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Abstract
The ability to accurately estimate the extent to which the failure of a bank disrupts the financial
system is very valuable for regulators of the financial system. One important part of the
financial system is the interbank payment system. This paper develops a robust measure,
SinkRank, that accurately predicts the magnitude of disruption caused by the failure of a bank
in a payment system and identifies banks most affected by the failure. SinkRank is based
on absorbing Markov chains, which are well-suited to model liquidity dynamics in payment
systems. Because actual bank failures are rare and the data is not generally publicly available,
the authors test the metric by simulating payment networks and inducing failures in them.
They test SinkRank on several types of payment networks, including Barabási-Albert types of
scale-free networks modeled on the Fedwire system, and find that the failing bank’s SinkRank
is highly correlated with the resulting disruption in the system overall; moreover, the SinkRank
algorithm can identify which individual banks would be most disrupted by a given failure.
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1 Introduction

The ability to accurately estimate the extent to which the failure of a bank disrupts
the financial system is very valuable for financial regulators. This paper develops
a robust measure based on absorbing Markov chains, SinkRank, that accurately
predicts the magnitude of disruption caused by the failure of a bank in an interbank
payment system and identifies the banks most affected by a failure.

Interbank payment systems provide the backbone for all financial transactions.
Virtually all economic activity is facilitated by transfers of claims by financial
institutions. In turn, these claim transfers generate payments between banks
whenever they are not settled across the books of a single bank. These payments
are settled in interbank payment systems. In 2010, the annual value of interbank
payments made e.g. in the Pan-European system TARGET2 was $839 trillion.
In the corresponding Fedwire system in the United States, the amount was $608
trillion - over 40 times its annual GDP (BIS, 2010). Due to the sheer size of the
transfers, and their pivotal role in the functioning of financial markets and the
implementation of monetary policy, payment systems are central for policymakers
and regulators.

Systemic risk in payment systems has been studied since Humphrey (1986)
who found significant risk in the U.S. Fedwire system in the mid 1980s. Sub-
sequent studies by Angelini et al. (1996), Bech and Soramäki (2002) and Galos
and Soramäki (2005) found the risks to be limited. Since then, however, most
payment systems have switched from net settlement to real-time gross settlement
(RTGS; Bech et al., 2008), transforming credit risk into liquidity risk as gross
settlement eliminates the former at the cost of the latter. Various works have
since used simulations to study risks and liquidity needs in RTGS systems, either
by creating entirely simulated systems or by introducing changes in data from
real payment systems. A growing body of work (Schulz, 2011; Grat-Osinka and
Pawliszyn, 2007; Arjani, 2006) uses simulation to study the relationship between
liquidity requirements and delays in payment systems. Simulations of failures
in payment systems generally focus on system-wide risks and liquidity effects
(Glaser and Haene, 2009; McAndrews and Wasilyew, 2005; Ledrut, 2007; Ball
and Engert, 2007; Docherty and Wang, 2010). Schmitz and Puhr (2009) studied
network structure in payment systems with induced shocks, but found that network
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properties were of limited use for stability analysis. Here we use network methods
to develop a metric that not only identifies systemically important banks but can
also predict the banks most affected by a failure, and validate the metric using
simulated payment systems.

The paper is organized as follows. In the next section we discuss existing
measures of centrality in network theory and introduce the new centrality metric
SinkRank. Section 3 describes the model that is used to simulate bank failures
for testing SinkRank and Section 4 presents simulation results that evaluate the
accuracy of SinkRank for forecasting the impact of failures and the banks most
affected. Section 5 concludes.

Technical details and computer code for reproducing all calculations presented
in this paper are given in the Annexes. Interactive versions of the charts are
available at www.fna.fi/sinkrank.

2 Centrality in Network Theory

In the past decade, significant progress towards understanding the structure and
functioning of complex networks has been made within the fields of statistical
mechanics and social network analysis.

A multitude of centrality measures has been developed, each with an explicit
or implicit network process in mind. Borgatti (2005) identifies several stylized
processes. According to his typology, a process can progress in the network through
geodesic paths, paths, trails or walks. Processes that travel via geodesic (shortest)
paths are, for example, problems of the type “traveling salesman," i.e. they always
take the shortest route between two nodes. Processes that travel via paths need not
necessarily use the shortest route, but do not visit any node more than once. These
can be, for example, viral infections (a person becomes immune once infected) or
the routing of internet traffic.

Processes that travel along trails do not visit any given link more than once.
Such a process is for example the spread of gossip where a person may forward it
to several other people or hear the same news from several different people, but
a person typically does not hear the same news more than once from the same
person. Processes that are characterized as walks are not restricted in their behavior.
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An example of such are the money flows studied here, where everyone can pay
everyone multiple times.

Further on, Borgatti characterizes processes in the dimensions of parallel
duplication, serial duplication and transfers. In parallel duplication the process
spreads at the same time from a node to all its neighbors. In serial duplication it
duplicates one link at a time. An example of the former is an e-mail broadcast and
of the latter viral infection (assuming no one infects multiple people at exactly the
same time). Instead, in transfer the process moves something in the network. When
it is moved, it leaves the originating node and is now possessed by the receiving
node. This is the case with payments.

The most commonly used centrality measures are Degree, Closeness and
Betweenness proposed by Freeman (1978) and different variations of Eigenvector
centrality which was pioneered by Katz (1953) and Bonacich (1972, 1987).

Degree centrality (or simply Degree) counts the number of neighbors of each
node. It is a local measure that only takes the immediate neighborhood of the node
into account. It can count neighbors with incoming links, outgoing links or either,
and can be weighted by link properties; for example, the weighted out-degree is
referred to as out-strength.

The insight underlying Closeness centrality is that nodes with shorter geodesic
paths to other nodes are more central. It is generally calculated as the average length
of geodesic paths from a node to each other node in the network. Betweenness
centrality defines as central those nodes through which a high share of geodesic
paths pass.

What is known today as Eigenvector centrality encapsulates the idea that the
centrality of a node depends directly on the centrality of the nodes that link to it
(or that it links to). Eigenvector centrality measures assume parallel duplication
along walks. A famous commercialization of Eigenvector centrality is Google’s
PageRank algorithm (Page et al., 1999), which adds a random jump probability
for ‘dangling’ nodes and thus allows the measure to be calculated for all types of
networks. PageRank and Eigenvector centrality can be thought of as the proportion
of time spent visiting each node in an infinite random walk through the network.
For calculating Eigenvector centrality, the network must be strongly connected (i.e.
the underlying transition matrix must be nonsingular).
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In payment networks banks (nodes) transfer payments related to customer
requests or their own trading along directed links of the network. When a payment
is made the money is no longer available to the sender, and the receiver of the
funds can use the funds to make a payment to any other bank in the system. Using
the terminology of Borgatti (2005), the transfer process takes place along walks in
the network as any bank can both make payments to and receive payments from
any other bank multiple times (assuming the paying bank has sufficient funds or
credit).

Payment networks are accompanied with liquidity and risk-management con-
straints and exhibit feedback loops. Banks may not have enough liquidity to settle
a payment or may decide to postpone a payment due to liquidity and risk manage-
ment concerns. These decisions again depend on the state of the system at that
time, and also influence the state of the system. Traditional measures of centrality
that have been developed with other types of processes in mind (e.g. processes
transmitted along geodesic paths or trails or processes based on duplications in-
stead of transfer) may not be able to accurately identify central nodes in payment
systems.

Liquidity constraints may make banks unable to make payments and may alter
the unconstrained process significantly. When the constraints are hard, the system
may become very unpredictable and be governed by a process of congestion and
cascades. When liquidity is scarce, the settlement process loses correlation with the
process of payments that would need to be settled. These dynamics are described
in Beyeler et al. (2007). Recently-developed centrality measures created for the
financial domain include Battiston et al.’s DebtRank (2012) and Craig and von
Peter’s core-periphery model (2010).

The new centrality measure proposed here, SinkRank, is based on absorbing
Markov chains, which are well-suited to model transfers along walks. A Markov
system is a system that can be in one of several states, and can pass from one state
to another at each time step according to fixed probabilities. If a Markov system is
in state i, there is a fixed probability, pi j, of its going into state j at the next time
step; pi j is called a transition probability.

An absorbing random walk is a random walk that starts from a node and
eventually terminates at an absorbing node. In terms of centrality our interest is
the expected number of steps that are taken before termination when the walk
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starts from another randomly-chosen node. Absorbing nodes that require a smaller
expected number of steps are considered more central than absorbing nodes that
require a large number of steps.

Any network can be represented with an adjacency matrix and such a matrix
can be turned into a transition matrix. The transition matrix for M = [si j]n×n

is defined by dividing each element by the row sum, P =
[

si j

∑ j si j

]
n×n

, where the

transition probabilities for a random walk are defined by the link weights si j. Here
the links represent payments made between banks and the link weights are the
payment values.

An absorbing state is a state from which there is a zero probability of exit-
ing. An absorbing Markov system is a Markov system that contains at least one
absorbing state, and is such that it is possible to get from each non-absorbing
state to each other non-absorbing state and to some absorbing state in one or more
time-steps (i.e. the network is strongly connected except for the absorbing states).
An absorbing Markov system reflects the process taking place when a bank fails
in a payment system: Any payments sent to the failing bank remain in the failing
bank’s account and don’t exit until recovery.

When analyzing an absorbing system, we first number the states so that the
absorbing states come last in the matrix. The transition matrix P of an absorbing
system is:

P =

[
S T
0 I

]
where I is an m×m identity matrix (m = the number of absorbing states), S is a
square (n−m)× (n−m) matrix (n = total number of states, so n−m = the number
of non-absorbing states), 0 is a zero matrix and T is an (n−m)×m matrix. Here
we consider only single failures, i.e. m = 1, but, as detailed above, the measure can
be easily extended to analyze multiple simultaneous failures as well.

The matrix S gives the transition probabilities for movement among the non-
absorbing states. To obtain information about the time to absorption in an absorbing
Markov system, we first calculate the fundamental matrix Q.

Q = (I−S)−1
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The i, jth entry of Q defines the number of times, starting in state i, a process
is expected to visit state j before absorption. The total number of steps expected
before absorption equals the total number of visits a process is expected to make to
all the non-absorbing states. This is the sum of all the entries in the ith row of Q.
We call this the ‘Sink Distance’ of the node.

In calculating SinkRank, we calculate the Sink Distance of each non-absorbing
node and take an average. The measure is analogous to distances along paths
except that the process is based on the number of steps in walks defined by the
transition matrix and ending at the absorbing node. Finally, we invert the average
so that larger values of the metric correspond to more central nodes. Thus, our
measure of SinkRank is defined by:

SinkRank =
n−m

∑i ∑ j qi j
.

Note that Sink Distance can only be calculated when a path exists between the
absorbing node and the non-absorbing node being considered. Thus, SinkRank
can only be calculated for strongly connected components, and is most useful as
a centrality metric for networks that are strongly connected (as payment systems
generally are). For networks that are not strongly connected, we can first add a small
constant to the zero elements of the transition matrix, equivalent to the random
jump probability used in the PageRank algorithm. If we denote the random jump
probability as 1−α and the transition matrix as P = [pi j]n×n, adding the random
jump probability is equivalent to replacing each element pi j of P with α pi j +

1−α

n .
In other words, each zero element in the transition matrix is replaced with 1−α

n and
each non-zero element is multiplied by α and added to 1−α

n . SinkRank can then be
calculted for the transition matrix with random jumps included.

SinkRank is an intuitively meaningful metric in a payment system as it can
measure how close a failing bank is to the other banks in the system via payment
flows. We expect failures to be more disruptive when they occur in banks that
are more central, i.e. banks that have higher SinkRank. The SinkRank of a node
denotes the inverse average value of payments that need to be made for a unit of
liquidity anywhere in the network to reach the node, and takes possible values in
the range (0,1]. The maximum possible SinkRank of 1 is obtained, for example, in
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the case of the center node of a star network: Payments made by the spokes of the
star reach the center in one step.

3 Simulation model of payment system

Because bank failures are rare and the data is not generally publicly available, we
test the SinkRank metric by simulating payment networks and inducing failures in
them. The simulation model incorporates both liquidity constraints and a queuing
mechanism for payments that cannot be settled due to the liquidity constraint. For
the payment simulations we use the FNA payment simulator1 which has previously
been used inter alia in Berge and Christophersen (2012) and McLafferty and
Denbee (2012). Given a payment network, that is, a set of banks and the times and
values of payments made between them, the FNA payment simulator records the
balance of each bank throughout the payment period, as well as information on
payment delays, average balances, total number of payments made and received,
and can also simulate bank failures by restricting the outgoing payments made by
a specified bank. The payment network itself was generated based on the Barabási-
Albert (BA) model (Barabási and Albert, 1999) for scale-free networks. BA
networks have a few very highly connected nodes and many more less-connected
nodes, a structure that well represents payment systems with a few very central
banks and many more peripheral ones. Properties of the BA network used in the
simulations are summarized in Table 12 and more details on generating the network
can be found in Annex 1.

The payment data used in the simulation is randomly generated as detailed in
the Annexes. The generating process is able to produce payment flows with close
resemblance to the Fedwire payment network in the United States.

Visualizations of the BA network are shown in Figures 1 and 2; each node
(circle) represents a bank and the arcs between them represent payments. Figure 1
shows the entire network. Node sizes are scaled by Out-strength (that is, larger
nodes represent banks that make more total payments), and arc width is scaled by
the number of payments (that is, thicker arcs represent more payments made). The

1 See www.fna.fi/solutions/payment-simulator
2 Fedwire network as described in Soramäki et al. (2007). Model network is one realization.
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Value in
simulated BA

Property network
Number of nodes 100
Number of links 1220
Connectivity 0.123
Reciprocity 0.317
Degree (k) 24.4
Max (k-in) 57
Max (k-out) 56
Number of payments 5000
Value paid (‘1000) 604

Table 1: Properties of BA network topology

network is characterized by a few large well-connected banks with high centrality
and many more small banks, as is typical in scale-free networks.

Figure 2 shows the maximally-connected subgraph of the BA network; that is,
the largest subgraph that contains a link between each pair of nodes. The maximally
connected subgraph has 17 nodes, which represent the core of the network. The
maximally connected subgraph is a subgraph of the strong components of a network:
The nodes in the maximally connected subgraph are strongly connected, and meet
the additional constraint that each node is directly connected to each other node.

In the simulation model, each bank starts the day with a given opening balance.
Payments are tested for settlement as they are fetched from the file of generated
payments. If the value of the payment is larger than the available balance of the
sending bank, the payment is put in the sending bank’s queue of pending payments.
If the value is smaller than the available balance, the payment is settled and the
account of the sending bank is debited and the account of the receiving bank is
credited.

The bank whose account was credited may now be able to settle some of its
previously queued payments, if any such payments exist. Queued payments are
released on a ‘First-in-First-Out’ (FIFO) basis. If a payment from the queue can be
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Figure 1: BA network visualization, entire network

settled, the recipient of the newly-released payment may now be able to release its
first queued payment - i.e. a single payment can cause the release of many queued
payments in a cascade. At the aggregate level this creates a process where the
system may become congested, manifesting as an increase in queued payments,
and occasionally the queued payments are settled in cascades when payments that
can be settled due to incoming funds from previously settled payments are released
to others. The behavior of such a system is described in detail in Beyeler et al.
(2007).

In the failure simulations we set each bank in turn to be unable to send any
payments during the day; that is, we set each bank in turn to be an absorbing state.
The failing bank continues, however, to receive payments and will therefore trap
some of the system’s total liquidity in its account. As a consequence other banks
will run short of liquidity and queues will build, first causing existing liquidity
buffers to be used more and eventually causing payments to be delayed. The

www.economics-ejournal.org 10
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Figure 2: BA network visualization, maximally connected subgraph

assumption that a failing bank continues to receive payments is accurate at least in
the short run, as there is certainly some delay between the time when a failed bank
stops making payments and the time when other banks in the system learn of the
failure and potentially change their behavior. Moreover, banks in a payment system
have obligations to make their payments on time and may be sanctioned or face
other consequences if they fail to do so. Even in the face of a known bank failure,
contractual requirements and industry throughput guidelines should encourage
banks to continue making payements to all banks in the system, including any
distressed or failed banks. The FNA code to replicate these simulations can be
found in Annex II.
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We calculate duration of delays in the system aggregated over all banks (‘Con-
gestion’) and the average reduction in available funds of the other banks due to the
failing bank, (‘Liquidity Dislocation’). We use their duration-weighted sum as a
measure of the extent of the disruption caused by the failing bank; we refer to this
measure as ‘Impact.’

The magnitude of the Impact of a bank failure is dependent on the level of
liquidity in the system. If other banks have enough liquidity to offset the funds
that did not arrive from the failing bank, no delays will occur. In the trivial case
of unlimited liquidity, no Congestion would ever occur and each bank’s Liquidity
Dislocation would be equal to the amount of payments not received from the failing
bank.

In the simulations we set the initial balance of each bank at the minimum
level that allows all banks to process all payments immediately when no bank
failure is present. Thus, when a failure occurs, Congestion will be caused by lack
of sufficient liquidity in at least some banks, which in turn will cause Liquidity
Dislocation and/or Congestion at other banks.

Figure 3 summarizes the two disruption measures considered and the rela-
tionship between them. Each point represents a single failed bank and shows the
Liquidity Dislocation and Congestion calculated for all other banks in the network.
All bank failures cause at least some Liquidity Dislocation, whereas Congestion
only occurs in about half (62 / 100) of the bank failures; if all banks affected by
a failure have enough liquidity to make their payments, no delay will occur. The
relationship between Liquidity Dislocation and Congestion is convex as theoreti-
cally shown in Galbiati and Soramäki (2011). As more liquidity is dislocated, more
delays occur that dislocate more liquidity.

4 SinkRank and Failure Distance

For each bank in the network we calculate its SinkRank (as described in Section 2),
Out-Strength (that is, the sum of all its outgoing payments - a measure of the size
of the bank), and PageRank. These centrality measures are related to the Impact
(that is, the duration-weighted sum of Congestion and Liquidity Dislocation)
experienced in the simulation. Figure 4 shows that SinkRank, Out-strength, and
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Figure 3: Network-level disruption measures

PageRank are all very strongly related (r > 0.99) to Impact in BA networks. Note
that different transformations of Impact are shown for each centrality metric, chosen
so as to make the relationships between Impact and centrality as linear as possible.
SinkRank is most linearly related to Impact on the inverse scale, so its correlation
has the opposite sign.

Figure 5 shows the relationship between centrality and Impact in other types of
payment network. We consider random and complete networks of the same size
(number of links) as the BA network, with link weights assigned randomly and
payments generated as in Annex I. The average link weights were set such that the
total value of payments in the system is approximately the same across networks.
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Figure 4: Relationship between Impact and centrality measures in BA networks

SinkRank and PageRank are both strongly related to Impact in all three networks,
whereas the relationship between Out-strength and Impact appears to hold only in
the BA network which has strong correlations with strength and degree of nodes.

The results in Figures 4 and 5 are for aggregate network properties: A bank’s
centrality is strongly related to the overall impact seen in the system if that bank
fails. We can further utilize the SinkRank technology to identify which individual
banks are most susceptible to disruption in the case of a bank failure. We define
the Failure Distance as the Sink Distance from a failing bank to any other bank. To
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Figure 5: Relationship between Impact and centrality measures in BA, complete, and random
networks

calculate Failure Distance, we arrange the system’s transition matrix so that the
bank whose Failure Distance is being calculated comes last:

P′ =
[

S′ T ′

0 1

]
.

The failing bank is now part of the submatrix S′. From S′ we calculate the corre-
sponding fundamental matrix Q′, and the Failure Distance is the sum of the entries
of Q′ in the row that corresponds to the failing bank. In other words, if bank i fails,
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Figure 6: Relationship between Failure Distance and Impact when the most central bank fails

we calculate the Failure Distance of any other bank j by treating bank j as the sink
and calculating the Sink Distance of bank i to bank j.

Banks with small Failure Distances are close to the failing bank and down-
stream from it in the payment chain, and so should be most disrupted by the failure.
Figure 6 shows the Failure Distances and Impact for the BA network when the
bank with the highest SinkRank (that is, the most central bank) fails. Banks with
smaller Failure Distances indeed exhibit larger disruptions, and the relationship is
quite strong (r <−0.85).
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5 Conclusions

This paper developed the new metric SinkRank based on absorbing Markov chains
and evaluated its accuracy by comparing it with results from simulated failure
scenarios in payment systems modeled after the Fedwire system. This initial
analysis has shown that it is possible to accurately rank banks on the basis of
metrics calculated from network topology to estimate the potential disruption their
failure would cause in the payment system: SinkRank was shown to be predictive
of network-level disruption in the case of a bank failure. In addition, the related
metric Failure Distance was shown to be predictive of the impact on individual
banks in BA networks.

Several possibilities exist for extending the work. First, a more robust analysis
with regression models to investigate the explanatory power of different metrics or
combined metrics could be carried out. A longer time series of different realizations
of the networks and failure simulations would also make the results more robust.
More simulations on alternative network topologies with longer path lengths and
different correlations among network topology and link values could provide better
information on the relative merits of the different metrics across network topologies.
These networks could be artificial (lattice, random, etc.) or constructed from real
payment data. It may also be possible to further improve the SinkRank metric by
taking into account the liquidity distribution at the time of failure.

It is impossible to confirm any metric as the “best” predictor of system disrup-
tion, because the appropriate historical data are not available for testing: We can
only study simulated systems, and simulations are never 100% representative of
reality. However, we can construct payment systems that closely mimic reality
and have found that the SinkRank metric performs well in these and other systems.
Moreover, SinkRank is theoretically sound, as its calculation mimics the flow of
payments in a payment system. The simulation results combined with its strong
theoretical underpinnings suggest that SinkRank truly is a more useful centrality
measure for banks in payment systems than those others considered here.

Acknowledgements: The authors thank Tor Berge, Kristian Dupont, and Miklos Kalozi
for their valuable contributions to this paper.
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Annex I: Algorithm for generating payment data

Payment networks exhibit complex properties. We take as a starting point the
Fedwire network which consists of almost 8000 banks processing over 411.000
payments on an average day. The network is described in detail in Soramäki et al.
(2007). Due to the highly confidential nature of the data, it is rarely available for
research outside central banks and therefore artificial data needs to be used.

There are three main aspects in describing the payment network: the structure
of the links, link weight distributions, and individual payment distributions; in
other words, who pays whom, how often, and how much. Both link weights and
payment values have also correlations with each other. Generating a mechanism
that produces all desired aspects of the data is thus challenging.

The main structural characteristic of the network is a power law degree distri-
bution. This means that a few very large banks connect to a large number of very
small banks. The in- and out-degrees correlate strongly, i.e. banks that receive
payments from many different banks also send payments to many different banks,
and vice versa. The largest degree in the Fedwire network on an average day is
1922 for incoming links and 2097 for outgoing links. The network also has a very
low connectivity. Only 0.3% of all possible links are present on an average day.
In addition, the links have a very high reciprocity of 0.22. This means that 22%
of relationships between two nodes are bidirectional - if a link exists from A to B,
then a link also exists from B to A. Reciprocity in a random network is on average
equal to its connectivity, i.e. over 70 times smaller in this case.

The link weights (number of payments) also follow a power law distribution
and have a very high positive correlation with the degree of the node. This means
that large banks have both more links and that these links transmit more payments
than links of smaller banks. The number of payments in reciprocal links also has
a high correlation, denoting strong bi-directional business relationships between
banks.

The payment values have a lognormal distribution, and again their value de-
pends on the size of the banks, measured as the number of counterparties or the
total value sent (i.e. out-or in-strength).

We develop a simple payment generation process extending the BA model by
Barabási and Albert (1999) for generating random scale-free networks. The BA
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model is based on two processes, growth and preferential attachment. Growth
in the model means that initially the network only has a few nodes and nodes
are gradually added to the system. Preferential attachment means that the more
connected a node is, the more likely it is to receive new links. Newly added nodes
are therefore more likely to connect to nodes with many existing links.

The model developed here aims at reproducing the main statistical properties
described for the Fedwire network above. The model applies growth and preferen-
tial attachment as the main drivers of the generation process, but instead of adding
links, it adds payments. A link is formed when the first payment is drawn from a
bank to another. Additional payments between banks with existing payments add
to the weight of the link.

We start with an initial number of nodes n0. We then draw new payments one
by one, m payments for each new node, until we have the desired number of nodes,
n. We use a vector H[hi]i=1,...,n to track the amount of preferential attachment
strength that has been allocated to each bank (node) i and a matrix M = [si j]n×n to
track the number of payments created to and from each bank. The matrix M can
also be interpreted as a weighted adjacency matrix of the payment network, where
the weight is the number of payments.

The other main difference from the BA model is the addition of a parameter
α that denotes the “strength of preferential attachment”, i.e. how much is added
to h when a payment is sent or received. In the BA model, α = 1; because the
number of payments here is vastly higher than the number of links to draw, the
addition to the preferential attachment must be smaller so as not to skew the degree
distribution too much. The pseudo-code for the algorithm is given below.

FOR i = 1, . . . ,n0 (add initial banks/nodes)

SET hi = 1

FOR k = n0 +1, . . . ,n (banks)

FOR l = 1, . . . ,m (average number of payments per bank)

SELECT random sender i∗ such that bank i has the probability
hi

∑hi
of being selected as a sender

SET h∗i = h∗i +α (update preferential attachment strength)
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WHILE i∗ 6= j∗ (exclude loops, payments to oneself)
SELECT random receiver j∗ such that bank j has the proba-
bility of h j

∑h j
of being selected as recipient of the payment

SET h∗j = h∗j +α (update preferential attachment strength)
SET si j = si j +1 (create payment/link)

SET hm0+k = 1 (create new bank/node)

Table 2 summarizes the comparison.3 The model seems to be able to reproduce
the main characteristics of the Fedwire topology very well with n0 = 10 and
α = 0.1. The parameter n0 determines the number of core banks, and α the
slope of the power law co-efficient in the degree distribution. Both the real and
the generated network are sparse, with power law degree distributions and high
clustering and reciprocity. In and out degrees are highly correlated and the degrees
of the largest bank are very similar.

Fedwire Model
nodes 5066 5066
links 75397 70710
connectivity 0.003 0.003
reciprocity 0.215 0.213
degree (k) 14.9 14.0
max (k-in) 2097 2210
max (k-out) 1922 2215
payments (‘1000) 411 411

Table 2: Properties of BA network topology

The next step after creating the interaction topology and the number of pay-
ments each bank sends to each other is to add time of submission and value to each
payment. The time for each payment is drawn from a uniform distribution between
08:00 and 17:00 (opening hours of the simulated payment system) and the value is

3 Fedwire network as described in Soramäki et al. (2007). Model network is one realization.
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drawn from a normal distribution with a mean of 1 and standard deviation of 0.2.
As the individual payment values were log-normally distributed in the real data,
we then exponentiate the drawn values. In addition, larger banks interchange larger
payments with each other than do smaller banks. We achieve this by scaling the
payment values by Min(ksender,kreceiver).

In the robustness analysis we also consider random networks and complete
networks whose link weights (number of payments) are assigned randomly such
that the total value of payments is approximately the same across the different
network types. Payment values are generated as detailed above. FNA commands
for generating and summarizing the networks and carrying out payment simulations
are given below.

Annex II: FNA Commands for Reproducing Results

Generating Networks

# Generate Barabasi-Albert (BA) network with link weights showing
# number of payments from each node to the other
ba -nv 100 -m 50 -v0 10 -alpha 0.1 -preserve false -seed 123

# Generate Random network and assign each link with a weight
# drawn from a uniform distribution between 1 and 7
random -nv 100 -na 1200 -preserve false -seed 123
calcap -e [?random:uniform:1,7:123?] -saveas number

# Generate Complete network and assign each link with a weight
# drawn from a uniform distribution between 1 and 8
complete -nv 34 -directed -preserve false
calcap -e [?random:uniform:1,8:123?] -saveas number

#
# Creating payment files (one for each of the above networks)
#
# Create one day (8h - 17h) of payments
# Log payments have mean 1 and sd 0.2
createpayments -number number -open 08:00:00 -close 17:00:00
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-mean 1 -stdev 0.2 -saveas network.csv -seed 123

Calculating Network Metrics

# Calculate SinkRank of each node, weighted by
# value of payments
sinkrank -ap value

# Calculate weighted out-degree (Out-strength)
degree -p value -direction out -saveas value

# Calculate PageRank of each node, weighted by
# value of payments
pagerank -p value

# Calculate number of nodes and links in each network
order -saveas numnodes
size -saveas numlinks

# Calculate connectivity and reciprocity
connectivity
reciprocity

# Calculate average reciprocity of each node
avgvp -p reciprocity -saveas reciprocity

# Calculate degree and average degree in network
degree -direction undirected -saveas degree
avgvp -p degree -saveas degree

# Calculate in-degree and average in-degree in network
degree -direction in -saveas indegree
maxvp -p indegree -saveas maxindegree

# Calculate out-degree and average out-degree in network
degree -direction out -saveas outdegree
maxvp -p outdegree -saveas maxoutdegree
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# Calculate number of payments in each network
sumap -scope network -p number -saveas numpayments

# Calculate value of payments in each network
sumap -scope network -p value -saveas value

Simulating Payments

# Calculate starting values so that balances are never negative
rtgs -paymentsfile network.csv[skiplines=1]

-openingtime 080000 -closingtime 170000
-outrecords out_records -dateformat yyyy-MM-dd -dateproperty date

calcvp -e -1*min_rtgs_balance -saveas starting_balance
calcvp -e min_rtgs_balance -saveas overdraft_limit

# Simulate Payment system without failure
rtgs -paymentsfile network.csv[skiplines=1]
-fund starting_balance
-openingtime 080000 -closingtime 170000
-outrecords out_records -outbanks out_banks_BA_success
-dateformat yyyy-MM-dd -dateproperty date

# Simulate Payments system where Bank ID 00001 Fails
# (Repeated for each bank in the network)
rtgs -paymentsfile network.csv[skiplines=1]
-overdraft overdraft_limit
-openingtime 080000 -closingtime 170000
-outrecords out_records -outbanks out_banks_BA00001
-dateformat yyyy-MM-dd -dateproperty date -strickenbank 00001 -capacity 0
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