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Abstract This lecture provides a modeling of “group connectivity” by proposing a
generalization of the concept of a graph. This new approach not only captures binary
relations between agents but also high-order relations among subsets of them. The
model allows us to characterize the minimal structures of cooperation survival in a
spatial Prisoners’ Dilemma game in a Moore neighborhood and helps explain the
existence of persistent “islands of cooperation” in hostile environments. The dynamic
behavior shows an increase in the fraction of cooperators relative to the standard spatial
Prisoners’ Dilemma game.
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1 Introduction

My lecture today will be about “group connectivity” or high-dimensional connectivity,
in social and economic networks and its implications for cooperation in local interac-
tion models.

Casual observation suggests that most economic and social interactions take place
locally, within restricted subsets of a larger population. Local interaction models in
economics are defined as models in which agents’ preferences, information, choices
or outcomes are affected by others’ behavior directly rather than being mediated by
markets. A common assumption in these models is that individuals interact locally,
with a set of neighbors defined by a social or economic distance metric. Local interac-
tion models explain a variety of social and economic phenomena such as the very high
variance of crime rate across U.S. cities through a model in which agents’ propensity to
engage in criminal activities is influenced by neighbors’ choices (Glaeser et al. 1996),
information exchange among workers (Calvo-Armengol and Jackson 2002), infor-
mation cascades (Banerjee 1992; Bikhchandani et al. 1992), learning from neighbors
(Bala and Goyal 1998), the emergence of conformity and social norms (Young 2001),
the presence of temporal “lumping” in the spread of a given industry from country
to another (Puga and Venables 1996), informal contacts and information networks in
the job search (Montgomery 1991), and the spread of cooperation (Eshel et al. 1998)
among many others.

An agent’s neighborhood might include family and friends, colleagues, busi-
ness partners, geographic neighbors, etc. Within his neighborhood, an agent shares,
exchanges and develops information, knowledge and other resources, new behaviors
are learned and strategic interactions take place.

Furthermore, in most social and economic local structures, specific sets of agents
may have a “tighter” relation among them. Examples of these groups are families, busi-
ness partners, committees, associations and lobbies among others. Group connectivity
in a socio-economic system may have different effects, for instance, the members of
a group may exchange information preferentially among them (i.e. partners in a com-
pany), they may imitate preferentially each other (i.e. teenagers movements), or their
payoffs may depend preferentially on the payoffs of the other members of the group.
The existence of group connectivity generates specific patterns of heterogeneity and
externalities.

This paper provides a model of group connectivity where interactions may be of
a high-dimensional character, i.e., the interaction of n individuals is not simply the
aggregation of the interactions of n(n − 1)/2 binary relationships. This framework is
applied to the spatial Prisoners’ Dilemma game in a two-dimensional lattice to analyze
the minimal structures of cooperation survival, from which cooperation can spread and
propagate.

In the Prisoner’s Dilemma, best reply precludes cooperation regardless of how
agents are matched (be it locally or globally). For many applications this is neither
reasonable nor necessary. We abandon the assumption that people are rational agents
who choose utility maximizing actions. Instead, we assume imitation as a reasonable
behavior when information is incomplete but the performance and action of others
are (perhaps indirectly) observable. Imitation alone is however not enough. To protect
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efficient play from too much exposure to the other action (which would imply lowered
payoffs), interaction also needs to be local. This can be achieved with a fixed structure
like a network, or in a more fluid way through random pair (or small group) formation.

An early analysis of imitation in conjunction with local interaction is in Nowak
and May (1992, 1993). Using numerical simulation, it is showed that for a substantial
part of the possible payoff values (the magnitude of the defection premium plays a
significant role here) and most initial conditions, defectors and cooperators can coexist
forever on a lattice, either in static irregular patterns or in dynamic patterns with chaotic
or cyclical fluctuations around predictable long-term averages. Similar results obtain
in both synchronous and asynchronous environments (Nowak et al. 1994; Habermas
and Glance 1993), when various changes are introduced in the learning procedure
(noise, memory, etc.), and on a variety of network structures. Variations on these ele-
ments have been explored in numerous simulation studies. Roca et al. (2009) perform
a very systematic simulation study which explores the various degrees of freedom of
the problem, and emphasize the central role played by clustering (or transitivity) in
sustaining efficient play. Taking an analytical approach, Eshel et al. (1998) examine the
survival of cooperation in a Prisoner’s Dilemma game played on the circle and show
that at least two thirds of cooperators exist in any stochastically stable configuration.
The authors however are constrained by their methodology to stick to the circle (the
one-dimensional periodic lattice) with two or four nearest neighbors. Mengel (2009)
distinguishes interaction and information in an imitation-driven approach with players
located on the circle and a few additional structures. Whenever agents use information
beyond their interaction neighbors, the unique stable outcome is inefficient. Introduc-
ing sufficient conformism (which in effect implies that the payoffs are distorted, and
not those of a Prisoner’s Dilemma anymore as they include a bias towards the majority
behavior) is a way of sustaining efficient play.

Grasping the meaning of “group connectivity” entails the modeling of high-
dimensional connections. To cope with that we consider simplicial complexes.
Roughly speaking, a simplicial complex is a generalization of a graph, in the sense
that in addition to binary relations between the elements of a set, it captures high order
relations as well, such as triangles, tetrahedron, etc). The dimension of a simplicial
complex is the maximum dimension of any of its simplices. As the simplest applica-
tion of the model we have chosen Moore neighborhoods with interactions with nearest
and next-nearest neighbors (square lattices where each player has eight neighbors).
Moore Lattices have many triangles and thus the concept of group connectivity is
easily applicable.

The paper is also related to the literature on contagion. Boyer (2010) identifies
structural properties of iterated neighborhoods which are key to contagion by efficient
behavior. In general Prisoners’ Dilemmas with deterministic imitation efficient behav-
ior spread if and only if it has a chance of being imitated, which requires it to generate
high payoffs. This can only happen if players are, to a certain extent, segregated and
remains so as contagion unfolds. Therefore for arbitrary regular networks efficient
contagion depends strongly on the extent to which play mostly happens within (rather
than across) the iterated neighborhoods of some initial seed group. Morris (2000)
formulates very general results on contagion in arbitrary, infinite order networks and
with best reply dynamics. His approach uses the concept of cohesion, i.e., the extent
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to which groups of individuals have interactions within the group rather than outside
the group. Our results on minimal cooperation structures from which cooperation can
spread have a similar flavor. Taking agents to be in a square lattice reduce the number
of defectors surrounding cooperators, but not enough to avoid the invasion from the
former ones. Therefore group connectivity allows cooperators to huddle together in
concentrated groups, although their members are still exposed to defectors. Finally,
the papers by Brañas-Garza et al. (2010), Goeree et al. (2010) and Leider et al. (2009),
among others, dealing with experiments and field experiments on altruism, social
integration and enforced reciprocity merit to be cited.

The concept and modeling of group connectivity could be applied to some local
interaction models and help explain some features not yet clarified. For instance, the
survival of very small groups in hostile environments, as long as the members of
such groups have a strong inner cohesion. Specifically, the existence of “lumpy” cities
where small ethnic/or sub-culture groups can survive in homogeneous environments
generating persistent “islands of diversity”.

The interaction of these structures in a global system generates a complex global
behavior. We would like to analyze how the existence of group connections helps
increase cooperative behavior. The heterogeneity and correlation introduced by the
simplex structure produces a highly inhomogeneous system which is not compatible
with the standard techniques of the mean-field approach and/or pair-approximation,
more suitable for analyzing homogeneous systems. Given that, we have run some
numerical simulations which help develop some results and intuition regarding the
global cooperative behavior.

The paper is organized as follows. Section 2 proposes a modeling of group connec-
tivity. Section 3 outlines the Spatial Prisoners’ Dilemma game in a Moore neighbor-
hood and its extension to the simplicial complex game. A measure of link intensity is
also presented. Section 4 analyzes the minimal structures of cooperation survival, and
Sect. 5 offers the results of some numerical simulations about the global behavior of
the system. Concluding remarks close the paper.

2 Concepts: from networks to simplicial complexes

Imagine a table with four people having a conversation at a restaurant; this event is
understood as a social network with four nodes. If every one can hear everyone else,
then in graph theory this network is represented by a complete graph on four vertices.
Now imagine a situation of four people playing the “phone” game so that each person
may only whisper in another person’s ear. This scenario is again modeled by a complete
graph on four vertices. But the situations are extremely different! One-dimensional
graph theory does not capture the distinction between a single 4-person conversation
and six 2-person conversation.

Let us define group connectivity as a situation in which interactions among indi-
viduals are of a higher-dimensional character, i.e., the interaction of n individuals is
not simply the aggregation of the interaction of the n(n − 1)/2 pairs.

The concept of high-dimensional connectivity is introduced to analyze group con-
nectivity among agents in a network. The key idea is to consider that groups of agents
can be linked beyond pair-wise interactions. In standard networks, a link could be
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Fig. 1 A simplex
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understood as having dimension one. In this model, for instance, a link of dimension
two would represent a connection among three nodes and such connection has deeper
implications than those of an aggregation of the three one-to-one connections between
them.

To study the above situations, one must turn from (one-dimensional) graph to a
higher-dimensional model. The two most popular models of this type are hypergraphs,
simplicial sets and/or simplicial complexes. A hypergraph is like a graph, except that
edges can connect more than two nodes. One draws a hypergraph by drawing a set of
dots and enclosing certain subsets of them within circles. Therefore, hypergraphs are
not closed under taking subsets.1

Simplicial sets, on the other hand, are visualized as multi-dimensional polygonal
shapes made up of nodes, edges, triangles, and higher-dimensional triangles like tet-
rahedra. An n-dimensional triangle, called an n-simplex, can be thought of as the
“polyhedral hull” of n + 1 vertices. Thus, a one-dimensional triangle, or 1-simplex,
is the polyhedral hull of two vertices: it is simply an edge. Likewise, a 2-simplex is
the hull of three vertices and is hence a triangle; a 3-simplex is a tetrahedron; and a
0-simplex is just a vertex. In general, a simplicial set is the union of many of such
vertices, edges, triangles, etc.

To clarify this further, let us emphasize that any graph is a one-dimensional simpli-
cial set. Now suppose that we want to construct a 2-simplicial set. Begin with a graph
G, and choose a set of three edges (a,b), (b,c) and (a,c) which form a triangle inside G
(Fig. 1).

Given this triangle, one may attach in a 2-simplex to G, filling in the triangle abc.
Thus, a two-dimensional simplicial set looks like a graph except that some triangles
are filled. To create a three-dimensional simplicial set, begin with a two-dimensional
simplicial set, choose some grouping of four triangles that form an empty tetrahedron,
and fill them. The appropriate simplicial set model for our “table of four” is the tet-
rahedron. This solid shape represents the idea that the relationship (the conversation)
is taking place between four entities in a shared space. The relationship is “closed
under taking subsets”. For the situation in which the four people can only whisper to
each other, we instead use the simplicial set consisting only of the six edges of the
tetrahedron. This graph is just the complete graph on four vertices.

1 In many applications, there may be groups that interact in a way that subgroups do not. In a conference
call any person can speak to the whole group but cannot speak to a given subgroup. For example, consider
the academic research network, where every researcher is a vertex, and every coauthorship is a (hyper)
edge. If three researchers are the coauthors on a paper, that does not imply that some subset of them is also
the set of coauthors of a paper. Coauthorship is a relation that is not closed under taking subsets.
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Fig. 2 A simplicial complex

A Simplicial Complex is a simplicial set in which no two simplices have the
same set of vertices. An “Abstract Simplicial Complex” can be described as a higher
dimensional version of some network.2 When we connect nodes with edges we
have a simplicial complex. Moving to a higher dimension, a triangle is known as a
2-simplex. Note that a triangle has three faces which are segments, i.e., 1-simplices.
In turns, every 1-simplex has two faces which are 0-simplices. We can therefore think
that our 2-simplices must be faces of something else we should call a 3-simplex. This
is exactly the case, as 3-simplices are defined as tetrahedrons, i.e., pyramids with three
faces, each of which is a triangle. The “face” of a simplex is the natural generalization
of the face of a polyhedron and then given a simplex we can consider its faces and then
the faces of its faces, and so on. This leads us to the notion of the m-face of a simplex.
Notice that the face of an n-simplex is always an n + 1-simplex. We can now define a
simplicial complex as the union of several simplices, possibly of different dimensions,
such that if the intersection of two simplices is not empty, then the intersection itself
is an m-face for both simplices (Fig. 2).

High-dimensional connectivity is modelled by associating an abstract simplicial
complex to a network3 in such a way that when a subset of n + 1 nodes has a high-
dimensional connection, then the n-dimensional simplex formed by these n +1 nodes
belongs to the simplicial complex.

We study network high-dimensional connectivity by associating a stylized form of
such simplicial complexes to a spatial evolutionary Prisoner’s Dilemma (PD).

3 The evolutionary Prisoner’s Dilemma game

This section is devoted to the description of the standard spatial Prisoners’s Dilemma
game in a Moore neighborhood and its extension to a simplicial complex game: the
spatial Prisoner’s Dilemma with triads. A measure of link intensity is also presented.

2 For instance, one might want to consider two research papers with the same set of authors as two different
simplices linking the same vertices. For this, one must use simplicial sets, not simplicial complexes.
3 We wish to point out that the idea of using simplices to describe and model social interactions is not
totally new, as it was developed by Atkin (1972, 1974) in his theory of Q-analysis. However, Atkins uses
simplicial complexes to represent relations in a cartesian product of two sets (binary relations). In our
viewpoint, simplicial complexes indicate actual social entities, whereas relations, either binary and n-ary
alike, that comprise them are, literally, their faces. Just as the human body is more than a mere aggregate
of its organs, social groups are more than their constituents.
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Fig. 3 A Moore neighborhood

i

3.1 The standard spatial Prisoner’s Dilemma game

Players are located on a two-dimensional square lattice of N × N nodes, interacting in
a Moore neighborhood, i.e., each of them will interact with its eights nearest neighbors
(Fig. 3).

Interaction takes place through a Prisoners’s Dilemma (PD), defined by the follow-
ing payoff matrix (payoffs for the row player are given):

C D

C
D

(
1 T
S 0

)

The parameters are the temptation payoff 1 ≤ T ≤ 2, and the sucker’s payoff
S ≤ 0, this last one representing the risk in cooperating. For a first exploration of
parameters, we will restrict ourselves to the riskless case S = 0, to make cooperation
easier (the so called the weak prisoners’s dilemma). We note however, that changing
S ∈ [−1, 1] and T ∈ [0, 2] allows us to explore the whole variety of 2 × 2 symmetric
games.

Each agent plays simultaneously the P D with each of her eight immediate neigh-
bors and her strategy, to Cooperate C or to Defect D, is the same in all these games.
After a round of the game, each player i collects her payoffs by adding up the
payoffs obtained from her individual interactions with all their neighbors, represented
by �i = ∑8

j=1 πi j . Subsequently, they update their strategy using the proportional
update rule (which, when played in a complete network converges to the replicator
dynamics). This rule posits that every player, say i , looks at its neighborhood and
chooses one of its neighbors, say j , with equal probability and copies her strategy
with some probability P(si,t → s j,t+1). Let P(i j) denote the probability that player
i observes the strategy of player j , then P(i j) = 1

8 as we have a lattice with eight
neighbors per node, and

P(si,t → s j,t+1) = 1

8
[θ(� j − �i ) × (� j − �i )]

where θ(� j − �i ) is the Heaviside function
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θ(� j − �i ) =
{

0 if � j − �i ≤ 0
1 if � j − �i > 0

After all players have checked on possible updates of their strategies, all payoffs are
reset to zero, implying that we are modelling one-shot interactions among memory-
less agents, and the process is repeated. Eventually, after a number of interactions,
all agents reach a stationary value, and the level of cooperation, measured as the per-
centage of cooperative actions taken at a given time, fluctuates around some constant
value. For the case of the PD, unless T − 1 is small (T ≤ 1.2) and S is very small, the
evolution converges to full defection, i.e., all the agents defect all the time.

Clustering explains much of the replicator dynamics in Moore Lattices. Let x be
the global density of cooperators in a population without structure, and let x̂ the local
density in a network with structured population. Notice that x is a global variable,
whereas x̂ is defined for each player. As a result, the effect of populations struc-
ture can be understood as the replacement of the global density x by the player-
dependent local densities, in the dynamics that drives the evolution of the population,
up to a time scale factor. Obviously, all local densities do not evolve equally, but some
of them do feature an increase caused by the correlation that arises from the spatial
structure. The local densities fluctuate over the population in the initial random condi-
tions, with cooperators more or less connected to other cooperators. Those with small
x̂ eventually disappear, while those with large x̂ convert, with high probability, their
defective neighbors to cooperators. This is the point where large clustering plays its
crucial role: newly converted cooperators will be connected not only to the cooperators
whose strategy they have just adopted, but also to some of her neighbors (because of
the network clustering), which are, with high probability, cooperators as well (because
of the high x̂ of the initial cooperator). Hence the new cooperator will also have a large
local density of cooperators. In the stationary state every neighborhood verifies that
x̂ = xe, the population will freeze at that configuration, because in that case all players
would obtain the same payoff.

3.2 The spatial Prisoner’s Dilemma game with triads

Associate to the above spatial PD game a two-dimensional simplicial complex
whose simplices (triangles) represent the groups of three neighbor nodes with two-
dimensional connection, denoted as triads (groups of three connections). Suppose that
player i belongs to a triad.

Two agents are ‘closer’, the higher the number of triads they share in common.
Denote by �i j the intensity of the link between agent i and j and define:

�i j = �α

where � > 1 and α ∈ [0, 4] is the number of triads i and j jointly pertain to (Fig. 4).
The model introduces link heterogeneity with some specific structure. If agents i

and j have link intensity 2 (they belong to 2 triads), it means that two other agents

123



SERIEs (2011) 2:139–158 147

Fig. 4 Heterogenous link
intensity

α = 1 α = 2 α = 4

m and n exist to whom i and j are respectively connected with link intensity 1. This
argument is extended to any other link intensity 3 and 4.

Group connectivity may have several consequences for the players’ behavior. Firstly
(information seeking), the probability that player i observes an agent inside the sim-
plex may be higher. Consider a player, say i , denote by i j the link between player i
and player j and recall that P(i j) denotes the probability that player i observes the
strategy of player j .

P(i j) = 1

Z
�i j

where Z = (
∑8

j=1 �i j )
−1 is the normalization constant and �i j > 1 is the parameter

defining the higher order dimensionality. By above,

�i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if i j is a regular link, i.e., they do not belong to any triad
� if i j have link intensity 1 (are an edge of a triad)
�2 if i j have link intensity 2 (are the common edge of two triads)
�3 if i j have link intensity 3 (are the common edge of three triads)
�4 if i j have link intensity 4 (are the common edge of four triads)

Note that a link can belong to at most four triads with our choice of network (the
generalization of the idea to more complex networks is obvious).

Secondly (imitation), the probability that i imitates the behavior of an agent inside
the triad she belongs to is higher. This translates to player i weighting agent j’s payoffs
by her link intensity with him. Therefore, the updating of strategy will be:

P(si,t → s j,t+1) = 1

Z
�i j [θ(�i j� j − �i ) × (�i j� j − �i )]

Notice that a player i in a triad can imitate a neighbor j belonging to the same triad
even with � j < �i .

Finally ( payoff externality), the payoffs of the PD’s played within the triad have a
higher weight than those coming from neighbors outside the group, i.e.,

�i =
8∑

j=1

�i jπi j

Table 1 summarizes the main differences from the standard model.
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Table 1 The spatial PD game

Standard spatial PD Spatial PD with triads
Information: Prob. to observe
agent j’s behavior, P(i j)

1
8

�i j(
8∑

j=1
�i j

)−1

Imitation: Prob. to imitate
agent j’s strategy, P(si,t → s j,t+1)

1
8 [θ(� j −�i ) × (� j −�i )]

�i j(
8∑

j=1
�i j

)−1

×[θ(�i j � j −�i ) × (�i j � j −�i )]
Payoff externality: �i

8∑
j=1

πi j

8∑
j=1

�i j πi j

We have then a family of different replicator dynamics, which are defined by the
distinct effects of group connectivity. Recall that in the stationary state of the rep-
licator dynamics in homogeneous Moore lattices every neighborhood verified that
x̂ = xe, the population freezes at that configuration, because in that case all players
will obtain the same payoff. With degree heterogeneous players, the population never
reaches the regular configuration, but the local densities x̂ fluctuate around xe, and the
players’ strategies oscillates accordingly. Therefore degree heterogeneity and network
clustering give rise to different dynamic processes.

Both models of the spatial P D game predict the persistence of cooperation yet
there are some differences. Specifically, numerical simulation results for the standard
spatial PD (Nowak and May 1993; Roca et al. 2009, among others) show that local
interactions within a spatial array can, by themselves, foster cooperative behavior
to persist forever. In particular, for Moore lattices, deterministic imitation rules and
parameter T in a very narrow region,4 there is a dynamic equilibrium between coop-
erators and defectors: cooperators invade a world of defectors starting from a square
of 3 × 3 cooperators. Thus, in the standard spatial model, persistence of cooperation
needs big initial clusters of cooperators, otherwise defectors will invade them.

The spatial PD with triads also predicts that cooperative behavior will persist, but
with much weaker conditions on the size of the initial clusters of cooperators. The
model introduces a degree of “kinship” among neighbors or “inclusive fitness” as
a way of understanding some aspects of the dynamic properties of spatial games.
In particular, two cooperators belonging to the common face of two triads can remain
so if their kinship is sufficiently strong. Since the updating rule is not determinis-
tic, such permanent seed of cooperation can propagate over time, although every other
time, some newly converted cooperators can turn back into defectors. Therefore, when
there are some scattered triads in a Moore lattice, clustering may explain some of the
dynamics but fluctuations will also appear in the dynamics of the system. In spite
of fluctuations, numerical simulation analysis by Sánchez et al. (2010), starting from
50% of cooperators and 10% of triads (with any possible combination of cooperators

4 The relevant parameter region is 8/5 < T < 5/3.
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Fig. 5 a A triad of C’s. b Propagation of C’s

and defectors),5 show an increase in the fraction of cooperators relative to the standard
spatial P D. This result stresses the importance of group cohesiveness for cooperation
to persist.

4 The minimal structures of cooperation survival

We wish to investigate the minimal atoms of cooperation survival or cooperation
kernel of the spatial PD game in Moore neighborhoods when all the agents adjust
their strategies at the same time and there are triadic connections. Obviously, if T < 1
then single cooperators surrounded by defectors can grow. In this parameter region,
cooperators will always out-compete defectors. This parameter region is uninteresting.

For T > 1, cooperators can only survive (and grow) if they form clusters. Nowak
and May (1993) show that the minimal cooperation atoms are square shaped clusters,
with a minimum of 4C , provided that T is small enough.6

To better compare our results with those of Nowak and May (1993), we abstract
from information seeking and imitation effects and only consider the payoff external-
ities of a triad. At the end of each period, an agent may either retain her strategy or
choose a strategy played by one of her eight neighbors, depending on their payoffs.
These payoffs, in turn, depend on the strategies of the next Moore neighborhoods. To
illustrate our results let us consider a 5 × 5 torus with a triad of cooperators in a sea
of defectors as Fig. 5a shows.

5 Notice that these conditions imply that the probability of a triad with cooperators only is rather small—
about 1/8—and the probability of having two or three triads of cooperators only is even smaller.
6 In fact the results of Nowak and May (1993) are for deterministic imitation. Specifically, they show that
for T < 3/2, all square shaped clusters, with a minimum of 4C can grow. However, for T ∈ (2, 3), a 2 × 2
cluster will disappear, but a 3 × 3 C-cluster (or any larger square) will persist—without gaining or losing.
If T > 3 all cooperators will disappear. This analysis suggests the existence of three classes of parameter
regions: (i) of T < 5/3, only C-clusters keep growing; (ii) if T > 8/5, only D-clusters can keep growing
and (iii) if T ∈ (8/5, 5/3) then both C and D clusters can keep growing.
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a b

Fig. 6 a Local contagion. b Influence area

Let �DM be the payoff of the defector player with the highest payoffs (he
plays the PD game against three cooperators), therefore his initial payoffs are
�DM = 3T . Obviously, with only pair-wise connections, cooperation will not sur-
vive. Therefore, the triadic connection is necessary to maintain cooperation and since
�C = ∑8

j=1 �i jπi j = 2�i j = 2�, then as long as � > 3
2 T , the cluster of cooper-

ation will survive but need not grow. What about propagation of strategy C? As the
strategy updating is stochastic and simultaneous, we consider the sufficient condition
for propagation. Suppose that cooperation has been imitated by some players and
consider again player DM . If all his neighbors having a connection with the triangle
of C’s change their strategies to C , then he will get at most �DM = 7T , while player
Cm , will only get �Cm = 2� again (see Fig. 5b). Therefore, if � > 7

2 T , cooperation
will propagate and contagion around the cooperative kernel will occur. Notice that
once cooperation propagates beyond the triad, the conditions for a further spread of
strategy C depend on T . For instance, consider Fig. 6a, the payoffs of DM are now
�DM = 5T and those of Cm,�Cm = 7, therefore for T < 7

5 , cooperation will be
maintained in the left lower 3×3 cooperation torus. Also notice that the highest payoff
for defector on the lattice upper and right borders are �D = 6T and thus some C’s of
the second upper row and of the last row may change to D. In general, we will find
an area of influence around the cooperation kernel. It starts from a 3 × 3 cooperator
cluster and continues with a fluctuation area (this area is easily seen at simulations),
where players at the lattice borders may alternate their choices between C and D. The
defectors will be along the borders of the lattice. Notice however that Fig. 6b is for
illustrative purposes since for small lattices the only absorbing states are C or D, and
the above result will drive the system to full cooperation in lattices of small size.

Now consider two triads with a common face (see Fig. 7a). Here there are
two types of cooperators: those belonging only to a triangle with payoffs of
�CB = 2�, and those sharing the common face of the two triangles with pay-
offs �CA = 2� + �2. Obviously, without triadic link intensity, cooperation will
disappear, since �CB = 2 < 3T = �DM . Clearly, since �DM = 3T and
�CB = 2�, then for � > 3

2 T , the kernel of cooperation will not disappear.
Now suppose as in Fig. 6b. that some players connected with the two triads have
imitated their strategy, then �DM = 7T and �CB = 2� + 2 and therefore
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Fig. 7 a Two triads of C’s. b Some contagion

Fig. 8 a Survival of the C’s in the common face of two triads. b A 2 × 2 cluster

for � > 7
2 T − 1, cooperation7 will propagate. Notice that this bound is a suf-

ficient condition, for instance consider Dm in Fig. 7b and suppose that the left
hand neighbors and the right hand neighbors have turned to cooperators, then the
bound for cooperation to spread is � > 5

2 T − 1. Also notice that the condition on
�, when we consider any D up or down of any CA and compare payoffs is that
�>

√
5T − 1 − 1.

Suppose now that
√

5T − 1 − 1 < � < 7
2 T − 1, so that players CB have turned

to D. This situation is displayed at Fig. 8a. First, notice that if � > 2, coopera-
tion between the pair of players in the common face of the two triangles will sur-
vive. Furthermore, it is easily shown that for � > T + √

T (T + 3) − 1 > 2 (since
T > 1), the payoffs of CA1 are higher than those of DM (notice that for T ≥ 1.2,
then T + √

T (T + 3) − 1 < 7
2 T − 1), and therefore cooperation between the pair of

players in the common face of the two triangles not only will survive but it may even
propagate.

Finally, consider the envelope-shaped cooperation kernel: a 2 × 2 cluster of coop-
erators (see Fig. 8b above). At this cooperation kernel, each C is connected to three
other C’s. Only C1 and C4 are in a common faced of the two triangles,8 and there-
fore �C1 = 2� + �2 = �C4 , and �C2 = 3� = �C3 . Each defector only faces two

7 The above condition on � would be slightly different in a 4 × 4 torus. In this later case the sufficient
condition is that � > 4T − 5

2 .
8 Notice that the simplicial complex is of dimension three, while the lattice only has dimension two.
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cooperators and then as long9 as � > max{ 2
3 T,

√
2T + 1−1}, the cluster will survive

and grow. Suppose that cooperation spreads from the cooperation cluster and consider
both the payoff of the defector to the right of C2, who gets at most �D = 5T and those
of the defector to the left of C1 (�D = 5T ) and compare them with �C3 = 3�+1 and
�C4 = 2� + �2 + 1, respectively. Then, whenever10 � > 5

3 T − 1
3 , local contagion

will occur.
The above analysis is summarized in the following proposition.

Proposition 1 The minimal cooperation structures that ensure the survival and prop-
agation of cooperation in a torus of 5 × 5 or higher numbers of players with at least
a triadic connection are:

1. A triad of cooperators. The cooperative triad will survive whenever � > 3
2 T ,

and for � > 7
2 T cooperation will propagate.

2. A cluster of two triads with a common face, whenever � > 7
2 T − 1.

3. Two isolate cooperators belonging to a common face of two triads will survive
and propagate cooperation, whenever 7

2 T −1 > � > T +√
T (T + 3) − 1 > 2.

4. A 2 × 2 cluster of cooperators, as long as � > 5
3 T − 1

3 .

Contagion from these structures occurs around the influence area of the specific coop-
eration atom, it is local and fluctuates in the borders of the lattice.

These results refine those of classical segregation models (Schelling 1972, 1978),
since very small groups can survive in hostile environments, as long as the members
of such groups have a strong inner cohesion. Notice that Schelling’s well-known tip-
ping model (1972) can generate multiple stable segregation equilibria. However, like
most models with multiple equilibria, the model suggests no mechanism for moving
to or from an all-white equilibrium and a “ghetto”11 equilibrium. Schelling’s theory
can therefore explain the persistence but not the formation of ghettos. Moreover, in
Möbius (2003)’s local interaction extension of Schelling’s model it is shown that in
one-dimensional streets segregation arises once a group becomes sufficiently domi-
nant in the housing market, but the resulting ghettos are not persistent, and periodic
shifts in the market can give rise to “avenue waves”.

Our results are closer to those of Möbius’s two-dimensional inner-cities, where
ghettos can be persistent if the majority ethnic group is sufficiently less tolerant than
the minority one. Therefore, the mechanism that gives rise to ghettos should be uni-
directional: ghettos form rapidly but break up slowly. Our results would imply, that,
in such a context, the reason for the formation and persistence of ghettos is the exis-
tence of small cohesive and stable groups (“atoms”) in the inner-city structure. The
current analysis may thus explain the emergence of “lumpy” cities, where small ethnic
or sub-culture groups can survive, as well as the existence “islands of diversity” in
homogeneous environments.

9 This depends on the value of T : for T = 3/2, the two arguments are equal.
10 Notice that for a 4 × 4 torus, the conditions are: � >

√
8T −1 (for T ≤ 3).

11 The term “ghetto” is used nonpejoratively to denote a racially or ethnically segregated community.
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5 Dynamic behavior

Once we have isolated the minimal structures of cooperation survival we face the
issue of the dynamics of a Moore Lattice with several triads not necessarily of coop-
eration. Because the state in which all agents are defectors is absorbing, the system
may drive cooperators to extinction. It will be important to know whether absorbing
states containing cooperators exist.

As it is known, the direct calculations of an evolutionary binary game on a degree
homogeneous network with N nodes, gives rise to a huge Markov chain of 2N states.
For these reasons several approximations have been proposed to tackle this problem.
The most commonly known is pair-approximation methodology which provides ana-
lytical insight into the relationship between lattice structure and population dynamics.
However, while pair-approximation yields reasonably good results for random net-
works it is not adequate for the study of regular lattices, specially if they have network
clustering. This is still worse if the lattice is inhomogeneous—as in our case. In this
case, simulations are excellent for developing intuition regarding spatial processes.

Some simulations have been conducted by Sánchez et al. (2010) exploring the
asymptotic behavior of the spatial Prisoners’s Dilemma in a Moore neighborhood
with triads, taking two values of the temptation parameter T = 1.1, 1.2. The duration
of every run is 2,000 iterations (understood as 2,000 sweeps over every node of the
lattice, sequentially) and the results are averaged over 100 realizations for each set
of parameters. The simulations calculate the frequency of cooperators as a function of
parameter �, for random initial conditions with a 50% of cooperators and a 10% of
triads.12 Triads are comprised of any possible combination of cooperators and defec-
tors. Thus, the probability of finding a triad with cooperators only is very small—about
1/8—and the probability of two or three triads of this type is even smaller. The results
for the model without triads are those for � = 1.

Recall that we have a family of different replicator dynamics, which are defined by
the distinct group connectivity effects being taken into account. Let us denote them
by RP(SEEK,IMIT,PF) where SEEK,IMIT,PF is 0 if the effect is not active and 1 if it
is active. Because we wish to analyze the impact of each of the effects of the group
connectivity in isolation and the impact of all of them together, the simulations have
focused on:

RP(1,0,0) Preferential information seeking with both standard imitation and payoffs
RP(0,1,0) Preferential imitation with both standard imitation and payoffs
RP(0,0,1) Preferential payoffs with both standard information and imitation
RP(1,1,1) Preferential information, imitation and payoffs.

Main Results:
For isolated effects the simulations show that preferential information seeking
(RP(1, 0, 0)), i.e., the probability that players in triads observe the other agents inside
the simplex with a higher probability, does not make any differences in the long run as
compared with the one without triads. Figure 9 shows that starting from a probability

12 Simulations have also been conducted for different number of triads in the network. The comparison
shows that different numbers of privileged triangles do not change significantly the results.
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Fig. 9 Information seeking. R P(1, 0, 0)

of 50% of cooperators, their frequency is around 70% for values of T = 1.1 and 40%
for T = 1.2, for � = 1 (the baseline case). This frequency does not change with
preferential information seeking. The key idea here is that even with small probability
neighbors outside the triads are going to be observed so that in the long run the impact
of preferential information seeking is not important.

Only imitation of the neighbors in the triad (RP(0, 1, 0)) need not increase coop-
eration by itself, unless the lattice has at least several triads of cooperators. As was
already mentioned, the system has 10% of triads but the probability of a triad with
three cooperators is 1/8, this meaning that the more abundant triads are those mixing
cooperators and defectors. This result matches that of Eshel et al. (1998), who need a
proportion of 60% of Altruist players to drive the system to cooperation. Furthermore,
players inside the triad lose the correlation generated by clusters of cooperators in the
complete lattice and then the frequency of cooperators goes down as compared to the
baseline (� = 1). In Fig. 10, for T = 1.1, the frequency of cooperators exhibits an
initial decay of the cooperation level which goes up a little bit. However, for larger
values of T the frequency level never goes up again and remains constant and lower
than without preferential imitation. This result stresses the influence of the global
correlation generated by clusters of cooperators in the dynamics of the system.

However, payoff externalities (RP(0,0,1)) are vital to enhance cooperation.
Figure 11 exhibits a maximum of cooperation around � = 3, where the frequency of
cooperators is maximal (around the 98%) and then it decreases slightly. Interestingly
enough, this value of � is very close to the critical value specified in Proposition 1
for the spread of cooperation from the minimal structures of cooperation, even though
now the triads may contain both cooperators and defectors. The reason for the posterior
decay in the frequency of cooperators is that with so many of them, 2% of defectors
gain a lot and some cooperator will change strategies. As � increases this tendency
is reversed and the global frequency of cooperator stabilizes around 90%, which is
higher than that in the standard spatial P D (70%).
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Fig. 10 Imitation. R P(0, 1, 0)

Fig. 11 Payoff externality. R P(0, 0, 1)

When we combine the three effects together (RP(1, 1, 1)), we observe in Fig. 12
that, again, when � ≥ 2.4 cooperation is fully achieved,13 for T = 1.1, and when
� ≥ 4.2, for T = 1.2. The figure also shows that for low values of � (� ≤ 1.6)

the imitation effect dominates the dynamics and accordingly cooperation decays. This
is easily explained by Proposition 1, since any triad of cooperators needs at least a
� = 1.65, for T = 1.1, and a � = 1.8, for T = 1.2, to survive. As � increases the

13 Notice again that the triads may contain both cooperators and defectors.
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Fig. 12 All the effects together. R P(1, 1, 1)

payoff externality starts offsetting the imitation effect and for � big enough the system
converges to full cooperation. These results exhibit an improvements of cooperation
with respect to the standard spatial P D, where the frequency of cooperators settles
down around 0.4 and 0.7 respectively (see the values of � = 1 in Fig. 12).

6 Conclusions

This paper provides a modeling of “group connectivity” by proposing a generaliza-
tion of the concept of a graph. This new approach not only captures binary relations
between agents in a network but also high-order relations among subsets of them.

Our approach allows us to characterize the minimal structures of cooperation
survival in a Spatial Prisoners’ Dilemma in a Moore lattice and may help explain
the existence of persistent “islands of cooperation” in hostile environments. All that
is required is that the members of such groups have a strong inner cohesion. Thus,
group connectivity may explain the coexistence of different and small ethnic groups
amidst neighborhoods, i.e., lumpiness and spatial concentration phenomena.

The term “population viscosity” was coined by Hamilton (1964). A population
is said to be viscous if individuals do not move far away from their places of birth.
Limited dispersion facilitates the evolution of cooperation by increasing the degree
of relatedness among interacting individuals. We show here, in contrast, that local
interaction within a spatial array and group connectivity, by themselves, foster coop-
erative behavior to persist. As already known, cooperators fare poorly when exposed
to many defectors, while defectors fare well when exposed to cooperators. Therefore,
cooperators will more likely survive if they form clusters and hence defectors will
always be in the lattice boundaries. The replicator-like dynamics, the local nature
of the interactions and group connectivity are all important features to the spread of
cooperation. Taking agents to be in a square lattice reduces the number of defectors
surrounding cooperators, but not enough to avoid the invasion from the former ones.
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Therefore group connectivity allows cooperators to huddle together in concentrated
groups, despite their members still being exposed to defectors.

However, much work remains to be done. Abstracting from the particular applica-
tion on spatial concentration phenomena in urban economics and/or the economics
of agglomerations, the analysis of multidimensional connectivity in general networks
beyond Moore neighborhoods will prove useful to understand more complex geome-
tries of cooperation, such as multidimensional hubs and structural holes.

Finally, the preferential connections have been assumed exogenous and fixed.
A natural extension of the model might consider the formation and coevolution of
these structures in the dynamics of a network.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.

References

Atkin R (1972) From cohomology in physics to q-connectivity in social sciences. Int J Math Mach Stud
4:341–362

Atkin R (1974) Mathematical structures in human affairs. Heinemann, London
Bala V, Goyal S (1998) Learning from neighbors. Rev Econ Stud 65(3):595–621
Banerjee AV (1992) A simple model of herd behavior. Q J Econ 107:797–817
Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of fads, fashion, custom and cultural change as

informational cascades. J Polit Econ 100:992–1026
Boyer T (2010) Imitation and efficient Contagion. J Econ Behav Organ (in press)
Brañas-Garza P, Cobo-Reyes R, Espinosa MP, Jimenez N, Kovárik J, Ponti G (2010) Altruism and social

integration. Games Econ Behav 69:249–257
Calvo-Armengol A, Jackson M (2002) Social networks in determining employment and wages: patterns,

dynamics and inequality, mimeo, Caltech
Eshel I, Samuelson L, Shaked A (1998) Altruists, Egoists, and Hooligans in a local interaction model. Am

Econ Rev 88:157–179
Glaeser EL, Sacerdote B, Scheinkman JA (1996) Crime and social interaction. Q J Econ 111:507–548
Goeree J, McConnell M, Mitchell T, Tromp T, Yariv L (2010) The 1/d law of giving. Ame Econ J Microecon

2(1):183–203
Habermas BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci

90(16):7716–7718
Hamilton WD (1964) The genetical evolution of social behavior. J Theor Biol 7(1):1–52
Leider S, Möbius M, Rosenblatt T, Quoc-Anh D (2009) How much is a friend worth? Directed altruism

and enforced reciprocity in social networks. Q J Econ 124(4):1815–1851
Mengel F (2009) Conformism and cooperation in a local interaction model. J Evol Econ 19(3):397–415
Möbius M (2003) The formation of ghettos as a local interaction phenomenon, mimeo
Montgomery JD (1991) Social networks and labor market outcomes: toward and economic analysis. Am

Econ Rev 81(5):1408–1418
Morris S (2000) Contagion. Rev Econ Stud 57–58
Nowak M, May R (1992) Evolutionary games and spatial chaos. Nature 359:826–829
Nowak M, May R (1993) The spatial dilemmas of evolution. Int J Bifurcation Chaos 3(1):35–78
Nowak M, Bonhoeffer S, May R (1994) Spatial games and the maintenance of cooperation. Proc Natl Acad

Sci 91(11):4877–4881
Puga D, Venables A (1996) The spread of industry: spatial agglomeration in economic development. J Jpn

Int Econ 10(4):440–464
Roca CP, Cuesta JA, Sánchez A (2009) Effects of spatial structures on the evolution of cooperation. Phys

Rev E 80(4)
Sánchez A, Urbano A, Vila J (2010) Multidimensional connectivity, mimeo

123



158 SERIEs (2011) 2:139–158

Schelling TC (1972) A process of residential segregation: neighborhood tipping. In: Pascal A Racial
discrimination in economic life. Lexington Books, Lexington, MA

Schelling TC (1978) Micromotives and macrobehavior. Norton and Company, New York
Young HP (2001) The dynamics of conformity. In: Durlaff SN, Young HP Social dynamics. MIT Press,

Cambridge, MA

123


	SEA Presidential address: Group connectivity and cooperation
	Abstract
	1 Introduction
	2 Concepts: from networks to simplicial complexes
	3 The evolutionary Prisoner's Dilemma game
	3.1 The standard spatial Prisoner's Dilemma game
	3.2 The spatial Prisoner's Dilemma game with triads

	4 The minimal structures of cooperation survival
	5 Dynamic behavior
	6 Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


