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Introduction and notation

An investor with initial wealth Y > 0 buys assets (A-)^ in

period 1 whose values in period 2 (per unit of wealth invested)

are given by the non-negative random variables (X.)n . The
J n

total wealth of the investor in period 2 is therefore

where y. is the amount of wealth allotted to the asset
J

A.. We assume that the investor has a utility function u(x)
J

and that he selects the (y-)n (subject to his budget constraint
n J

I y.- = Y) so aa to maximize his expected utility in the second

period (see [l]). •

If F(x-, ..., x ) is the joint distribution function of the

random variables (XO? the problem may be formulated as

follows:

Select (y,-)? subject to

n
y. > 0 , j = 1, .. . n, I y. = Y

so as to maximize

CO

o o

We introduce the following notation which we shall use in the
i

remainder of ithe paper.
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A row vector will be denoted by a bold-face letter y and its

components by y- (j = 1, ... n) i.e.
J

, • • • y n) •

The inner-product y^ • y~ of two vectors is defined by

n
I I * 12 = * y l j y2j '

J — •'•

The non-negative orthant R" of Rn is given by

Rn = {£ : x. >_ 0 j = 1, . . .n}

and for each K > 0 we write

1 xj 1 K j = 1, ... n}

The simplex S n = Sn(Y) is defined by

s n = {y : y e R? , J y^ = Y}

and for the integral

00 CO

.... v(x1, ... xn) F(dx1,

o o

we write
r
v(x) F(dx) .

All integrals will be over R+ unless otherwise stated,
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The portfolio selection problem may now be stated as follows

Select y* in S such that

(1) u(y* • x) F(dx) = sup u(y • x) F(dx) .

J - - " y e S n i - -

The set of solutions of (1) will be called the solution set

for the distribution function F and will be denoted by Qf/.

In future a star will indicate that a vector belongs to the

solution set. If (Y) is non-empty and y* e Cv we write

M = u(y* • x) F(dx) .

M will be called the maximal expected utility associated with F.

We shall be concerned with the following problems.

(a) Under what conditions is @ non-empty ?

(b) Under what conditions does f y contain exactly one point ?

(c) Under what conditions is y* a continuous function of F ?

(a) will be dealt with in 2, (b) in 3 and (c) in 4-5.

The results we give are quite general although in some places

we sacrifice generality for simplicity. In particular we shall

always assume that
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(2) u(x) is continuous on [o,«>)

and

(3) u(x) is non-negative.

From the point of view of portfolio analysis such assumptions

are innocuous. Readers requiring full generality should have

no difficulty in adopting the proofs given here.

2 Existence

We prove the following theorem.

Theorem 1. If u(x) is non-decreasing then

(4) (Y) is non-empty

and

(5) M is finite or infinite according as

max f fu(Yx.) F(dx)

is finite or infinite.

Proof. For y e S n and x e R"

y « x < Y( max x.)

and hences as u(x) is positive and increasing
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(6) 0 <_ u(y • x) <_ u(Y( max x.))
l j J

which implies

S = sup |[ u(y • x)F(dx)| < I u(Y( max x.))F(dx)
yeS-l * - - - i " J liJinJ

Suppose now

max f I u(Y x.)F(dx) | < - .
l<_j<n ^ J J - )

Then as u(x) is increasing

u(Y( max x-))F(dx) <_ n( max f f u(Y x-)F(dx) ] )

and thus

(7) u(Y( max x,))F(dx)

The simplex S is compact and therefore there exists a sequence

(y-K tending to a point y in S such that

(8) lim f u(y. • x)F(dx) - S .
i->-co i mm ^ ^

Because of (6) and (7) we may apply Lebesgue's dominated

convergence theorem to obtain

f lim u(yi • x)F(d^) = S .

By (2) u(x) is continuous and hence



x)F(dx) = S

which implies y e (Y) .

Suppose

max u(Y x.)F(dx)

Then there exists a j such that

[ u(Y x. )P(dx) = «•

and thus

yQ = (o, . .. , o, Y, o ... o)

belongs to Vu . This completes the proof of the theorem.

3 Uniqueness

We prove the following theorem.

Theorem 2. If

(9) u(x) is strictly concave^

(10) max ( [ U(Y x.)F(dx) ] < -
l<j<_n I ) J - J

and

(11) the random variables ( X . ) n
 are uneaply
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independent then \YJ contains exactly one point.

Proof. As by (3) u(x) is always non-negative (9) implies

that u(x) is increasing and hence the conditions of Theorem 1

are satisfied. The solution set QO is therefore non-empty and

M is finite.

Suppose now that (Y) contains two distinct points y* and y| .

Let e, 0 < 9 < 1, be a real number and we set

J o = e yj + (l-e) y

As u(x) is strictly concave

u(yQ • x) >_ 9 u(y^ • x_) + (l-e)u(y2 • x)

with strict inequality holding if y* • x ^ yip • x. The linear

independence of the random variables (X.)!? therefore implies
J •••

that strict inequality holds for the set of x of positive

F-measure. This gives

f u(yn • x)F(dx) > e f u(y* • x)F(dx) + (1-6) f u(y* • x)F(dx) = I

which is an obvious contradiction. The solution set (y there-

fore contains at most one point and the theorem is proved.

The random variables (X-)? a r e said to be linearly independent

if
n

P( I c X. = 0)= 1 implies c1 - ... = cn = 0.
J ~ ̂
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That the conditions of the theorem are not necessary is

shown by the following example.

s e t ^ = *» u( x) - <~" a n d suppose that X,. is

exponentially distributed with mean 1, 1^X2 is equal to;1/2 X^

with probability one then none of the conditions of the theorem

are satisfied- However, it is easily verified that y = (1, 0)
GO

is the only choice which gives an infinite expected utility

and is therefore the unique optimal choice.

The conditions of the theorem are, however, necessary in the

restricted sense that if any of them are dropped counter

examples may be found as the reader may easily verify.

4 Continuity: u(x) bounded.

4.1 In this section we prove that if the sequence of

distributions (F )? converges weakly to F (written

w-lim F = FQ : see [2] p. 40)
\)-t-oo

then the associated maximal expected utilities and solution

sets converge to those of F . This is expressed in the follow-

ing theorem.

Theorem 3° Let (F ) Q be a sequence of distribution functions

concentrated on R^ with corresponding solution sets

and maximal expected utilities (M ) Q . If



(12) w-lim F = F

and

(13) u(x) is bounded and increasings

then

(14) lim M = M-

and

(15) every convergent subsequence of (y )-. , y e (Y7 »

converges to a point of

Corollary 1. Given e > o there exists a v = v (e) such that

all points in
00

U
v-vQ

are'within a distance E of some point of{

Corollary 2. If YQ contains only the point y* then any se-

quence (y*)" is convergent and converges to y* .

4.2 Before turning to the proof of Theorem 3 we first show

that the family of functions

(16) u(y . ( • ) ) : R j ^ R j , y C S n

is equicontintious ([2] p. 50). (Here y plays the role of a

parameter.) .../10
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Lemma .1. If u(x) is increasing and bounded then the family

of functions (.16) is equicontinuous.

Proof. The conditions of the lemma imply that lim u(x)

exists arid hence u(x) is uniformly continuous on [o, »). Thus

given E > o there exists a 6 > o such that

(17) |x1 - x2| < 6 implies luCx^ - u(x2)| < E .

An application of the Cauchy-Schwarz inequality gives

*i "

where |x^ - x2| is the usual Euclidean distance between the

points £., and Xp i n ^n* Hence if x* and x2 satisfy

'-I " 521 K 6 / ^/n" Y^ ifc follows from (17) that

|u(y « x^) - u(y • x2) | < e

uniformly in y. The family (16) is therefore equicontinuous

4.3 We now turn to the proof of Theorem 3« We first note

that, as u(x) is increasing and bounded, Theorem 1 implies that

the (\Yy)Z are non-empty and the (M )" are finite.

By Lemma 1 the family (16) is equicontinuous and the boundedness

of u(x) implies

sup s u P n
 u^y * x^ < °° •

.../ll
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l t therefore follows ( [2] p. 51) that

(18) lim ( sup If u(y • x)F (dx) - f u(y • x)F (dx) ] = 0
v-»-co I y e S

 iJ ~ • v «• ) «» «. u - j
(

v-»-co I y e S

* iWe first prove (14). For each y* in Y

5 ) p
v

( d5 )

and thus

lim inf Mv >_ lim inf u(y* • x)Fy(dx)
M-VOS \l-»-CO * ^\)-*-eo

u(y* • x)Fn(dx)

the equality following from (12). We therefore obtain

(19) lim inf M >. M .

Suppose now that lim sup M > MQ . Then there exists a

sequence (y<tfa\)'l.^ such that

which by (18) implies

Mo

which is impossible. Hence lim sup M < M^ which together

with (19) implies (14).

.../12
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A CO

We now prove (15). Let (y8/ J . be any convergent sequence

with y*/ s c Q /_•» , s = 1, 2, .... . As S n is compact there

exists a yQ in S n such that lim y*/g\ = yo •

From (18) we have

and thus

* 5)po(d25) = lim Mv(s) = M

As u(x) is bounded and continuous the Lebesgue dominated con-

vergent theorem implies

g->-oo

(dx) = f u (y o • 5

and hence y0 e^L completing the proof of (15).

4.4 Corollary 2 follows immediately from Corollary 1

which we now prove by indirect means. If the corollary is

false the compactness of S n implies the existence of a con-

.*
vergent subsequence (yv(s))s = 1 >>

v
v(s)

 eCPv(s) » each point

of which is at least a distance E away from every point of^l .

This sequence cannot possibly converge to a point inQJL contra

dicting (15) and hence Corollary 1 must hold.

4.5 We remark that iffYjj contains more than one point then

.../13
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the conclusion of Corollary 2 is false.

Example 2. We set Y = l , u = l - e x and define the

random variables X. and X 2 by

P(X l n = 1) = 1, n = 1, 2, .

and

P(X 2 n = 1 + (-l)
n) = n" 1, P(X 2 n = 1 • 1(- l)

n) = 1 - 1

n = 1, 2,

If F n is the joint distribution function of X- and X~ we

have

w-lim F = Fnon*»

where FQ is the distribution function of the unit mass concen-

trated at the point (1,1). The optimal choice y* is given by

y*n+1

y is obviously not convergent

5 Continuity: u(x) unbounded

5.1 If the utility function is unbounded the maximal ex-

pected utility is (in general) no longer a continuous function

of the joint distribution function of the random returns.

Consider the following example.

.../14
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Example 3. We set Y = 1, u(x) = log(l+x) and define the

random returns X. and X- by

(20) P(Xln = 1) = 1 n = 3, 4, .

and

(21) P(X?n = I) = (1 - * ), P(X?n = n) =
 1

2n 2 /T3g-n 2n /Iog-n

n = 3, 4," ..

For n >_ 3 the optimal choice y* = (yn, 1 - yn) is given by

(22) y" = ' " 2 ( T i = " H ^ >

and the maximal utility M by

log(2 • ~ r - a ) * (log n
n'x /

g _
/log n n'x /log n

log (iimii - 2)
/log n

We therefore have

lim
n

If Fn is the joint distribution function of X^ and X2 it is

clear from (20) and (21) that

w-lim Fn = Po

n*

where F is the distribution function associated with the

unit mass concentrated at the point (1, 1/2). We therefore

have y* = (1,0) and M = log 2.

.. ./15
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This shows that

lim M i Mn o

In spite of this it follows from (22) that

7* = y*

That this is no accident is shown by the theorem given in the

next section.

5.2 As the above example shows, it may happen that y is

a continuous function of P even when M is not. We now give a

theorem which states, roughly speaking, that this is the

normal state of affairs when the utility function u(x) increases

no faster than log x.

For reasons of simplicity we impose sufficient conditions on

u(x) and the (F )™ to ensure that the solutions of (1) exist

and are unique. We also set Y = 1.

We give the following theorem.

Theorem 4. Let (F ) be a sequence of distribution functions

concentrated on R+ and with associated solution sets ( ^ ) Q •

We suppose

(23) w-lim F = FQ ,

(24) the random variables (X i ) ' c 1 associated with F

.../16



- 16 -

are linearly independent (v •=• 0, 1, 2, ... ) ,

(25) u(x) is strictly concave,

(26) max [ [ u(x.)F (dx) ] < - (v = 0, 1, 2, ... ) ,
1lJln

(27) sup ju(Ax) - u(x)| < » for all \ > o .

(28) each solution setQl) contains exactly one point

£* (v = 0, 1, 2, ... )

and

(29) lim y* = y*

The proof of the Theorem is somewhat long and we therefore give

it in the appendix.

5.3 For utility functions increasing faster than log x

neither y nor M are in general continuous functions of F.

Example 4, We take Y = 1, u(x) = (log(l+x))2 and define

and X 2 n by

P ( Xln = 1} = 1 n = 3, i|, .

and

P(X2n = 0 ) s 1 " Tth ' P(X2n = n ) = Tofn • n = ? •

. . . / 1 7
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The expected utility for the choice y = (y, 1-y) is given by

M(y) = (1 ' TolTn")(log(1

On differentiating with respect to y we obtain

5- M(v) < 2(loe 2 - (n - l)log(n + IK
dy l u y ; - ^^XOS * n + 1 (log n)

which is negative for n _̂ 6.

Thus if n > 6 y* = (0, 1)

and M = (1°gn
(n

n lo

= gnn log n

If F n is the joint distribution function of X l n and X2_ it is

apparent that

w-lim F = F

where F Q is the distribution function associated with the unit

mass concentrated at (1,0).

Thus y* = (1, 0) and M Q = log 2. It follows that neither of

the two equalities

y* = y* , lim M n = M Q
n><»> • • n-̂ °°

hold.

. . ./18
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6 Discussion

Theorem 1 is probably the least interesting from the point of

view of economic theory. We confine ourselves to the remark

that it is possible to find function u(x) for which no optimal

choice exists i.e. to any given choice there always exists

a strictly better one.

Theorem 2 is somewhat more interesting. It implies under-

fairly weak conditions that the optimal choice is unique for

investors who show decreasing risk aversion. We can also

deduce the following:

Proposition. If the random variables (X.) n are exchangeable

and linearly independent and if u(x) is strictly concave and

satisfies

f u(Yxa)F(dx)

then the optimal choice is given by

= H Y •

If the (X-)n have finite variances then this is precisely

the choice which minimizes the variance of the return in

period 2. The above result is however also valid if the

variances do not exist.

The main result of the paper is the continuity (under certain

conditions) of both the optimal choice and the expected

maximal utility. Prom the point of view of the investor this

.../19
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is of course reassuring; if his estimate of the joint distri-

bution function of the random returns is not too far away from

the actual distribution, then his optimal choice based on this

estimate will be not too far away from the actual optimal choice.

One result which follows from the continuity of portfolio

choice is the following. Suppose the random variables (X-) n

J -*•
p

are independent and that X. ^ r(y, 0 ), i = 1, ... n-1 and
2 2

X ^ r(y-e, a +5) (a, y, E, 6 > o; r(y, o ) = gamma distributed
2

with mean y and variance o ). The asset A is then strictly

riskier than any of the assets A1, ... A n - 1. One might there-

fore expect that this asset would not be considered. However,

it follows from the proposition above and the continuity of

portfolio choice that as long as E and 6 are small enough some

wealth would be invested in A .

It came as something of a surprise to the authors to discover

that portfolio choice is "more continuous" than the expected

maximal utility (Theorem 4). There seems to be no immediate

intuitive reason why this should be so.

Finally we remark that the holding of cash is not excluded. One

of the assets A. may represent the holding of cash and the

corresponding random variable X- is then degenerate, taking

the value 1 with probability one. The holding of other certain

assets may be treated in the same way although in terms of our

model, which ignores transaction costs, it only makes sense to

include one certain asset, that with the greatest return, the

others obviously not entering into the optimal choice.

.../20
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Appendix

1 For the proof of Theorem 4 we require the following

lemma.

00

Lemma 2. Let'(F ) -be a sequence of distribution functions

concentrated on R^ such that

(30) w-lim F = FQ

and

(31) the random variables (Xo-;)1?-! associated with Fo

are linearly independent.

Then there exists an increasing sequence (K )T of positive

numbers tending to infinity such that

(32) lim Pvs = Pos (s = l, 2, ... )

and

(33) w-lim FvS = F (s = 1, 2, ... )
V+oo

where

Pvs = n| P v ( d 5 ) (s = 1, 2, ... , v = 0, 1, ... )

W
and

Fv(min(x1,Ks) , ... min(xn,Kg))
(35) Fvs(xa> ... xn) =

Pvs

(s = l,2, ... , v = 0, 1, ... ) .

Furthermore the sequence (K)™ may be chosen so that the random

variables associated with F,^ are linearly independent,
OS

S = 1, 2 , • • • • • . . / 2 3.
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Proof. We denote the boundary of R"(K) by 3 Rn(K). It is

clear that we can choose an increasing sequence (K g)" tending

to infinity such that

3 R+(KS) - y {x : x. = 0}

has zero P -mass. The assertions (32) and (33) of the lemma theno

follow from a simply application of Theorem 6.1 on page 40 .of [2]

We prove the last part of the lemma by indirect means. If the

assertion is false then for all sufficiently large s there

exists a point c(s) satisfying

(36) |c(s)| = f I C(s)2]2" = 1= f I

such that

L c.(s)Xoj = 0|X Q E Rn(Ks)) = 1.
J ~ •*•

The set of points c satisfying (36) is compact and hence there

exists a subsequence (^(s(v) ))'*_* which converges to a point £(

satisfying (36).

Now

lim P(XO E R"(Ks(v))) = 1
\)-*•<*>

and hence

( n 1 °°
The sequence T c.(s(v)) x_.. converges therefore in

lj J OJJ l
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probability to zero. This implies there exists a subsequence

n

which converges to zero with probability one i.e.

n
lim -J c.(s(v.)) X . = 0 a.s

This implies

X Coj Xoj = °
J — •*•

which contradicts (3D and so the last assertion of the lemma

must be true.

2 We turn to the proof of the theorem.

We first note that (23) - (26) and Theorem 2 imply (28). It

therefore remains to prove (29).

Strictly speaking we must show that lim y* exists and is equal

to y* . As in Theorem 3 one method would be to show that every

convergent subsequence of (y*)" converges to y*. We shall how-

ever assume that (y )- itself converges,it being clear that

the proof would also hold for any convergent subsequence. In

this way we avoid a proliferation of subscripts.

With (P „)"_ , s = 1, 2, ... as in Lemma 2 we define yA(s) as
VS V -O B»V
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a solution (which exists by Theorem 1) of (1) with F = P

From Theorem 2 and the last part of Lemma 2 it follows that y*(s),

s = 1, 2, ... is unique. Theorem 3 Corollary 2 therefore gives

(37) lim y*(s) = yo(s) , s = 1, 2, ... .

We now prove

(38) lim y*(s) = yj .

From the definition of y*(s)

u(y^(s) • x)Pos(dx) >_ j u(yj • x)

and hence

J u(y*(s) • x)F (dx) >. f u(y* • x)F (dx)
Rj(Ks) -° " ° RntKs) -° - ° "

L e t (y*^s^^)i-i b e a convergent subsequence of (y*(s))" which

converges to a point yQ of S . As

n
0 <̂  u(y • x) <_ I u(x.)

" - j=l J

for all y in S n we may, because of (26), apply the Lebesque

theorem to obtain

u(y* • x)F (dx) = lim f u(y* • x)Pn(dx)

i lim u(y*(s(i)) • x)F (dx)



- 24 -

Therefore, as y is unique, we must have y = y* . This is

true for any convergent subsequence of (y*(s)) and hence (38)

holds.

From (37) and (38) we have

(39) l im ( l i m y * ( s ) ) = y* .
S+oo v+co • ™*

Now as y* E S not all its components are zero. Withous loss

of generality we may therefore suppose that

(40) yol = ... = y o m = 0, y o m + 1, ... yon >_ i, > 0 .

(If no componoaent is zero the proof is even easier). We choose

& > 0 so small so that 2n6 < n and define

(41) y(6) = (6, ... 6, - m6, 0, ... 0) .

We write

u o j,o ,̂

and

y*(s,6) = y*(s) + y(«) .

s, v = l , 2, . . . ) .

It is clear from (40) and (41) that yj(6) e S n and that all the

components of y*(O are no smaller than 6. From (39) it follows

that there exists an s Q = sQ(6) and a vQ = vQ(s) such that for

v = o, v >_ v (s), s >_ s (5)

.../25



- 25 -

and

y*j(s,6) >_ \ 6 > o, j = 1, ... n

For such values of v and s we have

0 :,«) • x))Pv(dx)

(u(yj • x) - u(yj(s) • x))Fy(dx)

(u(y*(s) • x) - u(y*(s,6) • x))Fv(dx)

(u(y* • x) - u x))Py(dx)

As u(x) is increasing

u(y* • x) - u(yj(s,6) • x)

n n< u( I x.) - u(| <( I x.)) .
j=i J d 5-1 J

We therefore obtain

x) - -u(y"(s) • x))Pv(dx)

(u(yj(s) • x) -
Rn(Ks)

u(yj(s,6) • x))Fv<dx)

x.) I «(.y X,)))P (dx) .
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Now the first term is negative (definition of y*(s)) whilst

the other two are positive. This implies.

f (u(y* • x) - u(y*(s) • x))F (dx)

f (u(y*(s) • x) - u(y*(s,«) • x))F (dx)

I(u( I x.) - u(| • ( I x )))F (dx) ,
j J J -^-Rn(K5)

I
J.I

(dx)

which on using (27) gives

(42) f (u(y* • x) - u(y*(s)

*(s) • x) - u(y*(s,«) • x))Pv(dx)

+ 0 Fv(dx)

We remark that the family of functions

u(y
n

is equicontinuous and uniformly bounded. We therefore obtain

(as in Theorem 3)
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lim sup (u(y1 • x) - u(y2 • x))FvS(dx)

- J (u^j • x) - u(y = 0

which by (32) implies

lim sup x.) -

Rn(Ks)
. x) - u(y2 • x))F0(dx) 1= 0

Therefore on letting v tend to infinity in (42) we obtain

(as lim y*(s) = y*(s))
V-+OO » ^ O

im yj) • x) - u(y*(s) • x))FQ(dx)J
| (u(y*(s) • x) - u(y*(s,6) • x)

+ 0 Fo(dx) | .

If we now let s tend to infinity we obtain

f (u(lim yj) • x) - u(y* • x))F (dx)

I (u(y* • x) - u(y*(6) • x))F0(dx>) + 0

The limiting operation is justified by (26). Finally applying

the Lebesgue theorem once again and letting 6 tend to zero we

obtain
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im y") • x) -
•

x))Fo(dx)

1 lim f (u(y* • x) - u(y*(6) • x))F_(dx)

= 0 .

This implies (29) as y* is unique and the proof of the theorem

is complete.
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Summary of the paper

Existence3 uniqueness and continuity of

portfolio choice

by

Laurie Davies and Gerd Ronning.

Under fairly weak conditions it is shown that an optimal

portfolio choice exists and is unique. It is further shown

that this choice is a continuous function of the joint

distribution function of the random returns on the assets

from which the choice is made.


