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Short Abstract: Based on empirical evidence, a simple model of

oil exploration and discovery is deyeloped, which emphasizes

the stochastics of the discovery process and its infor-

mational aspects. Open-loop-feedback, m-measurement-feedback

and closed-loop optimal exploratory strategies are derived.

In forthcoming Part II, the model behaviour when interfaced

with a market mechanism will be analysed.

Keywords: Natural resources, oil exploration, stochastic
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I. Introduction

As evidenced in DASGUPTA and HEAL (1979) for example,

recent analytical models of optimal resource exploitation

tend to relax the restrictive assumption of a known, fixed

resource stock. Even in more advanced models, however, no

explicit attention is given to the dynamics of resource

discovery (an exception being the model of DERZKO and SETHI

(1979/80) ). The (expected) exploitable reserves are

simply taken to be a smooth function of human effort (for

example, of the exploration costs).

For most natural resources, however, the relationship

between exploratory effort and discovery, as well as the

discovery process itself are essentially discrete and pro-

babilistic in nature. In general, resources are not homo-

genously distributed on the surface of the earth. Their

concentration may be high in a number of geographically

well-delimited areas (i.e., in deposits) of varying sizes,

negligible elsewhere. Thus, at a given moment of time and

for a wide range of relative prices and techniques, only

those resources contained in known deposits constitute the

exploitable reserves. If successful, additional exploratory

effort will cause a discrete increase (jump) of random size

in the known reserves at the moment of the discovery of a

new deposit. Between two discoveries and when there is no

exploration, the reserves remain unchanged.

There are, of course, special situations when the assumption

of a smooth relationship between human effort and exploitable
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reserves will be an appropriate working hypothesis. In

general, this assumption appears to be more justified in a

macroeconomic or global context than in a microeconomic or

regional one. When exploratory activity is simultaneously

conducted in a number of areas and when the size of single

deposits is small relative to the total resource base, dis-

covery can on the average be realistically approximated as

a continuous, deterministic process, although the discovery

process in a single area or the discovery pattern for a singli

operator may definitively be discrete and random.

In many cases, however, the dynamics of discovery may be

central to an economic analysis of resoiTce exploitation.

Indeed, since short-run phenomena can influence both the

economy's short-run dynamic behaviour and its long-run

equilibrium, the approximation of the actual discovery

process by a continuous relationship may lead to completely

invalid analytical results. This point is strikingly demon-

strated by a recent paper of DERZKO and SETHI (1979/80) ,

which uses, however, a rather rudimentary description of

the discovery process.

In this note we derive and analyse an optimal exploration

strategy for oil and the resulting (random) discovery

process. Specifically, we try to shed some light on the

way past discoveries can be used to update our probabilistic

knowledge of future discovery patterns. Furthermore, we

demonstrate the value and use of expected future information

in closed-loop optimization. In the present Part I, it is

assumed that the relative prices of oil and of exploratory
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effort are known and exogenously given. In the follow-up

paper Part II we interface the optimal exploration/discovery

process described in Part I with a model of the oil market.

The main purpose of this note being to demonstrate a line

of attack more than to derive results directly applicable to

policy analysis, we kept the model simple enough to allow

analytical treatment. In spite of its simplicity, however,

we believe that the model renders fairly well the central

features and statistical regularities of the actual oil

discovery process. Nevertheless, there is no doubt that

an actual policy model along these lines would be incommen-

surably more complex and tractable only through numerical

analysis.

Acknowledgements:Most of the empirical evidence used in this

note was found in BAROUCH and KAUFMAN (1977), which also

suggests the approach followed here, and in the literature

quoted there. Important references are also GILBERT (1976)

and GRAYSON (1960) .
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II. The stochastics of oil exploration: Empirical evidence

Oil exploration typically proceeds in the following manner,

A preliminary phase of information gathering through geo-

physical surveying aims at identifying prospects, i.e.

geological configurations presumed to contain exploitable

reserves of hydrocarbons. Given a prospect, the only way

to get definitive information about the spatial distribution

of oil within the prospect (i.e. in particular: the only way

to know for certain if there is exploitable oil at all)

is to drill exploratory wells or wildcats into it. A

successful wildcat leads to the discovery of a pool or field

of finite size. Once a field is discovered, however, limited

additional information gathering in general permits a fast

and fairly accurate delimitation of the field's size and

geographical location. Further exploratory activity according

concentrates on the part of the prospect where no fields have

been discovered to date.

Empirical evidence suggests that the size distribution

of the fields and the discovery sequence possess certain

fundamental statistical regularities which can be approxi-

mated as follows:

Property I: Each prospect contains a finite number N of

fields of size g ,...,gl. The sizes g , . . . ,gl are values of

mutually independent, identically distributed, lognormal

random variables.

Property II: Discovery may be viewed as sampling without

replacement and proportional to size.
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Application of exploratory drilling effort to a prospect

yields an unfolding sequence of discoveries of randomly

varying sizes, at irregularly spaced points of time, which

can be viewed as the realisation of a discrete random

process. On the average, large pools will be discovered

first; continued exploration in a given prospect will lead

to increasingly smaller expected discovery sizes.

It should be noted that more than half of the world's

proven oil reserves are contained in 37 giant fields out

"of 'a "totral of 'approximately '500 0 known fields. There is

evidence that the traditionally exploited prospects still

yield a large number of undiscovered fields (none of them

presumably large), as shown by the results of renewed

exploratory activity on these prospects following the

first oil shock of 1974.

I.I I . The model

Consider the following concrete situation. A firm or

decision-maker DM possesses exclusive operating rights on

a given prospect. Based on the result of previous geo-

physical surveys, DM has a probabilistic conception of the

number of fields in the prospect and of the field's size

distribution, expressed by an a priori probability density

function. At moment t, t = 0,1,2,..., DM can decide to

drill or not to drill an exploratory well. If the wildcat

is successful, it will be followed by subsequent exploration
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to determine the size and geographical limits of the field

discovered. The information generated by a wildcat

(successful or not) and, if appropriate, by the subsequent

exploration can be used to update the DM's probabilistic

knowledge of the prospect. At t + 1, DM must again decide

whether to drill or not, etc. As previously stated, we are

interested in defining an optimal strategy for exploratory

drilling and the informational aspects of this strategy.

For modelling purposes we assume that the size and geo-

graphical limits of a pool are exactly observed immediately

after the pool is discovered. Further exploratory activity

therefore takes place exactly on the surface area of the

prospect which does not lie "over" already discovered

fields, i.e. on the not-yet-explored part of the prospect.

On the average, the size of a field (i.e. its content in

oil units) is supposed to be one-to-one proportional to

its surface area after proper norming. The distribution

of oil fields over the prospect is homogeneous, i.e. a

wildcat has the same probability of success no matter where

the drilling occurs within the prospect.

The above assumptions are reasonable first-order approxi^

mations of the real world and can be easily relaxed. However,

in order to obtain an analytical solution we make two less

justifiable assumptions:

a) The total number of fields in the prospect, N, is

known a priori.

b) The subjective a priori size distribution is given

by a 3-density function.
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Assumption b) implies that the size of every field in the

prospect lies between the (normed) values 0 and 1. Together

xvith the assumption of direct proportionality between field's

surface and field's size, it implies that the total surface

area of the fields within a prospect do not exceed the prospect's
surface area.

We can now state the formal model. Let

t = 0,1,2,... = time index

St = surface area of prospect relevant for exploration at

time t (not-yet-explored surface area in t) = S

less the cumula'ted surface area of discoveries up to

t, SQ given

o

N. = number of pools in S , N given
N

gj = size of pool j, j = 1, . . .,N , 0 < ĝ  < 1, ^
j=l

c = relative cost of drilling a wildcat at time t

ct > 0, given
)1 drill

u = decision in t, u
Z Z

0 do not drill
1 oil di-s cove red

h = success of a drill in t, h =(
z '0 no oil

(by convention h = 0 whenever u. = 0)

d = size of discovery in t, 0 < d. < 1

r = discount factor, given (may be time-dependent)

It = {(uo,ho,do) , (U-L ,h1 ,(!-,_) , . . • , Cut_1,ht_1,dt_1)} =

information state in t

J = joint distribution or "statistics" of the future

observations Cu t + i,h t + i,d t + i), i=0,...,T-t,

conditional on I



T = planning horizon,. T<°° .

f •(•/Qt) = density of g-
1 given I

The given a priori densities f . are independent, identical

3-densities with parameter G = (a ,b ) ,
O 0 0

= f°CO =
g

P(ao,bo)g
ao"1(l-g)bo"1

0 otherwise,

with a > 0, b > 0, p(a ,b ) a normalizing constant.

All probabilities are subjective unless otherwise

stated. The variables c , d , g-* are properly normed and

defined in "oil units." As previously noted, we assume

that g-* is directly (one-to-one) proportional to the

surface area of pool j, and that size and location of pool

j are exactly measured immediately after pool j is discovered

Without loss of generality we use the following notational

convention: Trough reordering of the index set {j},

the field discovered at the n-th successful wildcat will

be labeled after it is discovered as field N -n+1., i.e.

equivalently as field N . The N -n not-yet-discovered

fields are accordingly indexed with j=l,...,N -n.

We are interested in the sequential exploratory drilling

strategy which maximizes the expected revenue W defined by

Wt = E
T
T rT u .(d -c )
Z—. X V X X
X=t

:= E

where U designates the undiscounted period revenue

u -(d -c ) .
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The possible process behaviour between t-1 and t,

0 < t < N, is described graphically in Figure 1, where

indicates a probabilistic transition.

IV. Basic properties and updating equations.

Objective probabilities and process behaviour

At time t, the not-yet-explored part of the prospect, S.,
N

contains N fields of given sizes g , . . . ,g . The objective

probability of discovering one of these fields, say

field j, 1 < j < N , with a wildcat in period t is

z St

By the homogeneity and independence -assumptions, the

probability a^ does not depend on where within the

no t-y..et-.explored surface ar.es the wildcat is drilled.

The objective probability a of hitting a pool at all

with a wildcat in period t is accordingly

't -•t s t

The updating equations for a-1 and a are given by

N .

i . .S "dt
= il:st-dt



drill

0 i ht=0 dt-°

1

1

1

1

1
(

k

!

V ~ct

U =0

I—1

o
i

Decision Costs 'Success of drilling ' Discovery size Net period outcome

F i g u r e _ 1
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In the case of an unsuccessful wildcat or no wildcat, d =0

thus a-1 and a remain unchanged
3 y

ht = ° - 5t+l
 = °t

When the wildcat is successful, d ^ ' S o by convention.

Thus, except in the
N .

border case I g = S , the probability of discovering a

new pool decreases with every past success. The probability

of discovering a given not-yet-discovered pool, however,

increases.

Let's assume h , = 1. The objective behaviour of

h , T > t, until the next discovery (h =1) follows a

Bernoulli process with (objective) probability mass function

Ph(V = =? > K - ° '
whose properties are well known from elementary probability

theory. In particular the random variable k which describes

the number of wildcats between a discovery in t-1 and the

next discovery, i.e. the interarrival time, is defined by

the geometric probability mass function

- ktp,(k.J a.^l-aj , K. 1,Z, . . . .

The objective discovery pattern over t=l,2,... is described

by a sequence of interconnected Bernoulli processes with

non-increasing success probability. An analysis of the

statistical properties of this sequence remains to be done.
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Subjective probabilities

The g-1 are not known to DM, who has only a probabilistic

perception of the size distribution in the form of a sub-

jective density function. In t=0, the subjective density

function is by hypothesis 3 with parameter 9 = (a ,b ) .

The subjective probability a of discovering a pool with

the first wildcat is therefore

N

a =o

r
Lj=i

g

s.
= N

o X-A
o o /

The expected discovery size at the first wildcat, given

that the wildcat is successful, is

= E

Vlo

and the expected discovery size before it is known if the

wildcat is successful or not is

= E

' N
g

"I

/eo,uo=lj = N o
a ~+lo

The fact that a wildcat is successful or not represents

useful information in itself that can be used to revise the

a priori probability density function f°. We consider here

the case of a Bayesian updating of f . Note that from DM's

point of view the outcome of the first trial corresponds to

the outcome of a Bernoulli trial with success probability a .

Since 3-density and Bernoulli process are natural conjugates,

one obtains immediately for the updated densities f ., t=l,2,
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Th e f ., j=l,...,N , are independent, identical 3-densities
CTt °

f with parameter 0 = (a ,b.) given by

at = at-l + ht-l ' bt = bt-l + Ut-1 " ht-l '

see e.g. RAIFFA and SCHLAIFER (1961), p. 53. The simplicity

of this result is indeed the one and only reason why we

assumed f to be 3-densities. Note that the probabilities

a do not play any role in the updating process.

In our model, a successful wildcat also supplies additional

information on the size and location of the field discovered.

This information has no influence on the updating of f .

However, it permits us to update S and N according to

the formula

S t + 1 = St - dt , N t + 1 = Nt - ht .

These are none other than the definitory equations for

S. and N . The probabilities and expectations a, y, K

are updated by using the new values of S, N and f in the

corresponding- formulas.

Summarizing, the updating process can be verbally

characterized as follows for t=0,l,2,...:

- no wildcat (u =0, h =0) : no new information, no updating.

- wildcat (u =1) but unsuccessful (h =0): only the size

distribution is affected, b , = b + 1.

- successful wildcat (u = 1, h = 1):

a) the size distribution is updated, a.+-, = a + 1.

b) the surface area of the discovered field is "substracted"

from the not-yet-explored part of the prospect,



-14-

St + -i = S - d (no exploratory drilling will be

made anymore on the surface area of the field discovere

c) The probabilities and expectations a, y and K are

updated according to the new values of f , S and N.

Following an unsuccessful wildcat, the probabilities and

expectations a, y and K are always revised downwards. A

successful wildcat always leads to an upward revision of Y•

At the same time, however, it decreases the not-yet-explored

surface area by d, 0 < d < 1, and the remaining number of

fields by 1. If d is small enough, d < d(Ay), K will be

revised downwards. Similarly, a success leads to a

downward updating of a for d < d(Ay) , d < d.

Note that the updated densities f , probabilities a and

expectations y and K form the "best approximation" of the

real size distributions, probabilities and expectations

available to DM at any moment of time.

V. Optimal Control Solutions

We now consider DM's problem:

"Determine the exploratory strategy which maximizes
the revenue W as defined in section III, subject
to the oil exploration model developed in
sections III and IV."

For the solution of this stochastic control problem only

the subjective probabilities are of relevance, since the

objective ones are unknown to DM.
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Closed-loop-optimal control

The "true" solution of DM's problem is known as the

closed-loop-optimal (CLO) solution of the problem.

(This solution may not be computable in practice thus

making it necessary to introduce other solution concepts).

CLOThe CLO control in t, u. , is a function of the statistics

J. of the future observations as well as of the information

CLOstate I . In other words, in the determination of u

the fact is taken into account that an optimal exploratory

program will be pursued over t = t,...,T. The CLO control

anticipates in a statistical sense the results of the future

exploratory program; it assumes that "the observation loop

will remain closed" over the planning horizon. The optimal

value of the corresponding functional equation of dynamic

programming, which yields the (closed loop) optimal revenue

and defines the.corresponding optimal policy over t = t,...,T,

is given by

,, CLO
V = max

ut

max E
U T-1

max
uT

.../I
t

see BELLMAN (1961) . The nested expectations and minimizations

assure that the future exploratory program is taken into

consideration. Whenever a control is computed, the expectation

of the reward conditioned on the available information state

is first obtained: the expectation is over the subsequent

observations which are "averaged out." Since this is done

at every step, the resulting control depends, as required,
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on the statistics of the future exploratory outcome.

As first shown by JOSEPH and TOU (1961) in the case of

an additive revenue function, V can be rewritten in

the form

,,CLO
V

cf T T . ,,CLO ,,= max E U + rV. , /I

i.e. for our particular problem

V

V,

CLO
T+l

CLO
max E[uT(dT-cT)/ITl
UT

= max
0

= max E[uT_1(dT_1~cT_1) +
UT-1

rCLO

= max

0 + max r
0

lcT-l"cT

- C T-1 _-, max
0

KT-l"cT )

+ (l-YT_1)max
0

KT-l"cT

where

•T-l T-l _

= M
N T-1

T1 ~-
B̂

3T-1

and so on for T-2, T-3, etc. The general structure of V

is presented in Figure 2.

CLO



V
CLO

0 I +

I

i

i

max r
U t + 1

O

E [ d t - c t / I t ] r<

r
P(ht=l/It)-max

0

P(ht=O/It).max

0

Etdt+rct+i
/It+i]

• V.

expected I
I revenue of + expected discounted revenue of
i period t period t+1

i +

F i g u - r e 2



where

:t+l
=It s i n c e u t = 0

i*+1=ltu{ut=l,ht=l,dt=E[g/lt]}

It +l
= It U { ut = 1' ht = 0 }

; = expected value of an optimal exploration program over t=t + l,..,T given
h =0

~T 2 J \ = probability that a wildcat in t will be successful

-f 3 J s = expected value of an optimal exploration program over t = t + l,...,T
given an "average" success of the wildcat in t

~* = probability that a wildcat int will be unsuccessful

-* = expected value of an optimal exploration program over t = t+l,,..,T
given that a wildcat in t was unsuccessful

F i g u r e 2 continued
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OLFO and mFO control

CLOThe expression V obviously becomes rapidly unmanageable

with increasing futurity T-t; that is, the CLO solution is

impractical for large planning horizons T. We are therefore

led to consider two other solution concepts:

- The open-loop-feedback-optimal (OLFO) decision in t,

CLOu , assumes that no exploration program will be

conducted after t-l. The optimal decision u is

thus independant of J and defined as a function of

It only,

OLFO rT ..,ut = u(It,t)

- The m-measurement-feedback-optimal (mFO) decision in t,

u , is based on the assumption that an optimal

exploration program will be conducted over exactly

the m next periods. Accordingly, it is defined as a

function of I and of the common distribution J of

(u ,h ,d ), x = t,...,t+m-1, conditional on I , only:

mFO rT Tm ...ut = u(It,Jt,t)

In general, of course, OLFO optimization leads to a

"worse" solution than CLO optimization. The concept of

mFO optimization, first introduced by CURRY (1969), aims at

defining "best computable approximations" of the CLO solution.

The decisions u:. , t=O,...,T, are obtained by solving
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max E
ut

i.e. here

max ECU /It]
ut

= max

0 (ut=0)

(ut=l)

since u does not influence the future of the process

except for the updating of a and f , which is not antici-

pated in the case of OLFO control. By the same independance

argument one easily recognizes that u™ follows from the

CLOmaximization of the first m additive terms in V for

m>T-t, of all its terms for m<T-t.

Direct comparison of the three types of solution is fully

sufficient to reveal the informational advantages (in the

increase in the solution's complexity) resulting from taking

into consideration the expected results of a future

exploratory program. From the non-negativity and separabilit

CLOof the additive terms in V one derives immediately

U = o ^ u™F0 = 0 =* u°^ F 0 = 0. In other words, increasing

anticipation of future exploration activity can only

"encourage" present exploration.
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Basic properties

In the follow-up article Part II we shall study the

properties of the optimal sequence { u. } when previous

discoveries influence the relative oil price over a market

mechanism (i.e. equivalently, the relative exploration costs c.)

At this point we would like to point out two basic properties

of {u*} which can be derived by direct examination of

figure 2

- For all types 'of optimal solutions * ("OLFO, mFO or CLO),

u* = 0 =* u* = 0 for all x>0 whenever c ^c..
t t+x t+x t

- Let's assume u* = 0, c >0 and N >0. Then there exists

0<c<c such that u*=0 in every period x with c >c, and

u*=l in at least one period x with c <c, t<x<T.

That is, as long as there is at least one non-discovered

field, there exists a relative price level c at which

resuming exploratory activity is optimal, whatever the

past process history may be. 'Note that this does not

imply that at price level c exploratory activity will

be maintained until a field is discovered.

Choice of the planning horizon

In the formulation of the DM's optimization problem we

assumed a given, finite planning horizon T. The optimization's

result, however, obviously depends on the choice of T. An

arbitrary T might be economically unjustified since, for example,
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continued exploration after T could lead to an increase in

the total expected revenue.

The problem, however, is not as serious as one might thini

Consider first mFO optimization. Then, we obviously have

u™F0(T) = u™F0(f), T<f<~, when T-t>m. In other words, the

solution obtained by using mFO optimization to solve a sequen

of DM's problems with starting times t =0,1,2,..., and planni:

horizons tr=t+m is not dominated by any mFO solution of the

original DM's problem. Thus,in mFO optimization there is a

"naturally optimal" T which can be trivially determined.

Consider now CLO optimization. It is easy to show the

following. If c =c>0 for t>t, then there exists T<°° such

that WQ (T) > W^LU(T') for T>T, T' arbitrary. That is,

although the optimal stopping time Tf (the time, when ex-

ploration should stop forever, when W is to be maximized

with regard to (u } and T~) is a random variable, we can

assume without loss of performance in the optimizations a

deterministic planning horizon T, when T is "large enough."

(This result implies that no realisation of T,- can be

greater than T). To prove the proposition, let's assume

CLOwithout loss of generality t=0. The additive term in V

corresponding to the period t is of the form

V VVV*t ' £ !"Vt f°rV°-

(In this formula n designates the number of discoveries and

r the number of unsuccessful wildcats . Since in the present

case, c =c being a constant, u*=0 => u* =0, x>0, we can

assume n +r =t+l). For Z <0, the corresponding additive ten
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is 0. (The trivial case Z =0 will not be separately discussed

here). By assumption n <N <°° for all t. Obviously Z

reaches its maximum Z. (rt) f°r n =N and there exists a

value r O of r such that Z' (r)<0. In other words,

Z.<0 for t>r+N . It is clear that whatever the processt o

behaviour has been between 0 and x, x arbitrary, the additive

CLOterm in V corresponding to periods t>r+N are also 0.

Thus, u*=0 with certainty from period r+N +1 on, i.e.

f=r+N +1.
o

The validity of the proposition crucially depends on the

assumption of a constant value c for c. from a finite point

of time t on. If one allows e.g. c to rise for arbitrarily

long periods of time, exploration could stop for equally

arbitrarily long periods of time before possibly resuming.

Much less trivial is the behaviour of {u*} when {c }
t - t

is slowly decreasing. A theorem on general conditions

which assure the existence of T remains yet to be derived.

VI. Conclusions

The model presented here and its optimal solution possess

a very simple formal structure, thus making them amenable for

analytical treatment. Nevertheless, all the properties

of the model and the solution are plausible ones. They appear

to reflect the real process of oil discovery within a given

prospect well, at least qualitatively. In particular, the

model leads to the conclusion that a sufficient increase in
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the relative price of oil makes resuming exploration in old

prospects economically viable, unless the decision-maker

believes the prospect is completely exhausted.

The arbitrary assumption, the DM's a priori density functio:

is 3, does not appear to be damaging with respect to the

plausibility of the results. Indeed, it is common in pre-

posterior analysis to approximate an empirically more

justified distribution by another one in order to gain the

computational advantages presented by conjugate distributions.

In general, this does not mean any serious loss of performance

since the empirical evidence and DM's a priori knowledge

are characterized by a great degree of uncertainty, Neverthe-

less, we must admit that we did not study the robustness of

the results with respect to the choice of an a priori

distribution.

Similarly, the assumption of a known number of fields,

while obviously unsatisfactory, does not seriously impair the

practical value of the model. This may reflect the fact

that in reality the decision-maker's a priori knowledge

encompasses more than just the size distribution and

certainly extends in some way to the number of fields.

Here again, however, we did not study the way in which the

assumption influences the results. Furthermore, we do not

know how to relax it and still obtain an analytical solution.

Numerlous elaborations can be thought of to increase the

model's plausibility and its value for policy analysis. One

can, for example, weaken the assumption of an exact and

immediate measurement of the fields discovered; allow the
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discovery probability to vary within the prospect, reflecting

differentiated information from geographical surveys;

explicitly consider optimal exploitation patterns, stockage

possibilities and different oil qualities; allow more than

one wildcat to be drilled at any moment of time and introduce

a "production function" for wildcats; consider several

prospects at once; finally, introduce adjustment costs

reflecting the fact that it is costly to build up and, in

inactivity periods, to maintain an exploration team. Most

of these extensions, however, are either rather trivial and

should not significantly change the qualitative results, or

will be amenable only by numerical analysis.
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