ethics, cultural beliefs, 

communication) in addition to those that vary in time besides allowing multiparameter 

control. However, institution themselves change in time in response to their changing 

environment, the interests of the players involved,  etc.  In other words, institutions 

themselves are, subject to adaptation, co-evolution and evolution (NORTH 1988). 

3. Economic Sustainability  

The lack of a strong definition for sustainable development has led to a dispute marked 

by widely differing standpoints in economic science  - usually dictated by different goals 

- based either on concepts such as intergenerational and global justice, the integration of 

economy and ecology into economic development and growth concepts and the multiple 

use of resources (the ecological economics approach, e.g. BOULDING 1966, 1969; 

                                                 
2 OSTROM (1990) describes the use of „common property resources“ (CPRs) like mountain meadows and 
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GEORGESCU-ROEGEN 1971,1973; DALY 1973, 1977, 1987, 1990, 1992) or on the 

premise that the present generation is entitled to consume more resources than future 

ones because coming generations will be better equipped owing to their greater 

knowledge. Neoclassical economics assumes that endogenized progress in science and 

technology will provide adequate potential for the substitution of resources; therefore, 

their availability to future generations is irrelevant (the neoclassical approach). The 

latter approach assumes that natural capital will be replaced by  complete substitution 

with human-made capital: „the world can, in effect, get along without natural resources“ 

(SOLOW 1974) and relates mainly to the discussion of Solow-sustainability (comment by 

COMMON and PERRINGS, 1992, p.5) based on the Hartwich rule, where: 

„Economic capital should be stable... The rule states that consumption may be held 

constant in the face of exhaustible resources only if the rents deriving from the 

intertemporally efficient use of those resources are reinvested in reproducible capital... 

The optimal policy for each generation is to maintain the existing capital stock. 

Investment should be equal to depreciation. ...each component of that stock is perfectly 

substitutable for all other components...“  

However, this kind of „economic sustainability“ ignores the distinction between 

endogeneous (system inherent) and exogeneous (external, but inherent in higher level 

systems) variables and processes forced and regulated by system adaptation and 

evolution. It also fails to take into account the way these factors are linked by self-

regulation mechanisms and (the most important system property) their constantly 

changing structural and functional properties in time, their ability to adapt gradually to a 

changing natural and socio-economic environment and/or the opportunity to flip 

(LOVELOCK 1995). 

Consequently, some assumptions of neoclassical economics are „no longer true“ 

(COMMON and PERRINGS 1992, p.5) and, therefore, the „substitutability theorem“ 

(GOODLAND 1995, p.15) will not hold when considering sustainability. However, if 

substitution of capital consisting of components such as natural, human, human-made 

and social capital is „defined to be a time-varying vector of heterogeneous capital stocks 

                                                                                                                                                
forests, and irrigation instiutions by local communities that are directly depending from the CPR.  
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including exhaustible resources ..“ economic sustainability based on a homogeneous 

capital stock becomes impossible (COMMON and PERRINGS 1992, p.5). What would be 

the result of considering the different categories of capital? First, one would have to 

reject the substitutability thesis proposed by SOLOW and others. This in turn would 

imply that at least „parts of the capital“ are complementary. Second, one would have to 

clarify how these parts are interrelated, and third, it would be necessary to show that the 

various capital stocks possess stock-flow relations, including feedbacks, that could make 

development sustainable. 

Leaving the concept of economic sustainability, one may turn to the definition 

proposed by DALY (1988, after GOODLAND 1995, p.4). He uses the term carrying 

capacity to define sustainability as : 

„development without throughput growth beyond environmental carrying capacity ... 

which is socially sustainable.“ 

DALY´s interpretations and his model of steady-state economics are based on the 

findings of BOULDING (1966, 1969) and GEORGESCU-ROEGEN (1971, 1973), who both 

draw general conclusions about system properties that are crucial to the topic (next). 

4. Towards sustainability concepts based on thinking in terms of system hierarchíes 

4.1 Kenneth BOULDING´s  contributions to the topic 

Interrelations between social systems may be described as functions of the rate of 

exchange of material, energy and information between systems. This leads to a stock-

flow-relation approach that can explain system development in terms of „birth“, „self-

generation“ and „aging“ in both natural and social systems (BOULDING 1966, p.4,5). In 

this case, the exchange of material, energy and information  is crucial for the survival of 

living systems. Measuring the inherent stock of material, energy and information in a 

system and the rates at which they are exchanged to identify the input-throughput-output 

relations permits assessment of the stability and velocity or processes taking place 

within the system and the detection of any deviations from a state of equilibrium. 



8 Jörg Köhn 

„Acceleration“ of the rate at which a stock is exchanged would the rate of growth 

(BOULDING 1966, p.8) or, under certain circumstances, a deviation from the system´s 

state of equilibrium. The crucial points of BOULDING´s work on system sustainability are 

as follows.   

Sustainable development occurs in an open system process.3 System inherent 

processes sustain the system itself  at least within certain limits.4  Matter, energy and 

information are the crucial structural classes5 of systems. Whereas matter and energy 

only enter the social/economic system insofar as they become an object of human 

interest, the self-generation of information6 and its codified forms constitute „culture“ as 

a „set of common values“7 defining specific social systems. The values defining a 

particular social system are subject to „mutation and selection“. BOULDING distinguished 

three types of „social organizers“ that differ in their institutional arrangements: 

− the threat system (policy) 

− the exchange system (economy) 

− the integrative system (culture). 

                                                 
3 „The open system, indeed, has some similarities to the open system of von BERTALANFFY, in that it 

implies that some kind of a structure is maintained in the midst of a throughput from inputs to outputs. 
In a closed system, the outputs of all parts of the system are linked to the inputs of other parts. There are 
no inputs from outside and no outputs to the outside; indeed, there is no outside at all. Closed systems, 
in fact, are very rare in human experience, in fact almost by definition unknowable, for if there are 
genuinely closed systems around us, we have no way of getting information into them or out of them; 
...All living organisms, including man himself, are open systems.“ (1966, p.4) 

4 „...society ... we have an interesting example of  system which seems to maintain itself by the self-
generation of inputs...“ (p.5) , „...hen we are trying to obtain knowledge about  a system by changing its 
inputs and outputs, these inputs and outputs will change the system itself...“ (1969, p.3) 

5 „Systems may be open or closed to a number of classes of inputs and outputs. Three important classes 
are matter, energy and information.“ (1966, p.5) 

6 „information is more subtle and harder to trace, but also represents an open system, related to, but not 
wholly dependent on, the transformations of matter and energy. By far the larger amount of information 
and knowledge is self-generated by the human society, though a certain amount of information comes 
into the sociosphere in the form of light from the universe outside. ...From the human point of view, 
knowledge or information is by far the most important of the three systems. Matter only acquires 
significance and only enters the sociosphere or the econosphere insofar as it becomes an object of 
human knowledge. We can think of capital, indeed, as frozen knowledge or knowledge imposed on the 
material world in the form of improbable arrangements...“ (1966, p.6) 

7 „...Every culture ... is defined by a set of common values ... and have been learned by the process by 
which all learning is done, that is, by mutation and selection.“ (1969, p.1), and „...three groups of social 
organizers ... the threat system, the exchange system, and the integrative system. Economics clearly 
occupies the middle of these three.“ (1969, p.4) 
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Since BOULDING (1969, p. 4) states that „these systems are linked together 

dynamically through the process of human learning which is the main dynamic factor in 

all social systems“ one may conclude that all three subsystems (policy, economy, 

culture) are components of a more comprehensive social system based on the replication 

and evolution of human knowledge (information). Thus, social subsystems are based on 

that part of the information pool which has been codified as institutions (rules, norms, 

rights). At the same time, these institutions will maintain social systems or parts of them 

by regulating, for instance, the use of matter and energy and creating new knowledge 

(e.g. technological progress) and further institutions.  

4.2 Nicholas GEORGESCU-ROEGEN´s  contributions to the topic 

BOULDING uses thermodynamic principles in his considerations of the exchange of 

matter and energy in connection with system development. This approach to the 

economic discussion was pioneered by GEORGESCU-ROEGEN (1971). His findings show 

that if the economic system follows thermodynamic rules it must be nested in a higher 

ranked system: „nature“. Moreover, it exchanges at least matter and energy with this 

higher system and is therefore an open system. The system to which the economic 

system is open may be a source of negative feedbacks to the economic system. Entropy 

is inherent in living systems, causing co-evolution at and between their hiearchic levels. 

Additionally, entropy is a crucial indicator of system sustainability or non-sustainability. 

Moreover, if thermodynamic rules also govern social systems, social sustainability 

might not mean that the same level can be maintained eternally (cf. COSTANZA and 

PATTEN 1995, p.196). In other words, sustainable development is based on a dynamic 

concept of living systems that are subject natural laws. This in turn implies that the 

economic system is at least a subsystem of the natural system (FABER et al. 1987, p.13). 

The approach adopted by FABER and coworkers exceeds these system bounds and 

considers the economic system as a subsystem of the higher system „environment“. Fig. 

1 is a simplified presentation of their approach. These authors also describe the 

polyvalent network of relationships and, like GEORGESCU-ROEGEN (1971, 1973), apply 

thermodynamic principles to the studied object. They also use a model to simulate the 
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interdependence of factors involved in economic activity (use of resources, application 

of capital, scientific and technological progress, see below). 
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      Subsystem 
      Economy 

 

Production 

 
Emissions  

resources 
from 
supersystem 
nature     Consumption 

 

 

wastes back 
to supersystem 
nature 

 

Fig. 1. The economic subsystem and its relations to the environment. 

The exchange processes between a system's environment and economy consist in 

 a) the provision of resources for various economic activities, 

 b) the uptake of emissions produced by the economic process. 

In this model, protecting the higher system, the environment, is an end in itself for the 

subsystem „economy“. Both the material and energetic aspects of the two-system case 

could be simulated if entropy could be quantified as a measure of degradation, and this 

would certainly yield consistent results. The interdependence of the two systems varies 

with the intensity of the exchange processes (transfer of matter and energy). Both 

systems are in a state of constant evolution, but the subsystem economy has to adapt to 

the evolution of the higher system environment. Spontaneous evolution of the higher 

system „environment“ is governed by, among other things, the laws of thermodynamics, 

and, as it is a subsystem, the economic system must also be subject to them (cf. 

GEORGESCU-ROEGEN 1971, p.57). 
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4.3 Herman DALY´s  contributions to the topic 

DALY (1973, 1977) introduced the concept of a steady-state economy as a „physical 

concept“ (1977, p.17) which can be interpreted as a concept for sustainable 

development. It is based on the assumption of „...physical populations - people and 

artifacts - existing as elements of a larger environmental system.“ (1977, p.15). 

Furthermore, „The economy ... is an open subsystem of a larger, but finite, ecosystem 

which is both the supplier of low entropy raw materials and the absorber of its high 

entropy wastes.“ (1987, p.324), and „Organisms cannot survive in a medium consisting 

of their own  final outputs. Neither can economies. Like nature´s technology, man´s 

technology is strictly confined within the laws of thermodynamics.“ (1977, p.22, his fig. 

3; p.35, cf. fig. 2). DALY then applies the concept of scale to economic systems. This is 

crucial for explaining interrelations in multihierarchical and complex systems, and for 

measuring the rate of change (velocities) in systems. He states: 

„The growth of the economic subsystem is limited by the size of the overall system..., 

and by the intricate ecological connections which are more easily disrupted as the scale 

of the economic subsystem grows relatively to the total system.“ (1987, p.324) 

The concept of scale is fundamental when dealing with complex and hierarchic 

systems (O´NEILL et al. 1989). Whereas, „the term scale ... refers to both the resolution 

(spatial grain size, time step, or degree of complication of the model) and extent (in 

time, space, and number of components modeled) of the analysis.“ (COSTANZA et al. 

1993, p.548). The scale concept provides at least three methodological advantages. First, 

the dynamics and direction of the adaptation process (co-evolution in resilient systems) 

can be measured in terms of the intensity of matter and energy flows within and between 

systems.  Second, it fits the input-output(-throughput) or stock-flow concepts used in 

natural science and economics. And third, it permits inclusion of interrelated conditions 

such as „finitude, entropy, and complex ... interdependence“ (1987, p.324), time and 

space vectors in the analysis of a system's adaptation and evolution. DALY´s steady-state 

concept reflects these biophysical constraints. DALY defined a steady-state economy 

1977, p.17):  
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„... as an economy with constant stocks of people and artifacts, maintained at some 

desired, sufficient levels by low rates of maintenance „throughput“, that is, by the 

lowest feasible flows of matter and energy from the first stage of production (depletion 

of low-entropy materials from the environment) to the last stage of consumption 

(pollution of the environment with high-entropy wastes and exotic materials).“ 

These findings and interpretations are based mainly on the work of GEORGESCU-

ROEGEN (DALY 1973, p.6). However, the steady-state concept also uses another 

approach, namely (1977, p.16): 

„The culture, genetic inheritance, knowledge, goodness, ethical codes, and so forth 

embodied in human beings are not held constant. Likewise, the embodied technology, 

the design, and the product mix of the aggregate total stock of artifacts are not held 

constant. Nor is the current distribution of artifacts among the population taken as 

constant.“ 

DALY (1987, p.327) therefore introduces the a concept of „ethicosocial limits“. „Even 

while growth is still biophysically possible, other factors may limit its desirability ...“ 

and quoting HIRSCH (1976, in: DALY 1987, p.333) he goes on: „Economic growth 

undermines its (own) social foundations...“, and „...growth economy fosters the erosion 

of the values upon which it depends.“ (1987, p.335)  Moreover, DALY continues, „...our 

inherent value systems are a product of random mutation and natural selection by the 

environment of the hunter-gatherer, and are not likely to be well adapted to the 

environment of atomic power and genetic engineering. ...Random mutation and natural 

selection by an evolving environment ...cannot possibly explain rational and moral 

thought itself...“. This implies: 

„At a minimum the problem of sustainability requires maintaining intact the moral 

knowledge or ethical capital inherent from the past. In fact, sustainability really requires 

an increase in knowledge ... sufficient to offset insofar as possible, the inevitable 

degradation of our physical world.“ (1987, p.336) 

This introduces an important point. Adaptation, system evolution and sustainability 

depend on feedback mechanisms anchored in culture (information). Socioethical limits 

seem to be feedback regulators. 
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DALY is not referring to BOULDING (1969, p.1) here although the findings of both 

authors are consistent with each other: What DALY  calls „ethical capital and 

knowledge“ are „cultural values“ to BOULDING and „cultural capital“ to others (BERKES 

and FOLKE 1994). Moreover, like BOULDING, DALY uses the terms „mutation and 

selection“ to explain the evolution of „cultural values“ or „ethical capital“. In addition, 

DALY mentions that the „random mutation and natural selection“ of ethical capital is a 

slow process.  

Since DALY uses BOULDING'S „classes“ matter and energy to explain biophysical 

limits, the „class“ information is appropriate for socioethical limits. DALY´s steady-state 

concept implies, moreover, the need to improve „ethical capital and knowledge“ as a 

crucial point within the sustainability concept. BOULDING posits that information is the 

class of the social system and, like „every culture“, is subject to evolution. If this is so, 

changes in the information pool reflect the evolutionary process of systems. Thus, 

information must be based on structural units which are subject to mutation and 

selection in a way similar to genes in the natural system (next chapter). 

5. Information, replicators  and its relation to „human capital“  

Systems develop on the basis of their information stocks. HINTERBERGER (1992, 1994) 

uses the synonymous term „memes“ coined by DAWKINS (1989). FABER and PROOPS 

(1991, p.63) speak of a system's „potential“. BOULDING (1969, p.6) states that „the 

larger amount of information and knowledge is self-generated by human society ...“  

Information is pooled. The information pool consists of a set of „frozen knowledge“ 

which human society generates by learning (BOULDING 1969, p.6) during the process of 

its own (genetic) evolution. The pool consists of  various, for instance technological and 

traditional knowledge, social norms, rules and taboos or even knowledge about these 

components, etc. In other words, referring to economic capital theory, these parts of the 

information pool correspond to the various types of capital considered in economic 

theory, i.e. human capital, social capital, social overhead capital, cultural capital, etc. 
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The information pool is the structural frame for relations within a society, i.e. it is the 

potential (genotype) of a particular society sections thereof to express itself as a distinct 

phenotype. Conservation of traditional knowledge and creation of new knowledge, 

mutation and selection by learning are essential for human survival in different cultures 

(phenotypes). Whenever such system properties appear, questions arise as to the 

structural units that are suitable for mutation and selection.  

In this respect, Richard DAWKINS (1976, citation follows the 1989 edition) draws 

analogies to genes as replicators of genetic information. In nature, information is pooled 

for each population, species and living component of natural systems in the genotype. 

The genome is the potential actually expressed in a given phenotype, thereby creating 

individuals, populations and the system itself. All components are subject to mutation 

and selection. In the short run, individuals adapt to the random conditions of the higher 

hierarchic level (adaptation): individuals in relation to the population they belong to, 

populations to other populations and the ecosystem they live in, the ecosystem to the 

geographic region and climate, and so on. These processes are modulated by feedback: 

each individual and population changes the structural and functional constraints of the 

system surrounding it. Conversely, the system will influence the selection process down 

to the population and individual levels (co-evolution). This later process is 

intertemporal. Changes taking place in the long term process include changes in the 

structure of the replicators (evolution). The long-term process therefore leads to 

structural and functional changes within the information pool (mutation) that vary in 

space and time and are scaled (see above). However, this description is not the whole 

truth. The information pool is also subject to erosion, for instance the extinction of 

species, and changes are not limited to gradual change in the long term perspective. 

Flips may happen, as demonstrated, for instance, by the five great extinctions that have 

occurred during the history of life on earth (LOVELOCK 1995). Moreover, the velocity of 

species evolution following such catastrophes is probably much higher then during 

„normal“ evolution. Naturally, care must be taken when drawing conclusions based on 

analogy to human information pools. The paper follows DAWKINS interpretations. He 

write (1989, p.189,192):     
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„Most of what is unusual about man can be summed up in one word: „culture“. ... 

Cultural transmission is analogous to genetic transmission in that, although basically 

conservative, it can rise in a form of evolution. ...“ 

This is reminiscent of BOULDING (1966, p.1), who considered culture as a set of 

common value set that evolves and is subject to selection. These values consist of, 

among other things, (DAWKINS 1989, p.190): 

„Language ... fashions in dress and diet, ceremonies and customs, art and 

architecture, engineering and technology, ...“ 

These seem to be similar to needs, preferences, human capital definitions, etc. 

DAWKINS continues: 

 „...all evolve in historical time in a way that looks like highly speeded up genetic 

evolution, but have really nothing to do with genetic evolution. As in genetic evolution 

though, the change may be progressive ... it improves. Admittedly the current burst of 

improvement dates back only to the Renaissance, which was preceded by a dismal 

period of stagnation, in which European culture was frozen at the level achieved by 

Greeks. But as we saw ..., genetic evolution too may proceed as a series of brief spurts 

between stable plateaus.“ 

This gives rise to the question of resilience and equilibria (plateaus) during the 

development of human societies which are distinct in time and space scales (KÖHN in 

prep.). Surprisingly, human evolution does seem to exhibit thresholds indicative of 

punctuation. They are all linked to an increase in the rate at which knowledge is 

acquired and used to „improve“ conditions favouring survival. (The improvements were 

at least initially perceived as such). Typical thresholds in human evolution include, for 

instance, the replacement of the stone-age hunter-gatherer society during the agrarian 

revolution, the industrial revolution and, perhaps, the information  revolution. 

Learning from natural systems and their „information processing“ raises questions 

concerning structures on which cultural/informational evolution is based. DAWKINS 

(1989, p.192) wrote in this respect: 

 „The new soup is the soup of human culture.“  
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His „soup“ consists of human needs, technical and social knowledge, knowledge 

about rules and norms, preferences, etc. (cf. OSTROM 1990). It is the superstructure, the 

metaphor to which all human information belongs. „Soup“ refers to the genome, to the 

pool of information that humans have created in their history and now possess. It is 

similar to BOULDING´s  „frozen knowledge“, DALY´s „ethical capital“ or even the 

„human capital“ of economic theory. Moreover, this „genome“ is the „potential“ to 

create, manage and sustain social structures. 

As in nature, this information will not be expressed in its entirety at any one time. 

The inherent regulators of a system, i.e. its „alleles“, consist of a reservoir of possible 

adaptations to a changing natural and social environment. Consequently, the extinction 

or nonexpression of an allele - which is the information needed to start, manage or end a 

certain process or even to synthesize a certain structure such as a protein - does not 

necessarily lead to extinction of the  species or process possessing it. In general, 

depending on environmental conditions, it might even be possible that the allele is not 

lost, but merely replaced by another one better adapted to the new environment. But this 

is not a necessary condition. If the original allele survives in the genome of a species, it 

becomes recessive for its specific function. Although not used, it is still a constituent of 

the informational pool. This process, moving from one allele to another, could be simple 

adaptation. If the process is ongoing and the allele structure changes in the long term, 

the process tends to be co-evolutive. And, if the structure of the information encoded in 

the alleles changes, thereby modifying, say, the process of synthesizing a specific 

protein, the change is evolutive. 

Like the gene pool in nature, the human information is not homogeneously 

distributed all over the world. DAWKINS (1989, p.191) drew attention to the  

„...cultural evolution, and the immense differences between human cultures around 

the world...“  

The part of the pool to be expressed  depends on adaptational, co-evolutionary and 

evolutionary processes. The various expressions of the human information pool are the 

phenotypes found as different „cultures“ around the world. They exist separately and 

exhibit immense differences expressed, for example, in the form of language and 
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religion. And, they are copied within these different cultures by a process of „imitation“ 

(DAWKINS 1989, p.192). In a self-copying process knowledge is transmitted by 

„learning“ (BOULDING 1969, p.1) from generation to generation. Recently this process 

has also been seen to cross cultural boundaries.  

DAWKINS (1989, p.192) names the „memory“-based finestructure of information the 

„meme“. The „soup of human culture“, therefore, consist of „memes“. These are the 

structural units of cultural transmission. They are subject to change in the course of 

adaptive, co-evolutive and evolutive processes. And they also link the subsystems of the 

human/social system as „the main dynamic factor in all social systems.“  (BOULDING 

1969, p.1,4). Like genes, memes are distinct in certain properties (longevity, fecundity, 

copying-fidelity) (DAWKINS 1987, p.194). Moreover, memes originated in genetic 

structures: 

„The old-gene selected evolution, by making brains, provided the soup in which the 

first memes arose. Once self-copying memes had arisen, their own, much faster, kind of 

evolution took off.“ (DAWKINS 1987, p.194). In the next chapter we shall consider what 

bearing this has on thinking in terms of system hierarchies, system structures, 

institutions in social systems, evolutive processes and their rates of change 

6. New thinking in terms of system hierarchies 

Models used in economics portray relations between the systems „environment“ and 

„economy“ in various ways. Whereas neoclassical economics considers and treats the 

environment problem as extrinsic (e.g. SIEBERT 1994), evolutionary economists regard 

the two as coexistent (e.g. BECKENBACH 1991, p.64; HINTERBERGER 1994, VAN DEN 

BERGH and NIJKAMP 1991).  

This functional outline will now be applied to a more complex structure. More 

specifically, we shall attempt to identify the cause of the different rates of evolution. 

FABER and PROOPS (1991, p.75) described the rapid (unpredictable) formation of the 

„genotype“ of the physical system we now use as various physical constants to explain 

and calculate processes. They postulate a „unique genotype“ for physical systems and 
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increasing diversification for natural systems (corresponding in this case to at least the 

genetic potential of all species) and economic systems. The „genomes“ of economic 

systems determine such things as preference orders of the economic subjects, 

technology, the legal system and economic and social institutions. They are in fact 

stocks of information (the „genomes“ of human progress). On this basis, the economic 

„phenotype“ is the expression of a memone, to use DAWKINS term, under the given 

conditions (technologies in current use, capital consumption per unit good, quantities 

and prices of goods, market structures, etc. ibid., p.76). 

The economic memone is not expressed globally. Knowledge erodes, and 

technologies are/have been forgotten. Local, regional and national adaptation to the 

global economic „genome“ founders on the transferability of knowledge between 

cultures, cultural-religious or other obstacles. In other words, genotype transfer (in the 

sense of our definition of the knowledge stock) was/is completely/partly blocked. Its 

phenotypic expression must consequently be based on „presence“ in a way analogous to 

how biological species adapt (using the species' potential in a biogeographical region) 

by partly absorbing and storing additional (and currently unused) information. The 

information stored in alleles for the synthesis of isoenzymes with different optimum 

temperatures is a good example of this. What in a biological context represents a 

stabilization of the species or system by permitting other genetic switches to be turned 

on in the face of change in the surrounding system would be, in an economic system, the 

encoding of knowledge acquired in adapting to surrounding systems and its activation 

when needed. 

What can this surrounding system be? Does the two-system model possibly contain 

some decoupling mechanism leading to exacerbation of the conflict between the 

economic and the ecological system despite the existence of a „rational (?) economic 

genome“? If such a decoupling exists, how can we explain the measurable (for instance 

in terms of resource consumption) acceleration of the process since the industrial 

revolution in order, ultimately, to find approaches to a back-stop co-evolution? 
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Analysis of the economic system proposed by FABER et al. (1987, p.13) and the 

economic genome of FABER and PROOPS (1991, p.76) in the light of NORTH'S work (e.g. 

1988) leads to a modification of the system-hierarchic view. 

As a first step, the economic parts of the genome related to finance capital stock 

(preference orders of the economic subjects, technologies, economic institutions) can be 

separated out from the „economic genome“. These form the genome of the economic 

system. Secondly, the institutions of the state and its legal system are regarded jointly as 

the „genome“ of the political system (institutional non-transferable capital stock). 

Finally, history, belief, values outside of the consolidated preference orders are lumped 

together to form „cultural capital stock“ and regarded as the „genome“ of the cultural 

system. National and/or ethnic traditions are thus incorporated into the system model. 

The cultural system is regarded as decisive for the inertia of social systems. However, a 

clearcut separation between the subsystems seems to be impossible or even 

inappropriate to systems thinking.  
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Fig. 2.  The new system hierarchy concept. 

The three newly formed systems are part of the social system (Fig. 2). They 

development partly independently of each other owing to the accumulation (and erosion) 

of the information stock (evolution of their distinct „capital stocks“). The subsystems 

are balanced by flows between capital stocks. These take the form of adaptation in 

which local, regional and national (as a sum, global) phenotypes are formed. Inputs of 

exogenic information can from time to time increase the diversity of the system, but also 

take it closer to its carrying capacity and can, under certain conditions, lead to the 

collapse of the system. At some stages, feedback must exist between the subsystems to 

control their rates of development, i.e. each subsystem must have time to adapt to the 

development of the others. Although trigger and carrier feedback mechanisms analogous 

to those of enzyme cycles could serve as regulating instruments, little is known about 

such mechanisms in social systems. Ever since the division of labour towards the end of 

primitive society, and certainly since the industrial revolution, evolutive and co-

evolutive processes in the social system have been taking place at a substantially faster 

pace than in nature, the supersystem. As a result, the risk and unpredictability of paths of 

development and fixed points has also increased („unpredictable uncertainty“). 

The social system gradually replaces the economic submodel in the considerations of 

FABER et al. (1987, p.13, Fig. 1). That is, an additional co-evolutionary process takes 

place between the social system and natural system within the supersystem nature (or 

ecological subsystems in a biogeographical region). This process is inevitably slower 

than processes between subsystems of the social system, but is strongly influenced by 

their rates. 

Rates of evolution will differ from one level to another of the different processes 

(Fig. 3, Table 1), knowledge transfers and species even within the subsystems. They 

depend on the genetic „stability“ of the various attributes (endogenic stability) and on 

exogenic factors such as those exerted by systems higher up in the hierarchy. After all, 

attributes faced by minor „genetic barriers“ (e.g. viruses and bacteria with enormous 
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rates of reproduction and „naked“ genomes“, cf. COSTANZA and PATTEN, 1995, p.194), 

like partly open systems, tend to have higher rates of evolution than closed systems 

owing to their more intensive exchange processes with their surrounding systems. 

In contrast to the models discussed at the beginning, the model considered here 

expands to form a three-level hierarchy with subsystems at each level (Fig. 3). The rates 

of subsystem evolution increase as the degree of concentration. Feedback takes the form 

of adaptation of the new phenotype to the hierarchically higher system or to the source 

reference system. Actually, BOULDING'S (1969, p. 2) „mutation selection process“ takes 

place at the level of the social systems and between hierarchic levels and is limited to 

the information vector. Attributes subject to evolution and co-evolution and the 

feedback and carrier mechanisms presumably correspond to the species, genes and 

alleles and their replicators found in biological systems. 

   

   

nature  economy 

Fig. 3a. The One-Level Hierarchy and possible relations between systems. 

     

     

  economy   

     

     

     

  nature   

Fig. 3b. The Two-Level Hierarchy and possible relations between systems. 
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   policy  economy  culture

 social system

 supersystem nature  

Fig. 3c. The Three-Level Hierarchy and possible relations between systems. 

 

Tab. 1. Velocity of Adaptation and Sensitivity to Evolution of Sytems. 

 

 velocity of adaptation  sensitivity to evolution 

natural systems slow very low 

social systems   

- cultural systems slow low 

- political systems medium  slow 

- economic systems fast medium 

 

7.  System velocity 

Table 1 summarizes our knowledge concerning rates of change in a simplified manner. 

Velocity of adaptation means a shift between alternatives (alleles), whereas sensitivity to 

evolution reflects more the co-evolutionary and evolutionary rate of change. However, 

the table only reflects the behaviour of systems during gradual processes. It does not 

take punctuated events (flips) into account. The table is based on quotations given in the 
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text and an estimation of rates of change in the new systems model. In general, the lower 

the position of the system in the hierarchy, the faster the rate of change. Acceleration 

occurs first of all in the economic system. This subsystem, however, is also the most 

open one in respect of fecundity and copying fidelity as a result of, for instance, 

internationalization processes in industry and the processing of technical information. 

Longevity of replicators is the opposite extreme. This implies that the economic 

subsystem itself leads to loss of cultural values and information. Here, moreover, we 

have an analogy to the law of entropy: the more information is produced, and the more 

frequently it is produced and copied, the more susceptible it and its copies will be to 

failures and losses. Since this is a new topic, I am not quite sure of  the consequences. 

But, thinking in terms of systems leads, in analogy to the second law of 

thermodynamics, to the conclusion that the effect of information waste may be similar to 

entropy. 

8. Validity of the model for sustainable policy concepts 

The system bounds of the model we have described can be set at the local, regional, 

national, continental or global decision-making level. The determinants set by the 

supersystem „nature“ consist in climate, biogeographic features and the resource stock. 

The social system developed and is developing against this and a historical background. 

The evolution of the social system is the result of the development of the „genomes“ of 

its subsystems, the expression of specific (for instance national) phenotypes and the 

adaptation of the subsystems to each other and to hierarchically equal and higher 

systems (co-evolution). The degree of development of a system can be characterized by 

the expression of its information stock (potentials), but not necessarily by its complete, 

simultaneous expression. The information stock can both increase and erode. 

Sustainable policies should therefore be oriented towards safeguarding and using 

the endogenic information stock (retention of the cultural capital stock, which is partly 

identical to human capital). Inputs (flows such as technical knowledge) must be 

measured in terms of their adaptability to the cultural and political system and should 

not lead to saltatory evolution. In other words, free transferability of, for instance, 
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technical knowledge, preference hierarchies or economic institutions can lead to an 

(unpredictable) risk for the social system and even for the supersystem nature (non-

linear cause-response-functions). 

However, BOULDING (1966, p. 5) states that three „classes of inputs and outputs“ 

must be taken into account, implying that sustainability policies will involve more than 

the bare necessities „matter“ and „energy“. The problem of sustainable development can 

be solved only by encouraging „synergetic feedbacks between human societies and their 

environment“ (BERKES and FOLKE 1994, p.134). Therefore, appropriate institutional 

settings (for sustainable policies) can be established and concepts supporting the 

sustainable use and conservation of resources („sustainable management“ in production, 

product and service development and availability, consumption, recycling and 

reintroduction to „natural“ material fluxes) developed only if the long term uncertainties 

can be reduced.  

Uncertainties stem from lack of knowledge about system structures and functions 

and their variability time. Moreover, information is also needed about the players, 

possible alternative decisions, indicators, social and institutional arrangements, system 

inertia and the factors triggering development. In other words, sustainable development 

is only possible if evolutive and co-evolutive processes are known and partly directable. 

Therefore, at least something must be known concerning the regulability and 

controllability of the systems involved.  

As a rule the larger and more complex a system, the larger the uncertainties 

concerning the system itself and its relations to other systems. Small systems with a 

limited number of players, rules and decisions tend to more sustainably developable than 

complex and unfathomable systems (OSTROM 1993, HOLLING et al. 1993, BERKES and 

FOLKE 1994). Thus, the more complex the system, the greater the need for appropriate 

institutions. These institutions will reduce uncertainties and lower transaction costs 

(NORTH 1988). Furthermore, they will stabilize social systems by conserving cultural 

values and cultural diversity. However, „large systems ... involve substantial difficulties. 

These are associated with large and heterogeneous numbers of individual and corporate 

actors and with difficulties in making credible commitments. ... Consequently, in future 
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work, it will be important to pursue theoretical and empirical studies that specifically 

address how heterogeneity of participants, multi-species or multiproduct resource 

systems, and long time horizons affect the selection and performance of institutions.“ 

(OSTROM 1993, p.9) Although Elinor OSTROM´s research focuses on the use of resources 

and not on systems, many parallels can be seen. Institutions for governing the commons 

bear close similarities to institutions for sustaining systems. Institutions are among the 

„cultural values“, „written“ in memic codes. They set frameworks for action and support 

links between material-energy-information classes. 

The new systems hierarchy concept can be used to explain the different 

rates/velocities of adaptation, co-evolution and evolution: information and the 

institutions based on it appear to be the crucial components of the sustainability concept. 

This implies that material-energy approaches are inadequate for the sustainability game. 

Moreover, the sustainability discussion must be broadened to embrace new approaches 

in the economic theory of uncertainties, information, institutions and game theory rather 

than restricting itself to simplified material-energy or capital-maintaining approaches. 
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