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MAN-MACHINE INTERACTION AS AN ANSWER TO
THE MULTIPLE-GOAL PROBLEM

Christophe Deissenberg^
Universitat Konstanz, Fachbereich Wirtschaftswissenschaft und
Statistik, Postfach 7733JD-7750 Konstanz, F. R. Germany.

SURVEY

In many real problems the evaluation of alternative actions must take multiple
heterogenous and complex indices or criteria into account. In this case, the
standard mathematical optimization models cannot be applied to determine
the "best" decision. What methods can then be used to help the decision-
maker in his choice? What supplementary information is needed and how can
it be obtained?

This article attempts to answer these questions by giving a critical overview
of several man-machine interactive methods which were recently devised to
solve the multiple-goal problem. Three types of methods are outlined and
compared. The mathematical structure and the implementation of one of the
methods, which appear to be operational for a wide range of problems, are
presented in greater detail and illustrated by means of an example.

INTRODUCTION

In this article we are considering complex decision situations characterized
by a multiplicity of partially conflicting goals, all of which are desirable to
some extent. For simplicity's sake these goals are assumed to be of the form *•

x. = f (z., . . . , z )—»sup , x. 6 R, i = 1, . . . , n.
l 1 m z i

We assume the functions f to be point-to-point mappings so that exactly one x
corresponds to each z and vice-versa. The functions f1, the set D£.Rm of
feasible problem variables z and the corresponding set TS.Rn of feasible
goal variables x are supposed to be clearly defined and explicitly known. The
decision-maker is assumed to have an implicit overall objective function U
as a function of the n single variables xi. The function U, however, is not
explicitly known. Formally, this decision-making situation can be formalized
as a constrained maximization problem,

U(x , . . . , x)—•sup) U unknown ,

subject to
v = f * I'Z v \ i = 1 TV (1)

\ \* ' ''' ' -rn J-. • • • > u,
x 6 T *=? Z e D 4=> G(z , . . . , z ) = 0;

1 m
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in which G describes a set of direct and functional constraints on the var i -
ables z..

Multiple-goal situations of the kind described above are most common in
practical economic decision-making processes and have been recognized
for a long time in economic theory^'. Two examples of these kinds of
problems are:

a) In macroeconomics the '.'stabilization policy problem": unemployment and
maintenance of full-capacity output, control of inflation, reasonable rate of
economic growth, maintenance of a high level of investment, and redis t r i -
bution of income through taxes and transfers;

b) In microeconomics the problem of maximizing profit, cash flow, profit-
a b i l i t y , stabilizing prices and beneficiary margins, assuring future invest-
ment possibilities and growth, augmenting the market share, etc.

Note that multiple-goal problems typically appear in organizations too, in
which there is not a single decision-maker but a board, each member of
which is more crucially interested in certain specific goals.

However, the assumption of an explicitly known, single-valued, overall ob-
jective function is still the rule in economic theory as well as in the decision-
oriented models of Operations Research. The main reason for the apparent
neglect of multiple-goal situations and their specific problems is probably
the difficulty in handling multiple goals in a satisfactory manner. Knowledge
of n single goals is insufficient in itself in enabling the formulation of an
optimization problem capable of being used for actual policy recommendations
to the decision-maker. When only the n goals are known, this can lead only
to the vector-maximization problem

(x1, . . . , xn)_^.sup ,

subject to (2)

x. = il(z
1, • • • . z

m ) , i = 1, . . . , n;

G(za z m ) = 0.

The solution of (2), however, is not uniquely defined but consists of a whole
set of points, i. e. the efficient set. Each element x of this set, i. e. each
efficient point, is characterized by the fact that no feasible x exists such that
XjS 3q, i = 1, . . . , n, with the strong inequality > holding for at least one i.
That means there is no feasible point x which fulfills one single goal better
than x without simultaneously fulfilling some other goal less well than x
(Pareto optimality). Therefore, the solution of the decision problem (1)
given a specific objective function U is necessari ly an efficient point. Never-
theless, even when the computation of the efficient set is possible, the
decision-maker is left with the problem of determining the "best" point in
the efficient set. Since the efficient set is , as a rule, a complicated, n-dimen-
sional structure, this reduced problem is not significantly simpler than
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the original problem of finding the best point in the feasible set.

The purpose of this paper is to present some interactive man-machine ap-
proaches which can be effectively applied in actual multiple-goal decision
situations to help the decision-maker make his choice.

There is no general agreement concerning the solution of the multiple-goal
problem. The solution is straight-forward in two special classes: (a) No real
difficulty arises when the preference ordering of the decision-maker is
lexicographic; (b) The best solution can easily be found by directly comparing
alternatives when the feasible or the efficient set contains only a few points'1'
or when they can be represented in an easily understandable way, for example
graphically. However, a graphical representation is, in general, only possible,
for n = 2. For n > 2 the feasible or the efficient set can, as a rule, only be
represented analytically in the form of an equation, which in most practical
situations will be too intuitively meaningless to serve as the basis for a
decision.

For the general case, several interactive approaches have been studied to
date. (For an excellent review, see Roy (1971).) Some of these approaches
aim at the explicit specification of the overall objective function of the deci-
sion-maker or of some weaker surrogate of it, in order to permit the ex-
pression of the decision problem as a standard mathematical program. The
highly interesting questions arising therefrom are central to welfare theory.
However, these approaches are often too ambitious for practical application.
In particular, the information which the decision-maker has to supply within
the interactive process is often too complex. In any case, these approaches
have mostly been studied on a theoretical level and there has been little or
no attempt to apply them in actual problem solving.

We will therefore restrict our attention to the second main kind of approach,
which has already reached the operational stage. The aim here is to deter-
mine a "satisfactory" solution through sequential exploration of the feasible
set without having recourse to overall information about the preference
ordering of the decision-maker. This1 exploration, however, is guided to
some extent by local information furnished by the decision-maker and leads';
among other things, to a progressive definition of his preferences. Procedures
of this kind are typically based on an interactive procedure in which the
decision-maker is faced at the first iteration with a feasible first solution.
He is then asked by the algorithm to answer a few simple, intuitively clear
questions, directed at revealing his evaluation of the solution (decision phase).
The answers are subsequently used in a calculation phase to determine a new,
"improved" solution, which forms the basis for a new iteration. The process
is assumed to converge within a reasonable number of iterations to a "satis-
factory" or "suboptimal" solution.

Let us already state at this point one very important characteristic of the
methods we will present. The whole computation, which takes place in the
problem variable space (z) , is relegated to the computer. The decision-
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maker can regard the entire procedure as taking place in the goal variable
space fx"J ; he can disregard the values taken by the variables ZJ, the func-
tion f* and the constraints G. This has two advantages: a) The decision-maker
can concentrate on his choice with no extraneous details to distract him;
b) Practically, the only limiting factor in the use of the method is the maxi-
mal number of goal variables the decision-maker can comprehend at one
time. Depending on the method, this number lies between 4 and 10 (see
section III, B). The number of problem variables ẑ  can be much higher.
The dimension of {z] and the complexity of the functions fi and the con-
straints G is limited only by the computer's capacity to solve in a reasonable
amount of time the classical optimization problem corresponding to (1) when
the objective function U is explicitly known.

This article is organized as follows: In part I we discuss some general
characteristics of interactive methods for solving the multiple-goal problem
and their consequences, and present the logic underlying the three main
classes of methods. The implementation of the GEOFFRION approach, which
we consider to be the most promising of the three, is discussed in part II.
A numerical example is given. Part III is devoted to comparative evaluation
of the different methods presented. Some conclusions are drawn relative to
their practical application and to further research.

I - BASIC METHODS

Three main classes of approaches for solving the multiple-goal problem
through sequential exploration of the feasible set can be distinguished:

- direct search or unstructured approaches;
- best compromise approaches (prototype: STEM method);
- interactive large-step procedures of the GEOFFRION-type.

The corresponding methods all aim at determining the best solution to a
constrained optimization problem. However, the fact that they are based on
a man-machine dialogue and are designed especially for assistance in
managerial decision-making, implies the existence of important general
properties that distinguish them in the family of optimization methods. These
properties and their implications are discussed briefly in section A. The
basic ideas underlying the unstructured approaches, the STEM and the
GEOFFRION methods are presented in sections B - D.

A - General properties

Normally, the cost of building and optimizing a multiple-goal model do not
differ significantly from the cost of building and optimizing the corresponding
classical optimization model, given a known overall objective function. To be
sure, the interactive procedure may occasion increased programming and
computing expenditures, although this may be offset by increased willingness



to tolerate an inexact solution (see below). The supplementary expenditures,
however, are likely to constitute only a small fraction of the total analysis
cost and will not play a decisive role in the choice of a given method. l"

Nevertheless, one specific cost factor places narrow constraints on the
interactive methods: the high cost, for example in time elapsed, of the
decision-maker's participation in the interactive process. This cost factor
will be of decisive importance if the decision-maker participating in the
interactive procedure is - as should ideally be the case - the "policy-maker"
himself, i.e. usually a (board of) top-level manager(s) or high government
official (s).

Another specific aspect of interactive procedures, which distinguishes them
from regular iterative optimization problems, is the fact that "inexactitude"
is introduced during the iterative process by the human element. Interactive
procedures are based on an information exchange which takes place at each!,
iteration between decision-maker and computer. It is likely that the decision-
maker will not be able to exactly express the information he wants to com-
municate to the computer. Moreover, he will probably undergo a learning
process during the interactive procedure, so that the information he fur-
nishes at a later iteration may be "inconsistent" with the information he
furnished at earlier iterations. On the other hand, the decision-maker will
not be able to interpret exactly the information provided by the computer.
In particular, he will consider small changes in the values of the variables
insignificant, although even such seemingly insignificant changes may be of
great importance in a standard optimization routine.

A third aspect is the fact that the decision-maker will not consider the "best
solution" attained in the interactive procedure to be the decisive answer to
his decision problem. Rather, he will rely on the procedure to provide him
with supplementary information on the problem and to help him in his appre-
ciation of relevant alternatives. In other words, confidence in the method
is an essential factor in its practical success, and the key to the successful
conduct of multiple-goal methods is the joint exercise of good judgement by
executives and professional operations researchers.

From the various arguments discussed above, it is obvious that only approxi-
mate solutions can realistically be expected from interactive methods for
solving the multiple criteria problem. The important issue, however, is not
whether the proposed solution is optimal, but whether the method permits an
improvement in the solution significant enough to justify its use. Therefore,
a good approximation of the optimal solution is satisfactory, too. Further-
more, since the model to be optimized is itself an approximation, solutions
will be acceptable which do not exactly satisfy the constraints (i. e. , pseudo
solutions). The consequence of this standpoint is that the formal problem of
the existence of a solution becomes uninteresting except if the solution is
unbounded. The problem is then meaningless. In the following, we wi:
assume that all solutions are bounded, unless stated otherwise.
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Since the inexactitude of the solution and the limited number of iterations • '••
are accepted, the infinite convergence of the method is irrelevant. The.
initial convergence, however, is crucial. A few iterations should lead to a
reasonably small neighborhood of the optimum. The convergence must be
robust against possible inconsistencies in the information provided by the
decision-maker. The interactive procedures altogether should be compatible
with the decision-maker's eventually changing his mind; he should be helped,

_but not restricted, in his search.

j
All the methods presented in this paper satisfy the above requirements. They
are not bound to a special mathematical structure of the multiple-goal pro-
blem either, but can be applied to a wide variety of models. Only the STEM
method is more restrictive in its use. However, it should be clear that quick
convergence to a global optimum presupposes "reasonable" formal properties
of the problem. The existence of several local optima in itself is not neces-
sarily very disturbing in an interactive setting. In most cases, experience
and intuition will allow easy recognition of a given local solution as globally
unsatisfactory.

The implementation of a multiple-goal procedure in a concrete case should
be carefully planned, if possible in close collaboration with the executives
and the staff of the firm concerned. Before it is practically used as decision
aid for a given problem, the procedure should be extensively tested. The
corresponding trial runs should, if possible, be conducted with middle <
managers. Particular regard should be given to the instructions describing
the model, the method, and the way they can contribute to the solution of the
concrete multiple-goal problem. It is also extremely important to organize
the information exchange between decision-maker and computer so that in-
exactitudes and/or misunderstandings as well as time required are reduced
to a minimum. In general, the information exchange should be made with
the help of a time-sharing program directly on a computer console whereby
the calculation results are displayed on the screen.

Before the decision-maker is allowed to use the interactive procedure for
solving his concrete problem, he should be thoroughly trained in the use of
the method. In his training he should receive both theoretical explanations and
practice in solving typical examples. Experience has shown that this training
is not only important as an instrument in increasing the decision-maker's
confidence and his acceptance of the method. It is also crucial in increasing
the reliability of his answers to the computer. The solution of the real pro-
blem should be repeated at least once in order to increase confidence in the
results and to check for eventual learning processes and local optima. The
results must be filed and analyzed ex post in collaboration with the decision-
maker in order to interpret his choices and their consequences. For the des-
cription of a. pract ica l case of implementation, see section I I I , A.
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B - The unstructured approaches

Unstructured approaches refer to the direct application to multiple-goal
problems of methods known in mathematical programming under the generic
name of "Sequential Optimum Seeking by Experimentation". The designation
"unstructured" is common but unfortunate, since many of these methods have
a non-trivial structure. Their common characteristic'/is that they do not re-
quire elaborate information from the .decision-maker. In general, a pairwise
ranking of alternatives is all that is necessary. They neither seriously res-
trict the decision-maker in his search nor help him to any great extent. The
rate at which they proceed toward the optimum depends on the decision-
maker's luck and cannot be predicted in advance. Nevertheless, their im-
portance should not be underestimated. These methods are generally easy
to understand, easy to implement, and give very satisfactory results in
situations which are not too complex.

In the simplest case the decision-maker is invited at each iteration to enter
a solution x. Then the computer tells him whether x is feasible or not.
(See printout and flow chart of the GEOFFRION method). Supplementary
information can eventually be supplied; for example, the computer can indi-
cate if x is efficient or not, which constraints are binding, etc. The decision-
maker is completely on his own in choosing which new solution he will enter
at the next iteration. Contrary to the STEM and the GEOFFRION methods,
this approach can also be applied to discrete problems.

More complicated methods present the decision-maker at each iteration with
a whole set of feasible solutions. He is then asked for a subjective ranking
of the solutions. This ranking is used to determine the set of solutions to be
presented at the next iteration, using, for example, a combined gradient
and golden search method. A detailed exposition of these methods cannot be
given here. The interested reader, however, may refer to the corresponding
chapter in Simmons (1975) (in a classical optimization context) for an over-
view.

I'
C - The STEM Method

1. General remarks. The STEM method devised by Benayoun and Tergny
(1969) is applicable to linearly constrained problems in which the goal vari-
ables Xj are linear functions of the problem variables z .̂ That is, it is ap-
plicable to multiple objective linear programs of the type:

(3)

U(x)—»max;

subject to

z€D4=»(Az •*
with x = (x ,

i , i
c = (c1#

A a (1 x

x,
i

' b,
• •

m)

= c z, i = 1,

z > 0 ) .
. , x ) , z — ( z

., cM, b= o
matrix.

. . . , n;

1 j • • • *

• \ ' ' ' ' >

U unknown

zm '



The concept behind the STEM method is to sequentially explore feasible
modifications (i.e. , compromise solutions) of an unfeasible "ideal"! solution,
whereby the exploration is guided to some extent by the decision-maker's
answers to simple questions posed by the algorithm. The decision-mal^er is
not asked for information about the overall objective function U at any stage
of the iterative process.

.Prior to the interactive process with alternating calculation and decision
phases, a preparation phase is necessary in order to calculate an "ideal"
solution and the first compromise solution.

2. Preparation phase.This phase begins with the determination of the n ex-
treme solutions which correspond to the maximization of each variable x̂
considered as the unique goal. In other words, these extreme solutions are
solutions to the n LPs

1
x. = c —»max

1 z

subject to (4)

z £ D ,

i = 1, . . . , n. Let x = (x , . . . , x ) be the solution of the i-th pr.oblem (4)
and z1 = (2*, . . . , z* ) the corresponding value of z. The value x^ represents
the maximum value That the goal variable x̂  can attain under the constraint
z 6 D, irregardless of the "goodness" of the values of the other goal variables.

i i i
The vectors x are used to build a pay-off matrix \,x. i, the i-th row of this
matrix being given by the extreme solution x1. The main diagonal of the pay-
off matrix, {xj}, which consists of the "maxima maximorum" of the goal
variables XJ, is considered to be the reference or "ideal" solution. Because
Df the way they were obtained as solutions to the n-problems (4), the values
(j, i = 1, . . . , n,cannot be reached simultaneously, so that { x{\ is un-
'easible.

i. Calculation phase. The preparation phase is followed by a calculation phase
n which the feasible x* = (x^ , . . . , x^), which is "closest" in the minimax '
iense to the ideal solution / xj "J, is calculated as the solution of a LP (see
low chart, Fig.s 1).

n this calculation, weights 1T. are introduced to express the relative importance
if the distance of each goal variable XJ from its ideal value x|. These weights
re chosen in such a way that they will be small when the value of x̂  i s not
nuch improved by a change in z from its ideal value "z,i (see "Term l" in
low chart). On the contrary, 1T i will be large if x̂  is very sensitive to a
hange in the value of z. The weights are normalized to one in order to en-
ble easy comparison of different solutions obtained from different weighting
trategies. Fig. 2 presents a printout example of the calculation phase.



- 9 -

i

£

I'.OifAx"*"

D'.oVi'-Ai11]-
k.k.1 . on

 
ph

as
e

C
o

lc
u

la
t

)h
as

D
e

c
is

io
n

Solve n LP, 14 )

*
Construct pay-off

matrix.

Put k»l, f jU D.

1 -

Calculate weights
n

X.+ *.. 1 L J., with Z x z\
' ' i.l , ' ' '

Te'rmi* Term 2 * *

<
Solve LP

A —*• min subject to

A 6 x j - c ' - z - X i , i«l,...,n.

z £ Ok , AC 0.

i i.1,...,n.

Make a sensitivity analysis of
k k

X, for variations of X j , j«l,.. . ,n.
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FIG.1: Row chart of STEM
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Fig. 2 - STEM method: Calculation phase printout example
(data input previously)

IDEAL AND COMPROMISE SOLUTIONS ARE

COST STOCKOUT SALES

IDEAL 800000 6.4 1000000

COMP 12 00000 9.3 700000 xk

ARE ALL COMPONENTS OF COMP UNSATISFACTORY? X or N.

Q:N

ARE ALL COMPONENTS OF COMP SATISFACTORY? X or N.

IF VARIABLES ARE NOT RELAXED BX MORE THAN

2 00000 1.3 -3000

THEN 011E UNIT RELAXATION PERMITS

COST

STOCK

SALES

DELTACOST

1
-6 0000

-2.5

DELTASTOCK

-0 ,

1
-0,

.0 000© 43

.0000018

DELTASALES

1 .1

27400

-1

Senaivity
Analysis

ENTER ABSOLUTE AMOUNTS OF MAXIMUM RELAXATION FOR ALL VARIABLES

Q; 100000. 0. 0. ] = ^ * i ' i=1»--»3

IDEAL AND COMPROMISE SOLUTIONS ARE

COST STOCKOUT SALES

IDEAL 800000 6.4 1000000

COMP 1300000 8.87 810000 ]- x k + 1
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4. Decision phase. Following the calculation phase, the ideal solution and
the compromise solution are presented to the decision-maker, who compares
them and decides if the compromise solution is satisfactory or not.

Three different cases can be distinguished:
- If no component of X* is satisfactory, the problem is declared un-

solvable und computation is terminated.
- Likewise computation is terminated if all components of x* are

~~ satisfactory. The current compromise solution x^ is then chosen
as the "best compromise" or the definitive solution. },

- If some of the components of x are satisfactory and others not, ]i
the decision-maker must accept a'certain worsening or relaxation
of the satisfactory components in order to permit an improvement
of the unsatisfactory ones. Therefore,' he is asked which satisfac-
tory component xk can be relaxed and how much relaxation Ax? is
acceptable at the most. To help him with his decision, he is pre-
sented with the results of a sensitivity analysis, which indicate the
behaviour of the different goal variables in the neighbourhood of the
present compromise solution x^. Then the program returns to the
calculation phase.

For the next iteration, the feasible set D is modified according to the deci-
sion made. It is requested for the next iteration that the new value for each
element of the new compromise solution, x^+^ , not be less than the old
value minus the accepted maximal relaxation, if any:

x. 5- x _ Ax. , Ax. * 0, i = 1, . . . , n . (5)

That is, the new compromise solution must be in the domain defined by the
decision-maker. The weight TT̂  is set equal to zero in the k+1 iteration when-
ever Ax- > 0. This expresses the fact that the decision-maker doesn't con-
sider relaxation A x\ to be very costly.

At the end of the procedure it may be interesting to calculate a posteriori
weights such that Ifi/Cxj- - "x )̂ = constant. In this way local approximations
can be determined for the marginal rates of substitution between goals at the
optimum.

5. Characteristics. The calculation phase of STEM can be easily programmed
with the help of standard LP programs. The convergence of STEM to the best
compromise solution is fast. The solution can be obtained in less than n
iterations when one of the constraints of the type (5) has been relaxed at each
iteration to such an extent that further relaxation is out of question. Fewer
iterations are needed when during a single iteration more than one constraint
is relaxed "to the limits of the acceptable". It should be emphasized here
that in the case of STEM, in contrast to the unstructured of GEOFFRION
approach, the stopping rule cannot be chosen according to the specific pro-
blem, but is stringently imposed by the algorithm.
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In general, the compromise solutions are efficient. If not, they can always
be made efficient by means of minor alterations.

STEM has one unpleasant characteristic. In later iterations it is impossible
to "undo" partially or completely a relaxation A x^ made at an earlier stage.
In this way, the decision-maker is impeded in his exploration of the feasible
set. He cannot change his mind during the decision-making process or cor-
rect incorrect decisions. The only possibility of taking learning processes |

'into consideration, which eventually may take place during the interactive t'
procedure, is, therefore, to begin the process again from the beginning.

STEM can be considered to be the prototype of several interactive proce-
dures, all of which:

- are designed within the framework of linear programming;
- replace the concept "best solution" with the concept " best

compromise"; . '
- use the vector[xj^ as an "ideal solution".

These methods differ in the way in which they work toward the "best compro-
mise". We mention here the method devised by Saska (1968) at the same
time as, but independently of, STEM; the more highly developed Progressive
Orientation Procedure (POP) of Benayoun and Tergny (1969); the algorithm of
Belenson and Kapur (1973); the interactive procedures based on the Goal
Programming Method of Charnes and Cooper (1961) (see for example Dyer
(1972a). In some important aspects, however, these differ from STEM to a
greater extent.) See also Aubin and Naslund (1972) and Contini and Zionts
(1968).

D - The GEOFFRION Method

1. General remarks . Some of the most effective methods for the numerical
solution of non-linear, constrained optimization problems are known in op-
timization theory under the generic name of large-step algorithms. A large-
step procedure is typically defined by the following iterative steps:

Step 0. Select an (arbitrary) initial feasible point
z° = (z°, . . . , z° ). Let k = 0.

1 m

Step 1. At iteration k', determine the "best"direction , ,
y. , j = 1, . . . , m, to improve the current point z . The choice of y
is to be based on the gradient in direction of z of the objective func-
tion U at the current point zk,7U (zk). 3)

z
k k k k

Step 2. Find a step-size t such that U(z + t y ) is maximized over all the
feasible points zk + t yk.

k+1 k k k
Step 3. Compute the new current point z. = z- + t y.;, j = 1, . . . , m.

Return to step 1, where z*+* replaces zk.
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The iterative process 1-3 produces a sequence z , z , . . . of improving
feasible points z . It ends when % is a local maximum or a "satisfying" point,
i.e. when it is impossible to find a better point than the current one by means
of local considerations.

Large-step methods have been designed for the most general types of non-
linear optimization problems (see, for example, Blum and Oettli (1975)).
Under appropriate regularity conditions, they converge very fast to a neigh-

' borhood of the optimum. 4)

In his (1970) paper, Geoffrion conjectured that large-step methods could
offer a very effective way of solving the multiple-goal problem (1) if the
decision-maker is able to give the local information about his implicit ob-
jective function U necessary in carrying out the optimization calculation. ''
This information is: (a)Some expression for the gradient of U at the current
point and (b) the optimal step-size. In other words, the logic underlying
Geoffrion's proposal is to adopt a mathematical programming technique of
known efficiency, but to implement it interactively in order to do away with
the need for knowledge of the overall objective function.

Since Geoffrion's original paper, this approach has been studied in detail
and applied by numerous theoreticians (see, for example, Deissenberg (1976),
Dyer (1973a),(1973b), (1974), Feinberg (1972), Geoffrion and Hogan (1972),
Geoffrion and Dier (1972), Geoffrion et al. (1972).. Wallenius (1975)). Contra-
ry to the STEM method in which implementation is determined within narrow
limits by the STEM algorithm itself, the GEOFFRION approach permits a
large number of ways of obtaining the needed information from the decision-
maker, and can be applied to the whole range of large-step algorithms. Since
it is impossible to cover all possible versions of the method, we will present
in the following the logic underlying steps 1 and 2 in an interactive large-
step algorithm within the specific framework of the FRANK-WOLFE algo-
rithm^, but in terms as general as possible. Except for the special form
of the optimization problem serving to determine tk, our presentation is
valid for all interactive large-step algorithms if the objective function U
has continuous derivations on {z} and the feasible set D is compact and con-
vex. Application of an interactive large-step algorithm will be discussed in
more detail in part II.

2. Step 1. In a large-step procedure, the determination of the best direction
yk uses the property of the gradient VzU(zk) as the "direction of steepest ascent"
of U in the vicinity of zk. In the FRANK-WOLFE algorithm, yk is given by
y - z - z , where z is the solution of a standard LP approximating the
problem

V U(z ) " z —»sup
z z

subject to (6)

z 6 D.



In other words, in this particular algorithm the direction y is chosen such
that the product of the maximum rate of improvement multiplied by the

feasible r a t e of improvement in t h i s d i rec t ion i s maximized.

In a multiple-goal problem, U is unknown and, therefore, VZU is unknown,
too. Before solving the LP corresponding to (6), it is necessary to specify
VzU(z ) in a decision phase on the basis of information given by the decision
maker.

In general,- however, the decision-maker evaluates the current situation in
terms of x^ = fx(zk), i = 1, . . . , n, and not in terms of zk. Hence, he will
be unable to give direct information on the partial derivatives^ U( z )/«|z- .
Fortunately the problem of estimating VZU can easily be expressed in terms
of x . VzU(zk) can be written

Vzu(zk) = r OU/3xJ) v f1^).

i k i
In this expression, Vzf (z ) can be directly calculated from the known f .
Note further that the solution of (6) is not affected by a positive scaling of
VzU(zk). VzU(zk) can, for example, be divided by (3 U/3 xk), which, accord-
ing to our assumptions, is positive. Hence (6) can be expressed equivalently
as

n
r—)
Fi

k I k.
w. V f (z )

l z

subject to (6")

z € D ,

U / a k ) / ( 3 u / 3 ^ ) , i = 1, n.

Since the objective function has been scaled by (3U/3xi),we will call the
goal variable x^ the reference variable. Note that the choice of x-, as the
reference variable is arbitrary and that any other goal variable x. could be
chosen to play this distinguished role.

Thus, in order to permit the construction of V7U(z ), the decision-maker
needs only to give a subjective appreciation of the current point xk (and not
zK) in a form suitable for approximating the n-1 weights w^ , i=2, . . . , n.
(Since xk was chosen as the reference variable, wk is identically equal to 1).
This subjective appreciation can be made from two different standpoints:

k k
a) On the one hand(l/wj)is the slope of the projection of VzU(z ) on the

(xi, x^ plane. That is, wk gives the marginally "ideal proportion of
change" for x-̂  and x^. Let wk = (<Tx /̂<Tx )̂; then U increases most
rapidly if xk is marginally augmented by <fx^ units for each ^ x 1 aug-
mentation of Xi , all other variables being constant. Therefore, the
weight ŵ  approximately corresponds to the decision-maker's ans-
wer to the question: "How much should XJ ideally increase from its
current level xk if x ^ is increased by$x^ from its current level xk ? '



b) On the other hand, -w^ is the slope of a tangent to the indifference
curve through xk in the {x\, x-) plane. In other words, wk expresses
the marginal rate of transformation or trade-off between x^ and x̂  at
x . If the decision-maker is indifferent to a change in the values of
xk and xk in the marginal amounts Axi and Ax; respectively, all
other variables being constant, then w- = -(Ax^/Ax^). The weight
wf can therefore be approximately determined by letting the decision-
maker answer the question: "What loss in x- from its current level

^ i 1

x̂  would compensate exactly for a given increaseAx. in x-̂  from its
present level xk? "

The relationship between the two standpoints is expressed graphically in Fig. 3.
The interactive-evaluation of the weights w- is followed by a calculation phase.
The weights are used to build the objective function of the LP corresponding
to (6 ). The computer solves the LP determining zk and yk. The program then
proceeds to step 2.

3. Step 2. In all likelihood the point "z is not in the immediate neighborhood
of z and the behavior of U can change significantly between z and zk. This
implies that the "best" direction y , which was myopically determined as a
function of U's behavior in the immediate neighborhood of zk, may become a
"bad" direction as one advances farther from zk in the direction of "z . How-
ever, because of the continuity of U and its partial derivatives, there is a
feasible combination zH+1 = (l-tk)zk + tk"k, j = 1, . . . , m, 0 & tk s£ 1, of z and
z that yields U(.zk+*) > U(zk). The problem in step 2 is to determine the op-
timal step-size t , i .e. the value of t which maximizes U(zk+^). 6)

In the interactive procedure, the optimal value of t is directly determined
by the decision-maker. He is guided in his choice by plots of the values

+ 1 ^ ^ k kf ^ z ^ t y ) , i = 1, . . . , m, as a function of t between 0 and 1 (Fig. 4a).
These plots permit a comprehensive overview of the feasible bundles xk ,
i = 1, . . . , m as a function of the single variable t . Alternatively, the
computer can tabulate the values of the goal variables at selected values of t.
Given the important case that the goal variables are linear functions of the
variables z-:, the x-'s are also linear in t (Fig. 4b).

4. Summary of the method. As a whole the application of an interactive i!

large-step algorithm to problem (1) proceeds in the following manner:

- Step 0 (Initialization): The decision-maker chooses or is presented
with an initial feasible solution x? = fx(z°), i = 1, . . . , n.

- Step 1, a) (Decision phase): At iteration k, the decision-maker assesses
his trade-off weights wk by subjectively analyzing the current solution
xk. This analysis can follow either approach 2a) or 2b) above.
b) (Calculation phase): Compute the best direction y from the solution
of a LP formulated on the basis of both wk, i = 1, . . . , n, and the
constraints defining the feasible set D. Plot the function fx(zk+tkyk)
for 0-s" t s£ 1, i = 1, . . . , n.
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- Step 2 (Decision phase): Let the decision-maker choose the "best"
tk by subjective analysis of the plots of fx(zk+t yk).

k
- Step 3 (Calculation phase): Use the "best" t from step 2 to compute

the new current solution zk+* = zk + t yk . Let xk = f*(zk+1) ,
i = l , . . . , n • k = k + 1, and return to step 1.

5. Characteristics. The calculation phase of the FRANK-WOLFE algorithm
.and of most o4;her interactive large-step procedures are easy to program
with the help of standard LP programs. The initial convergence of the large-
step algorithms is very fast in general. In the case of the FRANK-WOLFE
algorithm, Wolfe (1970) has shown that under certain regularity conditions
the difference between the maximal value of the objective function, U(x*),
and the current value, U(x ), is at least halved at each of the first K iterations
(K unknown). That is,

U(x») - U ( x ^ ) ± 1
U(x*) - U(xk) 2 * • *"

k+1 k k
The improvement U(x ) - U(x ) is in general greater, the farther x is from
the solution x*. Accordingly, the algorithm leads very quickly to a neighbor-
hood of x*.

The convergence is robust against errors in the specification of the weights
wf. The convergence toward x* is assured if, generally speaking, the error
on the ŵ  decreases as x comes closer to x* (see Dyer (1974)). The decision-
maker can modify his preference at any time. He can express his present
preference through his choice of the wk and t at the current iteration with-
out being restricted in any way by the algorithm. The flexibility of the algo-
rithm also gives the decision-maker the possibility to experiment at any
stage of the interactive process, i. e. to use arbitrary weights ŵ  in order to
see the results or to explore extreme areas of the feasible set. To deter-
mine whether or not the preferences of the decision-maker have stabilized
themselves during the interactive process, it may be useful to begin the pro-
cedure again by starting from another initial point z° and to see if both cor-
responding sequences x°, x , . . . and xO / , x ' , . . . converge to the same
area in x.

A significant characteristic of GEOFFRION-type methods is their high in-
formational content. In particular it is possible to construct a family of in-
difference curves in the vicinity of the path x°, x , . . . , which is uniquely
determined up to a monotonous transformation. In this way, in case of stable
preferences one gets an a posteriori approximation of the behavior of the
overall objective function U along with the path x°, x^, . . . . When different
paths, which all converge to the same area in x,are known, it may be possible
to integrate the local information along each path to approximate the over-
all objective function of the decision-maker (Fig. 5).
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Two paths x , x , . . . and x , x , . . . , x ^ = x , will not converge to the
same area in two cases: a) If the decision-maker has changed his mind to a
significant degree between the last iteration of the first experiment and the
last iteration of the second experiment; b) If there are several local optima.
It may be impossible to recognize which case is true in a given situation. In
any case, however, an effort should be made to analyze the reasons for the
divergence. The decision-maker's opinion will, of course, play a central role
in such an analysis.

0
j

II - APPLICATION OF INTERACTIVE LARGE-STEP ALGORITHMS

Having presented the logic underlying GEOFFRION's approach, we now turn
to its practical application. Some aspects of implementation are discussed
in Section A; Section B is devoted to an example. A flow chart is given in'
Fig. 6.

A - Implementation

1. Preparation. Any practical application of an interactive large-step procedurerr
be carefully planned according to the "General Remarks" made in Section I, A.

2. Step 0 (Initialization): Any feasible point z can be chosen as the initial
solution. However, the number of iterations necessary to reach a satisfying
solution may be decreased to a great extent by choosing a "good" if possible
efficient, starting point z°.

A simple but effective procedure to this effect consists of letting the decision-
maker choose a good x° by himself with the help of an unstructured approach
and then compute the corresponding z°. In most practical applications another
possibility is to use actual or historical values of the problem variables for
z°, possibly modified to satisfy the model constraints. Other more sophis-
ticated methods for determining a favorable initial solution have been devised
in optimization theory. Let us mention here the possibility of projecting an
"ideal", feasible point given by the decision-maker on the efficient surface.
(Note the analogy with the determination of the first compromise solution in
STEM). For details see, for example, Dikin (1967).

The determination of a feasible z may not be a trivial task if the feasible set
is defined by complicated functional constraints G(z) = 0.

3. Step 1 (Decision phase): In practical applications it may be difficult for
the decision-maker to directly answer the questions corresponding to the
"ideal proportional change" or the "trade-off" approaches presented in sub-
section I D 2. Therefore, indirect methods have been devised which permit
the determination of the weights wk by letting the decision-maker answer a
sequence of yes-no questions generated by the computer. We present here
such an indirect method devised by Dyer (1973) and extensively tested in
numerous applications (see also flow chart Fig. 7 and printout example Fig. 8).
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Dyer's interaetivc: niiilim: in 1)UH(!<I <>II tin; " I.riul<;-<>IT" approach. In ordor to
determine wk , it a ims at finding u ino(Jii'ii.'d vector x A : - (xk -I- A x , , x l
. . . , x k_i , x k - Ax^, x k

+ 1 , . . . , x k ) , Axj, Axi £s 0, which is considered by
the dec i s ion-maker to be equivalent to the cu r ren t solution x = (xk , . . . . x t ) .
The interact ive p rocedure f i rs t de te rmines upper and lower bounds for x k A .
With the help of a bisection a lgor i thm, these bounds a r e gradual ly brought
closer together until a close approximation for x A is reached.

a) Initialization. At' the beginning of the p rocedure the dec i s ion -maker is
confronted with the cu r r en t solution x k and with the f i rs t , a r b i t r a r i l y modified
vector xkA* = (xk + A x ^ x 2 , . . . . x ^ , x ^ - A ^ , x k

+ 1 , . . . , x k ) . L e t f = 1 .
Since we a r e in te res ted in the marg ina l r a t e s of substi tution wk , the p e r t u r -
bations A x-̂  and A x . must be sma l l re la t ive to the cu r r en t values x k and x. ,
in order to keep the e r r o r s of higher o r d e r in an acceptable range . However,
they must be l a rge enough to be considered significant by the dec i s ion -maker .
To ensure this las t c h a r a c t e r i s t i c , it is convenient to. let the dec i s ion -maker
himself choose A xx and A1 x i f i = 2, . . . , n. ("ENTER DESIRED PERTUR-
BATIONS" in example pr in tout . )

b) Determinat ion o f the bounds. At i tera t ion 6, the dec i s ion -make r is asked
if he p r e f e r s x k to x A , xkA f to x , or if he is indifferent between the two. If
the dec i s ion-maker p re fe r s xkA^ to x , i . e . if in his opinion the dec rease
-ax^ in the value of x k is more than compensated for by the inc rea se Ax-^ in
the value of x-^, then A x^ is doubled in the next i tera t ion £+1 and the question
is.repeated until x k is p r e f e r r e d to x k A . One i tera t ion before, however,
x^A " l was p r e f e r r e d to x k . Thus we know that the per turba t ion -Ax^, which
exactly compensates for the per turba t ion Ax^ , has as upper and lower bounds
-A•" x i and -A^x^, respec t ive ly .

c) Reduction of the in terva l . A bisection a lgor i thm using the general formula

A x- = (upper bound + lower bound at i terat ion f ) / 2 (7)

is then applied to explore and na r row the in terval (A x^, A x^). A x. is
computed according to (7). It is then used as the new lower bound (x A^ )
preferred to xk) or as the new upper bound (xk p r e f e r r e d to x k A )
in a new i te ra t ion using (7). The p r o c e s s is repeated until the dec i s ion -maker
is indifferent between x k and x A^+1 , i . e . A^+ x i - A x ^ , The calculation of
wk follows immediate ly from w i ~ - (Ax^ /Ax^ . To a s s u r e the working of the
algorithm in case x is preferred to x A1 at the first iteration, it is practical
to use the convention x = [x\ + A°x-. , xk . . . , x- -,, xk - A°x;, xk , , . . . , xk)

. . . AO . O r\ " •*• 1 + 1 "•

with A Xj = Ax i = 0.

k
The above procedure is repeated until all n-1 weights w. , i = 2, . . . , n, have
been calculated. wk is identically equal to 1. Remark thatAx^ remains con-
stant during the whole procedure. In general, w.C is obtained within a few
iterations because'of the limited ability of the decision-maker to discriminate
between two similar vectors.
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In the above presentation of DYER's method, changes Ax^ in the values of
XJ , = i = 2, . . . , n, were systematically modified until they exactly compen-
sated for a given change Ax^ in the value of x^. In other words, xj was used
as the reference variable. As stated before, any other goal variable x. can
assume the role of reference variable. As a matter of fact, it may be inter-
esting to let the decision-maker calculate a second set of weights, wk / ,
using another goal variable x̂  as the reference variable. If the decision-
maker is consistent in his appreciation, we should have

k j ' ( A k / A k
wk w j '= (Axk/Axk ) / (Ax k /Ax k )^ l (8)

w. /w. = (Ax /Ax. )/(Ax. /Ax. )a w. , i, = j = 1, . . . , n, etc. (9)
J J

k/
Thus, the calculation of a second set of weights w. offers a possibility of
computing a measure for the inconsistency or inexactitude of the in-
formation provided by the decision-maker. If the inconsistency of the in-
formation exceeds a given tolerance limit, one may ask the decision-maker
to think over his statements. A corresponding routine can easily be built
into the computer program so as to include such an automatic consistence
check at every iteration.

3. Step 1 (Calculation phase): As mentioned previously, the calculation
phase in step 1 consists of little more than the solution of a standard LP. The
LP corresponding to the FRANK-WOLFE algorithm in the case of linear
restrictions is given in the flow chart. For additional cases see Simmons (1975).

Two particular outcomes of the step 1 calculation phase are of interest:
a) If the solution of the LP is unbounded, the solution of (1) is unbounded and
the interactive problem has no meaningful solution; b) If the solution "zk of
the LP is the current point zk itself, there is no "improving" feasible direc-
tion in the neighborhood of z . In other words, zk is a (local) optimum and,
from a purely mathematical point of view, the problem is solved. However,
the decision-maker may consider zk an implausible solution or may want to
resume the search for supplementary information about the feasible set. It
is therefore useful to give him the possibility at this point of entering directly
a modified feasible point zk+ . From a formal point of view, this is, of course,
equivalent to starting a new search from the beginning. From a psychological
point of view, however, this can make a great deal of difference.

4. Step 2: The fundamental aspects of the implementation of the step-size
problem have already been discussed in part I. If the computer tabulates the
values of (l-tk)zk + tk

z
k for £ equidistant values of tk, i.e. for tk = \jt,

2/£, . . . , f/6, the decision-maker should be allowed to choose the number £
according to his subjective information needs, and/or given the possibility of
modifying a previously chosen number. .

_k k
If z is in the neighborhood of z , the solution of the step-size problem can
produce only a small modification of the current solution. Thus, many iter-
ations may be needed to leave the neighborhood of zk, a feature which can be



time-consuming as well as nerve-racking for the decision-maker. In this
case, too, it may be advantageous to present the option: "Enter directly'a
modified current solution zk+l". For simplicity's sake and in order to give
the decision-maker the most complete freedom in his search, we propose
to systematically offer such an option in step 2, regardless of the character-
istics of zk.

5. Step 3: This step is trivial.

6. Stopping rule: As stated already,the calculation ends when the solution of
the LP in step 1 is unbounded (meaningless problem) or when zk = zk. How-
ever, zk = zk is an exact mathematical requirement which may be fulfilled
only after a very high or even infinite number of iterations. Hence, it is
necessary to define some other, more practical rule for terminating the
iterative process. •

k k k k
Of course, it is possible to weaken the requirement z = z to z a z , i. e.
to let the computation end whenever zk is in a neighborhood of zk. One can
also impose a ceiling on the number of iterations. However, any formal
stopping rule impairs the freedom of the decision-maker in his search. There-
fore it seems preferable to simply let the decision-maker decide by himself
when he wants to end the computation. Experience has shown that, as a rule,
the path x , x k + l , . . . tends to exhibit at the end of the search some kind of
cyclical behavior within the "sa t i s fac tory" area (Pig. 9) .

7. Additional remarks. Let us state again that repetition of the iterative
procedure, starting from different initial points, may provide useful inform-
ation. The data and, in particular, the decision and the paths for xk, should
be filed and analyzed ex post with the help of the decision-maker.

8. Printout. The following printout corresponds largely to Dyer's original
printout. However, Dyer's program contains an option "ENTER TRADE-
OFFS DIRECTLY". Step 0 uses an unstructured interactive approach for
choosing z°. Note that the perturbations Axj andAx2, corresponding to "costs'
and "stockout" respectively, are negative. This is due to the fact that these
variables are to be minimized, i.e. the program maximizes the variables
"-costs" and "-stockout".

B - Example

The following numerical example was chosen solely on the basis of its simpli-
city, which makes it possible to easily understand the structure of the problem.
Although the problem is presented somewhat like a case study, it does not at
all pretend to be realistic. For case studies and more realistic examples,
see the literature listed in part III. See also the example described in section
III, A. ' . "

Consider a firm that produces three products 1, 2 and 3 in the respective quan-
tities z , z , z . The production capacity is limited by the constraint z + 2z
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Fig. 8 - Geoffrion's approach with Dyer's trade-off estimation
routine: printout example (data input previously).

ENTER BEST INITIAL SOLUTION COST, STOCKOUT, SALES.

Q: 800000 . 6 .4 1OOOOOO.

THIS SOLUTION IS NOT FEASIBLE. CORRECT YOUR CHOICE

Q; 13000O0. 9 . 8OOOOO.

THIS SOLUTION IS FEASIBLE. IF YOU WANT TO USE IT AS

THE INITIAL SOLUTION, TYPE "Y". IF NO, ENTER NEW

SOLUTION.

Step 0:

Initialization

ENTER DESIRED PERTURBATIONS

D; -10O00. -O.5 5000.

COST

STOCK

SALES

A

1300000

9

80O0OO

B

1290000

9

795000

IF YOU PREFER A (B) TYPE "A" ("B"). IF YOU ARE

INDIFFERENT, TYPE "I".

D:A

COST

STOCK

SALES

A
1300OOO

9

8OOOOO

B
129OOOO

9

797500

IF YOU PREFER A (B) TYPE "A" ("B"). IF YOU ARE

INDIFFERENT, TYPE "I".

0:B

COST

STOCK

SALES

A

1300000

9

8OOOOO

B
1290000

9

798750

IF YOU PREFER A (B) TYPE "A" ("B"). IF YOU ARE

INDIFFERENT, TYPE "I".

0:1

Determination

of w*
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Fig. 8 cont'd

THE TRADE-OFFS ARE

COST , -1

STOCK -3

SALES , 8

ENTER NO. OF POINTS TO SEE IN STEP-SIZE PROBLEM

D:1O

COST

130OOOO

131OOOO

132OOOO

133OOOO

134OOOO

13500OO

136OOOO

137OOOO

138OOOO

13900O0

14OOOOO

STOCK

9.

8.9

8.B

8.7

8.6

8.5

8.4

8.3

8.2

8.1

8.

SALES

800000

802000

8O4OOO

806000

808000

.810000

812OOO

814OOO

816OOO

8180O0

820000

The vector w

DO YOU WANT A DIFFERENT NUMBER OF POINTS? IF YES,

TYPE TOTAL NUMBER. IF NO, TYPE "N".

CHOOSE A PREFERRED SOLUTION FROM THE ABOVE VECTORS.

0: 137000. 8.3 81400.

IF YOU WISH TO END ITERATIONS, TYPE "E". OTHERWISE

TYPE "C.

«e

Step-size

problem

CURRENT SOLUTION IS

.137000 8.3 81400

DO IOU WANT TO ENTER ANOTHER CURRENT SOLUTION DIRECTLY? Y OR N.

D:N

ENTER DESIRED PERTURBATIONS

0;
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+ zo iS 4. The OR department of the firm has determined that the cost of the
O p 9 9

production of 1, 2 and 3 is 3zf, 2z2 and 3zS, respectively. The market price
for 1, 2 and 3 is 4, 3 and 2, respectively. Thus the profit function of the
firm is

V(z) = (4Zl - 3z^) + (3z2 - 2z^) + (2z3 - (1/3) z\).

However, profit maximization is not the only goal pursued by the manage-
ment of the firm. In order to be well-represented on all markets 1, 2 and 3
and to thereby reduce the firm's sensitivity to business cycles, the manage-
ment is also interested in high production levels for each product. For this
reason, the firm is currently producing the same quantity of each product:
ẑ  = Z2 = Zg = 1. Nevertheless, the management is unsatisfied with this
solution. Being unable to find a satisfying solution immediately or to define
an overall objective function over the four simultaneous, conflicting goals

z —» max, z—3»max, z —>max, T —> max,
Jl Zt O

the management turns to its OR staff for help.
. • a

7)
The OR men rea l ize they a re faced with the following mult iple-goal problem:

max U(x), U unknown
subject to
Xj = zx, x 2 = z 2 , x 3 = z 3 , (10)

x 4 = T = (4zj - 3z^) + (3z2 - 2z^) + (2z3 - (1/3) z^),

z^ + z , + ZnSf 4,

OR staff and management decide to solve this problem with the help of an
interactive large-step algorithm (modified interactive FRANK-WOLFE algo-
rithm).

After an introduction to the method, to the problem and to the use of the
computer, an experiment is performed using the current operating point
z = (1, 1, 1), i .e. x = (1, 1, 1, 3.667), as the initial solution.

Presented with x , the managerial board is asked to determine a trade-off
weight w° for x2, the production level of product 2, versus the reference
variable x^. The weight w2 is estimated by using the "ideal proportional
change" approach. The ratio of x^ to x. in the current solution is one to one.
The management, however, feels that more emphasis should be put on the
production of product 1. It therefore comes to the conclusion that an ideal
proportional change from the current values of these two goal variables would
be 0.02 units of product 1 for every 0.01 unit ' of product 2, or

w° = Sx J6x = 0. 01/0. 02 = 0. 5.
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Similar reasoning relating xg to xx, leads to w3 = 0. That is, the management
is not interested in changing the production of product 3 following a change
in the production of product 1 from its present value.

The weight w4 is estimated by using the "trade-off" approach. The manage-
ment considers the loss of 0. 01 profit units exactly compensated for, in
terms of its preferences, by an increase of 0. 005 units in the production of
product 1, so that

W 4 = - ° 0 5 / "°- 01) = 0. 5.
oThe trade-off weights wi are used to compute the best direction y° and the

management is confronted with the plots of x° + t°y° presented in Fig. 10.
Since x1( x2 and x3 are linear functions of z, the corresponding plots are
line segments.

The management decides that the best combination of values for x.,̂  - x\ cor-
responds to t° = 1. This value is used by the computer to calculate the new
solution, x1 = (1, 0. 6, 1. 8, 4. 6). x1 is used as the initial solution for a new
iteration. After 6 iterations, which are summarized in Table 1, the manage-
ment considers the current solution xg satisfactory and decides to terminate
the procedure.

Iteration

k

1
2
3
4
5
6

Optimal
values *

k
X l

1
1
. 88
. 88
.8752
. 8752

..875

k
X 2
1
. 6
. 6
. 624
. 624
. 6250

. 625

k
X 3

1
1.8
1. 92
1. 872
1.8768
1.8745

1. 875

k
X 4
3. 667
4. 6
4. 888
4. 866
4. 875
4. 875

4.875

Optimal
step-size

k
t

1.0
. 4
. 12
. 025
.005
. 0010

^ ^

T/ k \ *

U(x )

6. 667
7. 2
7. 248
7.2499
7.2499
7.2499

7. 25

k
s

0
0
0
0
0
0. 0003

0

* for U = 2x + x + x

Table 1
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In fact, Table 1 reproduces the search process of a decision-maker a) whose
preferences are represented by the overall objective function U(x) = 2x1 + x9

+ XA—•max, and b) who gives the exact value of x and tk corresponding to
his preference. In addition, Table 1 contains the values of x ,̂ i = 1, . . . , 4,
corresponding to the optimal solution of problem (10) given the above objec-
tive function UL and the values assumed by U at the different points x . The
last column, s , expresses the idle capacity corresponding to each solution
zk, i .e. sk = 4 - (zk + 2z + z^). The value of s is a measure of the dis-
tance of ẑ  from the efficient surface. In case of an efficient solution, s = 0.

It is clear from Table 1 that the convergence, measured in terms of the
improvements U(xk+*) - U(x ), is very fast at the beginning but decreases
very quickly as xk approaches x*. (See also Table 3.) Nevertheless, a
nearly optimal solution is reached after just 4 iterations.

Note that even in such a simple problem the relationship between objective
function U and optimal solution is far from trivial. One cannot intuitively
relate the optimal solution to the constrained problem. Hence, as a rule,
an objective function does not have a meaning intuitively. Decision-makers
do not think in terms of overall objective functions, but in terms of the
desirability of a solution or of a change. The interactive procedure exactly
interprets such desirability information to help the decision-maker recognize
the best feasible alternative. Note, for example, that the overall objective
function does not contain Xo as an argument although we stated x3—»max as
a goal. Such a case can take place when, because of special structure of the
problem, a goal variable (here x,) consistently takes values that the decision-
maker considers to be optimal relative to the values of the other variables (de-
generacy) .

Table 2 illustrates what can happen when the decision-maker is unable to ex-'
press exactly the weights w. corresponding to his preferences. The values
of x in this table were obtained by stochastic simulation using the value
wk = ( l + £ k ) (3U/3xk)/(au/3xk) for wk, with£k an equally distributed
random variable on [-0. 10, + 0. 10] and U(x) = 2x-. + x2 + x^ as before.
In other words, we simulated a decision-maker who expresses the w. 's
with an error factor up to 10% from their true values. The values presented
in Table 2 are, of course, the result of one particular simulation; they are
not, however, atypical. As can be seen, the introduction of uncertainty does
not seriously impair the quality of the results.



Iteration

k

1 -
2
3 ,
4
5
6
7

Optimal
values

k

V
1
. 854
.877
.872
. 881
. 890
. 883

. 875

k
X2

1
. 595
. 619
. 606
. 628
. 650
. 634

. 625

k
X 3

1
1. 755
1. 779
1. 770
1. 786
1. 801
1. 790

'1.875

k
X4
3. 667
4. 788
4. 795
4. 786
4. 799
4.809
4. 803

4. 875

Optimal
step-size
k

t

. 82

. 38

. 54

. 92

. 19

. 47

. 77

^ \ ^ ^

, K
U(x )

6. 667
7.091
7. 168
7. 136
7. 189
7. 239
7. 203

7. 25

k
s

0
. 201
. 106
. 146
. 077
. 009
.059

0

Table 2

oFinally, Table 3 illustrates the importance of the choice of x by showing
the working of the algorithm for U as above, but x° = (0, 0, 0, 0). The con-
vergence becomes very slow after the 5th iteration, and the current solution
is still quite distant from the optimal solution at the 10'th iteration. In fact,
over 30 iterations are needed in order for the current solution to agree up
to two decimals with the optimal one.

Iteration

k

0
1
2
3
4
5
6
7
8
9

10

Optimal
values

k
Xl

0
1
. 52
. 920
. 677
. 871
. 730
. 811
. 753
. 792
. 763

. 875

k
X2

0
0
0
0
. 529
. 498
.418
. 501
. 524
. 4 6 3
. 484

. 625

k
X3
0
0
1. 92
1. 699
1. 250
1. 177
1. 633
1. 843
1. 645
1.772
1. 670

1.875

k
X4
0
1
3.88
3. 677
4. 248
4. 098
4. 602
4.461
4. 602
4. 616
4. 697

4.875

Opt imal
step-size

tk

.25

.48

. 12

. 26

.06

. 16

.04

. 07

.02

. 05

.03

X

U(xk)

0
3
4. 92
5. 417
6. 222
6. 338
6.480
6. 584
6. 632
6. 668
6. 717

7. 25

k
s

4
3
1. 56
1. 381
1.015
1. 056

. 901

. 394

. 545

. 500

. 594

0

Table 3



The choice of x is important for a second reason, which is independent of the
formal working of the algorithm. It may be very difficult for the decision-
maker to determine the weights ŵ  in a meaningful way if he° considers the
current point x a completely unreasonable solution. In this example, for
instance, the question "What loss in x- compensates exactly for a one-unit
increase in x ,?" is bound to be considered by the decision-maker as meaning-
less when x-̂  = x. .= 0.

Ill - COMPARATIVE EVALUATION OF THE METHODS

A - Experimental Results

Knowledge of the theoretical properties of the different man-machine proce-
dures is insufficient for purposes of practical application or further develop-
ment of the methods. It is at least as important to know how well they per-
form in actual situations. However, only a small number of experimental
results have been published to date. (See, for example, Agarwal (1973), Dyer
(1973b), Feinberg (1972), Geoffrion et al. (1972), Wallenius and Zionts (1975),
Zionts (1967). They are all almost exclusively concerned with the interactive
FRANK-WOLFE agorithm. Since the decision-making situation, the experi-
mental framework and the interactive routing vary considerably from study
to study, the partially contradictory findings are difficult to interpret in
general terms.

Nevertheless, a most interesting experiment was conducted by Wallenius
with the purpose of comparing from a decision-maker's point of view the re-
lative performance of (a) an unstructured approach, (b) the STEM method
and (c) the interactive FRANK-WOLFE algorithm. The ensuing results pre-
sented in Wallenius (1975) are summarized in the following sub-sections. ")
The experiment itself, important for the interpretation of the results and
interesting as an application example, is presented in some detail.

1. Decision problem. The framework for the decision-making situation con-
sisted of a fictitious, but realistic, dynamic model of a company manufac-
turing a seasonal product. The model contained 19 linear constraints and

'25 decision variables defining inventory balances, production capacity, labor
and overtime for each of the seven periods of the planning horizon. Three
conflicting goals related to production, inventory and work-force planning
were to be taken into consideration.

1st goal: minimize cumulated cost due to regular payroll and over-
time and cost of holding inventory over the seven periods of
the planning horizon,

2nd goal:minimize average stockouts over the planning horizon;

3rd goal:minimize cumulated number of employees temporarily laid
off over the planning horizon.



- 3 3 -

2. Methods. The unstructured method used was of the simplest kind. The
decision-maker was instructed at each iteration to enter a vector of values
for the goal variables into the computer. The only information provided by
the computer program was whether or not the choice was feasible. The sub-
jects, did not receive information about the values of the non-goal variables
corresponding to their choice.

The STEM method was applied according to the schema described above with
,the exception that the decision-maker was not shown the results of parame-
t r i c variations of the goal variables (sensitivity analysis).

Within the interactive FRANK-WOLFE algorithm, the determination of the
Ltrade-offs was carried out with the help of DYER' s indirect procedure.

3. Experimental design. Several pilot studies were made first to assure a
satisfactory experimental design. The main experiment was then conducted
with 18 undergraduate students of business administration and 18 top managers
with formal training in engineering or business administration. All of the
students, but only a few of the managers, had basic knowledge of mathema-
tical programming.

The subjects were introduced one by one into the decision-making framework
with the help of training sessions and a 9-page booklet describing the pro-
blem, the plant and its environment. Each subject was subsequently asked
to play the role of plant manager. He was informed of the mechanical aspects
of operating the terminal before being given instructions for using the first
method. The instructions were accompanied by an introduction to the logic
of the method to be tested and an example. The subjects were allowed to
iterate as long as they wanted, except, of course, in the case of the STEM
method. After they had finished, they were presented with instructions for
the next method and the procedure was repeated. (The average length of
the session was 2 hours and 40 minutes for the students and 3 hours for the
managers. ) The order in which the methods were presented was changed
from subject to subject in order to compensate for eventual systematic learn-
ing effects. For the same reason, the parameters of the decision problem
were changed in a random manner with each method. The feasible points
found during the use of any one method were not feasible for any other method.
Afterwards each subject was interviewed about the method and the experimental
design. The responses were statistically tested.

4. Measures of performance. Seven measures of performance were used to
evaluate the methods:

(a) Decision-maker's confidence in the solution obtained (ordinal ranking);
(b) Ease of use of the method (ordinal ranking);
(c)Ease of understanding the logic of the method on the basis of the

instructions (ordinal ranking);
(d) Usefulness of information provided by the decision-maker (ordinal

ranking);



(e) Rapidity of convergence, measured by the number of iterations
and the total time for solving the problem;

(f) CPU-time on UNIVAC 1108;
(g) Distance of the solution from the efficient surface.

5. Results. Both managers and students considered the importance of the
information obtained during the interactive procedure to be the factor playing
the main role in their evaluation of the methods. This factor was followed
closely by confidence in the solution obtained. In third and fourth place came
the ease of use and understanding of the method, respectively. Decisionr-
making time (time spent on the computer terminal and for preparation) was
ranked last.

No statistically significant ranking of confidence in the results obtained could
be determined for either group. This reflects the fact that the evaluation of
the goodness of a solution in a fictitious setting, i .e. without recourse to
past experience or to "intuition", is a very precarious task. An analysis of
the subjects' answers leads, moreover, to the conclusion that their confidence
in the results of the GEOFFRION method was weakened by the difficulties they
experienced in determining the trade-off weights. On the other hand, they
thought the STEM method left them too little freedom in their search for a
desirable solution ("built-in" stopping criterion; impossibility of "undoing"
a previous relaxation).

Both groups considered the GEOFFRION method the most .difficult to use,
followed by the STEM method. The main difficulty in the use of the GEOFFRION
method lay in the determination of the trade-offs. The step-size problem was
considered relatively easy to solve. In the case of the STEM method, the
subjects had some difficulty in specifying a value for the relaxation Ax^ .
Finally, Wallenius came to the conclusion that with the help of the unstruc-
tured approach, it was relatively easy to find feasible solutions, but diffi-
cult to find good feasible solutions.

Managers and students varied in the way they judged ease of understanding.
Both groups considered the GEOFFRION method more difficult to understand
than the other approaches, but the managers more so. The students considered
the unstructured approach easier to understand than the STEM method. The
managers, however, considered both methods equally difficult.

Divergence between the two groups was also evident in their evaluation of the
usefulness of the information provided. Both groups considered the unstructured
approach the least informative. However, the managers ranked the GEOFFRION
method below the STEM method in terms of information provided, whereas the
students considered both methods equally informative.

The rapidity of convergence is shown in the following Table 4, which is for
the most part self-explanatory.
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•

GEOFFRION
Approach

STEM
Method

Unstructured
Approach

Stud*

Iter-
ations

3

4. 5

13.5

HltS

Total
time
(min)

31. 5

14. 5

19.5

Managers

Iter-
ations

3

4

10

Total
time
(min)

38

13. 5

19.5

Students and Managers

CPU-time
pro problem

(sec)

4. 6

5. 8

8 . 1

CPU-time
pro iteration

(sec)

1.53

1. 39

0. 69

CPU-time
pro min. of
total time(sec)

0.13

0.42

0.42

Table 4 - Median number of iterations, median total time (decision-making
time + time for operating the terminal) and median CPU-time for
solving the problem on a UNIVAC 1108 time-sharing system.

On the average, the distance of the solutions from the efficient surface was
small in both the GEOFFRION and the unstructured approaches. (As stated
earlier, the STEM method always leads to an efficient point.) However,
single results showed large deviations from the efficient surface. It seems
that the students were able to find slightly more efficient solutions than the
managers.

Finally, managers and students were asked which method they preferred on
the whole in terms of implementation willingness. The students'answers were
randomly distributed. The managers considered the GEOFFRION and STEM
methods the same but clearly preferred the unstructured method.

B - Conclusions

At first glance, Wallenius's findings may be interpreted as a clear rejection
of sophisticated methods. Both the GEOFFRION and STEM methods performed
less well than the unstructured approach in nearly every respect, with the
.exception of the information they provided.

Yet,, a more thorough analysis shows that the validity of the rankings obtained
by Wallenius is restricted to the particular experiment he conducted. On one
hand, this experiment was characterized by a very simple structure of the
feasible set and by a small number of goal variables (three). There is strong
evidence, however, that, due to the unsystematic way in which the search is
conducted, the efficiency of the unstructured method decreases rapidly with
increasing complexity of the efficient set and, above all, with increasing
number of variables. In particular, the number of iterations needed becomes
unacceptably large. Therefore, 4 to 5 goal variables may be the upper limit
for practical use of the unstructured approach.
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In comparison, the experiments mentioned at the beginning of section IV, A,
have shown that the STEM and GEOFFRION methods are practically applicable
even with as many as 7 to 10 goal variables. Even in particularly complicated
problems the number of iterations needed remains within reasonable limits.
In the case of STEM it is seldom larger than twice the number of goals. With
the GEOFFRION method, the number of iterations rarely exceeds ten, includ-
ing "fine tuning" in the final iterations.

On the other hand, the relatively poor performance of the STEM and GEOFFRION
methods in the Wallenius experiment is partly due to the fact that students
and managers did not have enough training in the use of the methods. Success
with these two methods crucially depends on the decision-maker's ability at
correctly interpreting the information provided by the computer and at stating
exactly the information input corresponding to his preferences. A priori, his
ability will be insufficient because the information exchange is based on data
that the decision-maker usually does not quantify. However, the quality of the
information exchange can be greatly improved by practice. •*•"'

The main contribution of Wallenius's study is that it highlights the weak points
in the use of the STEM and GEOFFRION methods. In both cases, the critical
factor is the man-machine collaboration - in the STEM method the determina-
tion of the relaxations, in the GEOFFRION method the determination of the
trade-off weights. The logical direction for further research would, therefore,
seem to be the attempt to improve this collaboration, both by adjusting the
information exchange in order to more adequately correspond to the charac-
teristics of a human decision-maker, and by devising training programs to
improve the information processing by the decision-maker.

We note that the STEM and GEOFFRION methods are not applicable in the
very important case of discrete decision problems. There is a need here for
more powerful methods. In this context, an apparently promising research
field could be the investigation of interactive branch and bound algorithms.

In summarizing, it can be said that the STEM and GEOFFRION methods
- are expensive methods in the sense that they place high demands on

the decision-maker, both in terms of time and intellectual effort.
Their programmation is also rather complicated;

- are restricted to continuous problems;
- permit a more efficient search of the "best solution" to complex pro-

blems. Their relative advantage as compared to the unstructured
method increases rapidly with the complexity of the problem;

- provide the decision-maker with significantly more decision-relevant
information than the unstructured method.

As for the GEOFFRION method, it offers important advantages as compared
to the STEM method.

- It is not restricted to the linear programming framework;



- It iH more ol'f'icient than the STUM method, both in terms of number
of iterations and of quality of the solution, when the number of goal
variables is large;

- It does not restrict the decision-maker in his search;
- It provides the decision-maker with more information than the

' STEM method;
- Generally, it is a more powerful and versatile decision-making tool.

However, it places many more demands on the decision-maker in terms of
training required and of intellectual effort than STEM. In other words, no
one method is superior to the others in all respects. In a practical situation,
the choice of the method will depend both on technical factors (structure of
the problem) and on the preferences and needs of the decision-maker relative
to information, costs, etc. The above presentation should offer preliminary
guide-lines for making such a choice.



FOOTNOTES

When a goal variable is supposed to be minimized, it is assumed to be
' transformed to maximization by an appropriate sign change. We use in

the following the notation x := ( x . , . . . . , xn), zk := (zk . . . , z ), etc.
A (x') designates the transposition of the matrix A (the vector x).

2)
See, for example, Baumol (1959), Johnsen (1968).

Vz-(z ) := (3u/3z1 , . . . , 3 U / 3 z m ) | z _ zk is the vector of partial deriva-
tives 3u./3z£, i = 1, . . . , m, evaluated at z - zk. We use the notation
6U/dzk»= 3U/3ZJ_I ẑ_ = z^. Vz (z ) represents a local linear approxima-
tion for the "direction of greatest increase" of U at z = zk. The main
difference between the different large-step algorithms lies in the definition
of the "best direction" y . As a rule, however, y will be derived from the
solution of a standard LP formulated on the basis of both V U and (a linear

z
approximation of) the constraints defining the feasible set D. (See, for
example, Simmons (1975).)

4)
The term "large-step method" expresses the fact that the improved point
zk+1 is not restricted to a neighborhood of the current point zk, but may
lie at some distance from it.

The FRANK-WOLFE algorithm was used as the basis for most of the
studies of GEOFFRION's approach. It is more specifically designed for
problems in which the objective function U is concave on { zl . However,
it converges even when U is not concave.

6) r k k k k i
The problem U L (1 -1 ) z + t "z J —• max is formally equivalent to the
problem U [z + tk y J—» max, zk + 1 feasible, stated under "General
Remarks".

7)
This problem is atypical in so far as x is of a higher order than z.

Note that the w-'s are only marginally valid, i.e. express
the preference of the decision-maker only with regard to a relatively small
change from the current solution. In order to grasp the intuitive contents
of this requirement, each z unit can be thought of in terms of thousands of
physical units.

9)
A new comparative study, Tell (1976), was not available in time to be
considered in this paper.

In an experiment with 7 goals conducted by the author, graduate students
needed for an example 6 to 7 hours practice with the GEOFFRION method
before considering themselves able to correctly solve trade-off and step-
size problems. In comparison, Wallenius' s students had on the average
less than 1 hour console time to familiarize themselves with GEOFFRION's
method.
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