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Abstract This paper sets out a comprehensive framework to identify regional
business cycles within Spain and analyses their stylised features and the degree of
synchronisation both within them and between them and the Spanish economy. We
show that the regional cycles are quite heterogeneous although they display some
degree of synchronisation. We also propose a dynamic factor model to cluster the
regional comovements. We find that the Spanish business cycle is not the same as
those of the 17 regions, but is the sum of the different regional behaviours. Clusters
with a high industrial weight, per capita income and human capital and a low unem-
ployment rate are also more synchronized. The implications derived from our results
are useful both for policy makers and analysts.
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Aggregative analysis … not only does not tell the whole tale but necessarily
obliterates the main… point of the tale
(Schumpeter 1939, Vol. I, p. 134)

1 Introduction

In a context of growing economic and monetary integration such as the recent creation
of the EMU in Europe (1999), there is still controversy as to whether comovements
within economies are high enough for these processes to be carried out successfully.
This paper focuses on a previous step, employing a lower aggregation level, to find
the way in which comovements within a country determine its business cycle, that
is, the cycles inside the cycles usually considered in the literature. We employ two
different approaches. Firstly, we set out a framework to identify the regional business
cycles and their stylized features, compare them to the national cycle and analyse their
synchronisation. Secondly, we estimate a Dynamic Factor Model to detect common
and idiosyncratic factors in the regional cycles and to determine whether the country
cycle is the same as the regional business cycles or whether, on the contrary and as we
suspect, it is the consequence of aggregating different regional business cycles.

The usual practice of considering a country’s business cycle as an aggregation of
the regional ones may mask very different activity rhythms. The loss of regional detail
would be negligible if the divergence between regional and national cycles were small.
If, on the other hand, the divergence were large, it would make it difficult to apply
policies satisfactorily in all parts of the country and would have important impli-
cations, not considered up to now, for integration processes. In short, knowing the
regional cycle path should be a key question in the design of the economic policy.

This paper aims to determine the pattern of regional business cycles within Spain,
to check which peculiarities are shared by the regions that are more synchronised or
coordinated with the rest, to provide empirical evidence for the existence of differ-
ent common regional business cycles and to analyse their synchronisation with the
Spanish aggregate cycle. This approach makes sense in industrialized countries where
lower aggregation levels are significant (regions or counties) and which have federal
fiscal systems that allow differential economic policies to be implemented. We focus
on Spain, a country divided into 17 NUTS-2 regions with a high degree of fiscal fed-
eralism, and we test if the Spanish cycle is really unique and its path is the same in
the 17 regional business cycles. If not, a centralized economic policy may not be the
most suitable option and would contribute to intensifying regional inequalities. So, it
would be important to establish a comprehensive framework of the regional cycles in
the Spanish economy in order to design policies for the less coordinated regions to
improve the specific factors that create the differences.

The studies that identify cyclical patterns have mainly been applied to countries and
there are few concerning a lower geographical level mostly because of the absence
of adequate data.1 Nevertheless, recently, two papers have studied similarities and
differences across US states during the different phases of their business cycles. The

1 The study of cyclical patterns for countries has a long tradition, as will be detailed in Sect. 3.1.
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first, by Hamilton and Owyang (2009), uses common Markov-switching components
in a panel data set. The second, by Owyang et al. (2005), applies a regime-switching
model to state-level coincident indices.2 On the whole, when GDP was not available,
the attempts to investigate regional business cycles have used employment variables
as a proxy for economic indicators of activity and hardly any of them use industrial
production indexes as we do in this paper.3

In spite of having suitable characteristics for this type of analysis, the previous
literature on Spain is scarce. The Spanish cycles have been studied without going into
regional behaviours and using GDP or employment variables, the latter being a less
accurate indicator of economic activity than the industrial production index (Dolado
et al. 1993; Dolado and María-Dolores 2001 and Doménech and Gómez 2005).4 The
only paper that tries to characterise Spanish regional business cycles is Cancelo (2004).
It uses employment data and analyse turning points, comovements and bidirectional
causality.

Never before has such a comprehensive study of the regional business cycles in
Spain been carried out. Our analysis can be divided into two large blocks. In the first
block, we first identify Spanish regional business cycles through the Bry–Boschan
non-parametric technique (1971), defining turning points in a way quite close to the
one used by the National Bureau of Economic Research (NBER), which allows us to
determine the different phases of the business cycle that, in most cases, closely follow
the general path of the Spanish economy during the same period. Following Harding
and Pagan (2002a), we also present some key features for describing the business
cycles, such as their amplitude, cumulation and excess of recessions and expansions.
Second, we explore their synchronisation using different measures that consider the
degree of comovements between each region and the others and with Spain as a whole.

In the second block, we first carry out a preliminary analysis of time-varying com-
ovements in the original series through an Index proposed by Stock and Watson (2010).
Secondly, we investigate whether some common factors could be driving the regional
business cycles. Then, we compare these results with the Spanish cycle and identify
the national component. After identifying the number of static and primitive factors,
we estimate a Dynamic Factor Model for the regions. Based on the results obtained,
we carry out the cluster analysis using the idiosyncratic regional components.

We look for an economic characterisation of the clusters obtained relying, on the
one hand, on the key cycle features and the degree of synchronisation found in the first
block and, on the other hand, on the role of some macroeconomic variables. These

2 Three other main lines in the field of regional cycles have received attention from economists and mainly
focus on the US. The first one considers the regional transmission of cyclical impulses (see Metzler 1950;
Airov 1963, Carlino and DeFina 1995; Carlino and Sill 1997; Kouparitsas 2002). The second focuses on
the effect of determined shocks or policies on the economy (see Carlino and DeFina 1998; Kozlowski 1995;
Garrison and Chang 1979). The last tries to explain the regional cycles relating them to their growth patterns
(see Borts 1960; Carlino and Sill 2001).
3 We use the series of industrial production indexes that better (than employment variables) fit the economic
fluctuations in the Spanish regions. As far as we know, the only paper applied to regions to use this index
is Rodríguez and Villemaire (2004) for Canada.
4 There are also the papers that analyse the European business cycles and, so, include Spain (see Camacho
et al. 2006, 2008, Artis et al. 2004 and Croux et al. (2001), amongst others).
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variables are the industrial composition, the per capita income level, human capital
and the unemployment rate. The results obtained allow us to define some key lines
for the future implementation of any measure of economic policy that tries to increase
intracountry synchronisation. We also consider another dimension that may influence
the explanation of the similarities and differences in regional comovements, namely,
neighbourhood.

Our contribution is twofold. Firstly, we find a high degree of heterogeneity in
the basic features of the regions’ cycle dating. When we test for synchronisation,
we obtain that, although the results are not symmetrical across regions, the regional
cycles are sufficiently correlated to consider the possibility of the existence of com-
mon cycles. One outstanding result is that there is an inverse relationship between
economic growth and regional comovements or synchronisation. Furthermore, there
are no signs of convergence over time in most regions. Secondly, we find a common
dynamic factor, which represents the Spanish cycle. After removing this factor, we
use regional idiosyncratic components to cluster regions and we confirm the idea that
the Spanish business cycle is a result of aggregating regional ones that do not have the
same patterns. The clusters with an important industrial weight, per capita income and
human capital and a low unemployment rate also show a high level of synchronisation.
These findings should be taken into account either to study and forecast the Spanish
business cycle or to implement economic policy.

The paper is organized as follows. Section 2 describes the data, presenting the
stylized facts in Spain as a whole and in its regions. Section 3 defines the regional
cycles and the basic features that characterise them as well as their mutual synchroni-
sation and their synchronisation with Spain. Section 4 presents a preliminary analysis
of comovements and then investigates whether common driving forces appear in the
regional business cycles. From these results, we identify clusters of regions, which are
characterised in Sect. 5. Finally, Sect. 6 concludes.

2 Data and stylized facts

We consider the 17 Spanish Autonomous Communities that correspond to NUTS-2
in the EUROSTAT nomenclature. Each region is denoted by an acronym: Andalucia
(AND), Aragón (ARA), Asturias (AST), Baleares (BAL), Canarias (CAN), Canta-
bria (CANT), Castilla y León (CYL), Castilla-La Mancha (CLM), Cataluña (CAT),
Comunidad Valenciana (CVAL), Extremadura (EXT), Galicia (GAL), Madrid (MAD),
Murcia (MUR), Navarra (NAV), País Vasco (PVAS) and La Rioja (LAR).

We concentrate on the analysis of the monthly industrial production index (IPI),
extracted from the Instituto Nacional de Estadística (Spanish Statistical Institute, INE),
for Spain as a whole and for its 17 regions. Our working sample spans from 1991:10
to 2010:12, and we have linked two different series. With base year 1990, we have
data from 1991:10 to 2002:12 while, with base year 2005, the available data are from
2002:01 to 2010:12. Thereby, we obtain 231 observations for each region and for
Spain as a whole.

This is the first time the IPI has been used to measure regional business cycles in
Spain and it could be controversial but we cannot use the regional accounts series, such
as the GDP, which are more comprehensive measures of aggregate activity, because
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they are not sufficiently long and only have an annual frequency. The IPI is monthly,
better than the annual or quarterly frequency of production or employment series,
respectively. By using the more timely and monthly IPI series, we hope to find early
signals of turning points of economic activity which is essential for policy makers and
analysts to enable timely analysis of the current and short term economic framework
and so, to design the most suitable economic policy.

The GDP shows a cyclical path similar to the industrial sector, but smoothed by
the more stable behaviour of the tertiary sector. In fact, a glance at the growth rates
of GDP and industrial production since the 90s shows that they have similar profiles,
although they are more pronounced in the case of the industrial sector because it is
more affected by business cycle fluctuations. In the period analysed, we can distin-
guish four main phases in the Spanish economic cycle5: the end of the expansion of
the 80s, the profound crisis of 1992–1993, the dilated recovery that began in 1994 and
included years of high growth and periods of slower growth, more marked in industrial
activity and, finally, the current recession that started in 2008 which, however, shows
some signals of recovery.6

These phases are similar to the ones obtained by Cancelo (2004) using quarterly
employment data for the 1977–2003 sample. He finds four phases: the first one (1977–
1984) is characterised by a high heterogeneity in the regional cycles; the second
(1985–1991) captures the wide expansion of the 80s; the third shows the effect of the
1992–1993 crisis and the fourth (1994–2003) reflects an expansion.

The degree of heterogeneity between sectors in the Spanish regions is high. In the
almost twenty years considered in this study, the services sector, followed by con-
struction, are the ones that have increased their weight in the total production at the
expense of the industrial, energy and agricultural sectors, in that order. In 2009, the
last year with available regional accounts data, 71.3% of the total Spanish GDP is gen-
erated by the services sector as in the most developed economies; 12.4% is industrial,
10.8% comes from construction and the remaining 2.9 and 2.6% belong to the energy
and agriculture sectors. The biggest changes in the productive structure appear in the
tertiary sector, which has increased 9.4 percentage points with respect to the figures
of 1991, and industry, which is 6.8 pp below.

The most industrialised regions in the whole period (those with an industrial weight
clearly above the Spanish average, which is 16.9%) are NAV, LAR, PVAS, CAT, ARA,
CVAL and CANT. There are two groups with an industrial average similar to the Span-
ish one: AST and CYL (a little higher) and CLM and GAL (slightly below). Finally,
the less industrialised regions are CAN, BAL, EXT, AND, MAD and MUR, although
the distance between the first two and the last two is of almost 10 pp.

3 Business cycle dating and synchronisation

This section provides a complete framework for the analysis of the Spanish regional
business cycles. Firstly, we select an appropriate turning points dating method to iden-

5 Although our data source begins in October 1991, we capture the end of the expansion of the 80s.
6 Taking quarterly data for both Spanish GDP and IPI from 1991.4 onwards, the correlation between the
two variables is really high: 0.74 with annual growth rates and 0.70 with quarterly growth rates.
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tify regional business cycles and we illustrate the key features that describe these
business cycles. Secondly, we examine the degree of similarity among the business
cycles identified in Spain and its regions.

3.1 Cycle dating and basic features

The seminal work of Burns and Mitchell (1946) paved the way for methods to measure
the business cycle. These authors define the cycle as a pattern in the level of aggre-
gate economic activity and describe it through a two-stage methodology. First, turning
points are located in the series by using graphical methods, thereby defining specific
cycles. Second, the specific cycle information is distilled into a single set of turning
points that identify the reference cycle. These authors also define concepts such as
peak (the high point of an expansion) and trough (the worst moment in a recession
period) to determine cycle length. These terms became standard in any work about
business cycles undertaken after the publication of that work.

Their approach has important advantages for academics and politicians because of
the ease of computing algorithms to establish the dates at which there were turning
points in the business cycle and because of the intuitive interpretation of the results.
Their aggregate cycle was called the business cycle and their tools were immedi-
ately used by the NBER to study US business cycles in greater depth and, afterwards,
became a reference for the study of business cycles in other economies. Nowadays,
the NBER continues to publish a single set of turning points for the US economy.

This pioneering work generated a great deal of literature in which the level of
sophistication of the statistical tools evolved more than the definition of the business
cycles. Bry and Boschan (1971) (BB) developed the most popular non-parametric
method to determine when the peaks and troughs, which frame economic recessions
or expansions, appear. In the last few decades, many alternative procedures have been
suggested. Among them, the Markov-switching (MS) approach proposed by Hamilton
(1989) stands out.7 Unlike to the BB method, the MS first fits a statistical model to
the data and then uses the estimated parameters to determine the turning points. Since
the well-known paper of Hamilton (1989), there has been a rebirth of interest in this
method as an alternative to classical business cycle measures. The MS models try to
characterise the evolution of a variable through a process of conditioned mean to a
state of a specific nature. The changes in value in this dynamic process will allow us
to differentiate periods of expansion and contraction. Regime shifts are governed by
a stochastic and unobservable variable which follows a Markov chain.

Except for the US, for which the NBER Business Cycle Dating Committee estab-
lishes the official chronology or turning points, there are no widely accepted reference
chronologies of the classical business cycle for other countries. So, the examination
of the synchronisation of Spain and the 17 Spanish regions will have to rely on dating
algorithms that can be either non-parametric (Bry–Boschan type methods) or para-
metric (Markov-switching models).

7 See Harding and Pagan (2002b, 2003) and Hamilton (2001) for a debate about the two business cycle
dating methods.
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The selection of the most suitable cycle dating algorithm for Spain and its regions
is very conditioned by the data and its sample size. In contrast to BB type meth-
ods, which are valid for the sample size used in this analysis, the Markov-switching
method requires a longer sequence of business cycle states to estimate the transition
probability matrix coefficients with a reasonable degree of confidence. We only have
monthly observations from 1991:10 to 2010:12 and a glance at the growth rates of
GDP and industrial added value shows that we can distinguish four large phases in the
Spanish economic cycle. So, we have reasonable doubts about the ability of the Mar-
kov-switching procedure to adequately estimate the probability of staying in recession
or in expansion or the transition probabilities between regimes. Although non-para-
metric procedures are based on some assumptions about the duration of business cycles
and about the detection of false signals, they can be much more appropriate for short
samples and for a small number of changes in regime transitions.8

Before applying the BB methodology, we need to transform the original series
properly.9 As is well known, IPI series are characterised by a pronounced seasonal
component, some outliers and a remarkable volatility that increases at the regional
level. So, we have opted to remove them and use the cycle-trend component of the
original series to carry out the dating of the regional business cycles, following the
most habitual data transformations used in papers devoted to cycle-dating.10 To do so,
we have employed the TRAMO-SEATS method with options that include automatic
model selection, seasonal adjustment and correction for outliers (additive and transi-
tory), the trading effect day and the Easter effect.11 Figure 1 shows the original data
and the cycle-trend series for all the regions and Spain.12

In addition, we have taken some cautions about very short cycles and very
flat phases. The original algorithm considers a minimum phase-length criterion of
5 months and cycle-length criterion of 15 months, but the amplitude of expansions
and recessions is not taken into account. However, other works (Artis et al. 1997;
Mönch and Uhlg 2005; McKay and Reis 2008) have included additional restrictions
in accordance with the specific features of the data that can differ from the established
by the NBER for US. So, taking into account the characteristics of our data, we have
incorporated a minimum amplitude criterion that excludes phases (peak to trough or
trough to peaks) that have an amplitude of less than one standard deviation of the
corresponding growth rates (negative or positive) in the series to be dated.

Figure 2 shows the original level series together with the recessions (represented
by bars) identified with the BB methods.13 They clearly coincide with periods of falls

8 An application of the MS method to Spanish regional cycles can be found in Gadea et al. (2006).
9 See Baxter and King (1999) or Kaiser and Maravall (2005).
10 See, among others, Mönch and Uhlg (2005), Bengoechea et al. (2006) and Camacho et al. (2008).
11 This method was developed by Gómez and Maravall (1996). A Matlab routine is available in the website
of the Bank of Spain.
12 In the case of Spain it makes no difference whether we work with the cycle-trend component or the
seasonally-adjusted series without outliers and calendar effects. However, in some regions the use of the
smoother cycle-trend series produces better results, avoiding the identification of false signals.
13 As a starting point, we have used the code written by Watson and Denson in Watson (1994) into which
we have incorporated our own specifications.
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in industrial production and reproduce the “known-knowns” recent aggregate Spanish
business cycle. Consequently, we can trust BB techniques to find the chronology of
turning points at regional level. With respect to the regional cycles, in most cases, the
BB method locates four recession periods which coincide with two well-known crises,
the beginning of the 90s and the current one, and two deceleration episodes during
the long expansion. Nevertheless, some regions present a different chronology. AST
and CVAL have spent almost all the noughties in recession. In some other regions, the
algorithm detects a deceleration period between the deceleration of the early 2000s
and the deep recession that started in 2008. In five regions, some positive data in the
latest part of the sample suggest that this last recession period is ended. However,
more data would be needed to confirm this outcome. Thus, we should analyse the
basic characteristics of the regional cycles in greater detail.

Following Harding and Pagan (2002a), we dissect the business cycle and calcu-
late some outcomes such as the probability of recessions, measured as the number
of months in recession over the total, and the mean duration, amplitude, cumulation
and excess of recessions and expansions.14 All these results appear in Fig. 3. The
probability of recessions is 0.42 for Spain (and for the regions on average), the mean
duration of the recessions is 17 months (19) and the mean duration of the expansions
is 45 months (43).15 These results are plausible and agree with the stylized fact that
expansion periods are longer than recessions. It is noteworthy that, while recessions
last a similar number of months to those in Europe, expansions last more than one
year more in Spain and the regions on average, which could explain the convergence
attained during the sample period.

However, we find some heterogeneity in the probability of recession and the dura-
tion of the cycles across regions. As we said previously, in the 17 regions (and in
Spain), the average probability of a recession is just above 40% but only eight of these
eighteen geographical units are above the mean. CVAL and AST are the regions with
the highest probability, around 60%, and the lowest probabilities, just above 30%, are
found in NAV, CANT and LAR. With respect to the duration, NAV, LAR and AND
stand out as the regions with the longest expansions (more than 50 months) and the
shortest-lived recessions are found in ARA, CAN and MAD. In fact, in ARA, LAR
and MAD, less than a fifth of the cycle duration is spent in a recession. Nevertheless,
CVAL and AST present long-lasting recessions (around 30 months). Furthermore,
we can appreciate big asymmetries in duration in the case of ARA (and, to a lesser
extent, MAD and LAR); while, on average, regional expansions last 2.2 times as long
as recessions, in ARA, the ratio is almost 5 times (and just above 4 in MAD and
LAR). On the contrary, in AST and CVAL recessions last 5 and 2 months more than
expansions, respectively. Highly symmetrical cycles are found in CLM and GAL.

14 Harding and Pagan (2002a) propose a graphical representation of the cyclical phase as a triangle whose
height is the amplitude and whose base is the duration. The area of the triangle is an approximation to
the cumulated gains or losses in output from trough to peak and peak to trough, respectively. In these
calculations, we have used logs of the series to obtain more representative figures.
15 Just to put these figures in context, they closely agree with the estimated duration of business cycle
phases proposed by the NBER for the 32 cycles in the recent history of the US (1854–2001), which is 17
and 38 months for recessions and expansions, respectively. According to Camacho et al. (2006), European
expansions last about 30 months, while recessions last 15 months.
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Clear asymmetries between the amplitude of the phases of the cycle are also
observed. This measure, expressed in percentage, shows the gains or losses in indus-
trial production as a result of expansions or recessions. It is clear that, on the whole,
expansions are wider than recessions; on average, there is a difference between the
two phases of about ten pp and, in all regions, the amplitude of expansions is bigger
than that of recessions. Of special interest are the cases of AST and CLM, where the
amplitude across the two phases is almost identical. EXT presents the highest loss
during recessions. In AND, ARA and NAV, three regions that show very pronounced
asymmetries between the amplitude of their business cycle phases, the expansions are
about seven times greater than the recessions.

NAV and LAR have the clearest cumulative gains during expansions and EXT and
CANT stand out for the severity of their recessions. Cumulation is a measure used to
identify the cumulated gain or loss, calculated as the sum of the amplitudes for each
period of the phase. It is very useful as it can be interpreted as the gain or loss in
wealth in the economy. It combines the duration, amplitude and shape of the business
cycle. However, it is normally calculated by the triangle approximation which does
not capture the actual cumulation precisely because the path through the phase may
not be well estimated by a triangle. Harding and Pagan (2002a) propose adding up
the area of rectangles and removing the bias as a more accurate measure of the area.
Nevertheless, we have calculated the area associated with the phase exactly by using
methods of numerical integration. The difference between the actual shape and its
triangle approximation is known as excess.

Neither a concave nor a convex shape of regional business cycle dominate during
expansions. When the excess is negative, it means that the shape of the wealth gain
is mainly concave. This means that the path of this phase begins with steep changes
and ends smoothly. That is, an expansion is more commonly characterised by a high
growth period that ends in a normal growth period. During recessions, the concave
shape of the phase clearly dominates (in 13 cases). Consequently, the paths exhibit
gradual changes at the beginning of the phase that become sharp at the end. The fact
that both shapes are concave is positive because it means that the wealth losses in
recessions are lower and the gains in expansions higher than in a linear behaviour.
So, regions with convex expansions (CANT, ARA, CAN, PVAS, GAL, BAL, EXT,
AND and CAT) and SP do not benefit as much as the others from an expansion, while
regions with convex recessions (EXT, CAN, LAR and ARA) have a bigger wealth
loss than the others when they are in recession. Both negative features occur in EXT,
ARA and CAN.

Summing up, the BB method has allowed us to obtain the cycle dating and a first
picture of the Spanish and regional business cycles, showing that they seem to have
important disparities. We can affirm the existence of 17 non-identical regional business
cycles in Spain. Nevertheless, it is possible that these cycles exhibit some synchroni-
sation, which could be interpreted as a sign that regional economies move together.

3.2 Measures of synchronisation

We have proved the existence of different patterns in the regional business cycles.
However, they could be coordinated between them so, in this section, we focus on the
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study of the possible relationships between the cyclical patterns of industrial activity
in the different regions. In particular, we want to explore their possible synchronisa-
tion in depth. To that end, we use different measures of the synchronisation of cycles
such as Pearson’s coefficient and its independence test, both based on a contingency
table, and the index and test statistic of concordance proposed by Harding and Pagan
(2006), both in their bivariate and multivariate forms. Finally, if we find some degree
of synchronisation, we will apply multidimensional scaling techniques to represent
the different regions on a map, looking for groups of regions with similarities in their
cyclical path.

The well-known independence test for regions i and j , is based on a contingency
table where the frequencies of expansion and recession observations are shown for the
two regions. This statistic has the following expression:

Qi j =
s∑

u=1

s∑

v=1

(nuv − m̂uv)
2

m̂uv

,

where s is the number of regimes, n denotes the joint observed frequencies and m the
estimated marginal frequencies. The statistic is distributed under the null of indepen-
dence as a χ2 with (s − 1) × (s − 1) degrees of freedom. We can also compute the
contingency coefficient which lies within the range [0,1] from lower to higher cycle
commonality.

Ci j = 1√
2

√√√√ Q2
i j

Q2
i j + T

,

According to Harding and Pagan (2006), for each i-region we can build a binary
random variable Sit , taking value 1 when the i-region is in an expansion phase and
zero when it is in a recession phase. The concordance index for two regions i, j is
defined as follows:

Ii j = T −1

[
T∑

t=1

(Sit S jt ) +
T∑

t=1

(1 − Sit )(1 − S jt )

]
,

where T is the sample size. Ii j measures the proportion of time that the two regions
are in the same phase. Notice that this index only shows similarities in the periodicity
of regional cycles, independently of the length of the expansion and recession phases.
Although this measure is very easy to interpret and offers a first picture of synchroni-
sation in regional cycles, it has the disadvantage that it does not provide a statistical
way of knowing whether the comovements are significant or not. To solve this prob-
lem, Harding and Pagan (2006) suggest an alternative method based on the correlation
between S jt and Sit . They recommend estimating the coefficient which reflects the
correlation between Sit and S jt by using the generalized method of moments.
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Starting with the following moment condition:

E[σ−1
Sit

(Sit − μSit )σ
−1
S jt

(S jt − μS jt ) − ρSi j ],

where μSt and σ−1
St

are, respectively, the mean and standard deviation of the time
series St , we can estimate the value of ρSi j and test if ρSi j = 0 using the t-test in its
implicit estimator equation:

T −1
T∑

t=1

σ̂−1
Sit

(Sit − μSit )̂σ
−1
S jt

(S jt − μS jt ) − ρ̂Si j = 0,

As Harding and Pagan (2006) recognize, ρ̂Si j can be found from this regression:

σ−1
Sit

σ−1
S jt

Sit = α + ρSi j σ
−1
Sit

σ−1
S jt

S j t + εt ,

The interpretation of the regression has advantages over the method of moments
estimator because it allows us to analyse whether the degree of synchronisation has
changed over time. However, our inference has to be robust to the serial correlation as
well as to any heteroskedasticity in the errors. We use the Newey–West autocorrela-
tion-consistent covariance with Barlett weights and we also build confidence intervals
following the stationary bootstrap techniques proposed by Politis and Romano (1994).
This procedure is based on resampling blocks of random length, where the length of
each block has a geometric distribution.16

The multivariate version for n regions of this test is based on the following n(n+1)/2
moment conditions:

E

[
(S jt − μS j )(Sit − μSi )√

μS j (1 − μS j )μSi (1 − μSi )
− ρSi j

]
= 0, j = 1, . . . , n, i > j

and the test has this expression:

W = √
T g(θ̂−1

0 , {S}T
t=1)

′V̂ −1
√

T g(θ̂−1
0 , {S}T

t=1)

16 Following Camacho et al. (2006), we select the probability of the geometric distribution so that its
expected value is equal to the average duration of expansions.
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where V̂ is a consistent estimate of the covariance matrix for g(θ̂−1
0 , {S}T

t=1) and

g(θ̂−1
0 , {S}T

t=1) = 1

T

T∑

t=1

ht (θ, St )

ht (θ, St ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1t − μS1

. . .

Snt − μSn
(S1t −μS1 )(S2t −μS2 )√
μS1 (1−μS1 )μS2 (1−μS2 )

− ρS12

. . .
(S(n−1)−μS(n−1)

)(Snt −μSn )
√

μS(n−1)
(1−μS(n−1)

)μSn (1−μSn )
− ρS(n−1)n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The vector θ̂ ′ = [μ̂S1
, . . . , μ̂Sn

, ρ̂S12
, . . . , ρ̂S(n−1)n

] contains sample means and
sample pairwise correlations and, under the null, has different expressions depending
on the hypothesis. In the case of SMNS (strong multivariate non-synchronisation),
it is [μ̂S1

, . . . , μ̂Sn
, 0, . . . 0] or, if we want to test the hypothesis of SMS (strong

multivariate synchronisation), for instance ρS12
= ρ,∀i �= j with ρ ∈ (0, 1), it is

[μ̂S1
, . . . , μ̂Sn

, ρ, . . . , ρ]. The W statistic has an asymptotic χ2
n(n−1)/2 distribution for

ρ ∈ [0, 1). However, under the null of PS (perfect synchronisation) the distribution is
more complex, being a Brownian motion, or applying the Cramer–VonMises equiv-
alent, a weighted average of χ2 densities. In this case, Harding and Pagan (2006)
propose an alternative statistic whose asymptotic density is a χ2

(n−1):

W = √
T g({S}T

t=1)
′V̂ −1

√
T g({S}T

t=1)

where

g({S}T
t=1) = 1

T

T∑

t=1

ht (St )

and

ht (St ) = [−in − 1In−1]
⎡

⎣
S1t

. . .

Snt

⎤

⎦

where in−1 is an (n −1, 1) vector of ones and In−1 is an (n −1, n −1) identity matrix.
Candelon et al. (2009) show that this multivariate test performs badly and has

important size distortion when the number of individuals increases. So, they propose
a block bootstrapped version of the test, instead of the asymptotic one, when the num-
ber of regions is sufficiently large (more than 5). However, the bootstrapped version
can produce low power and the appearance of a trade-off between size and power
that increases with the number of regions. In addition, the estimated sample value of
covariance matrix V tends to be singular when n is big, even when the true covariance
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matrix is known to be non-singular. To solve this problem, we have used the shrinkage
estimator proposed by Ledoit and Wolf (2003).17

Figure 4 summarizes all the synchronisation measures, contingency, concordance
and correlation. Instead of showing the three 18×18 matrices, we have calculated the
regional averages of contingency, concordance and correlation and have displayed
each in a graph together with the measure of each region with respect to Spain. In
addition, we have included a multidimensional scaling map below the figures. This
technique allows us to visualize similarities or dissimilarities and to produce a rep-
resentation of the synchronisation of the regions in a small number of dimensions.
In the three cases, the corresponding synchronisation index is used as the distance
matrix; then, we transform the similarity matrix into a dissimilarity and reproduce its
Euclidean distances.18 A preliminary examination of the eigenvalues of this matrix
shows that two dimensions are not enough to represent the points suitably and that
we need at least 3 or 4 dimensions. Because of the impossibility of drawing graphs in
four dimensions, we display them in three.

Different measures obtain very different ranges of values but nearly the same
ranking of regions. We observe that the pair-wise correlations ρSi j (0.53, on aver-
age, for regions and 0.69 for Spain) are typically smaller than those obtained with
the concordance index, which are 0.76 and 0.84, suggesting that the stronger cor-
relation between industrial regional cycles detected with Ii j is biased by the values
of the mean. The pair-wise values obtained with the contingency analysis are also
relatively big (0.65 and 0.79, respectively). Nonetheless, the evidence for rejecting
the null hypothesis of no association is very strong between regions, 97% on average
when we consider the Harding–Pagan t test and 98% with the Pearson independence
test (see Table 1). With both tests, all non-rejections correspond to EXT, which is also
the only region that is not synchronised with SP.

Contingency, concordance, and correlation are nearly identical with respect to their
classification of regions.19 We can see that MAD, ARA, PVAS and CYL, are the
regions most connected with the rest, while EXT, AST, CVAL and BAL are the most
isolated. Notice that both groups of regions have atypical business cycle features.
EXT, AST, CVAL and BAL are regions with low asymmetry between the duration
and amplitude of expansions and recessions, presenting brief growth periods. On the
contrary, the more synchronised regions are characterised by a great asymmetry in
favour of expansions and a cumulation of wealth gains during them. We also find
another stylized fact: the degree of regional synchronisation is directly related to the
degree of synchronisation with Spain.

The results of such a high correlation are confirmed by the bootstrap exercise for
ρSi j because the zero is outside the confidence interval in all cases.20 Nevertheless,
as we can see in Fig. 5, where we present the density of correlation coefficients, their

17 The principle of shrinkage is that, by properly combining two extreme estimators, one, the simple covari-
ance matrix, unbiased but with a large estimation error, and the other, with structure and a relatively small
estimation error, we obtain an estimator that performs better than either of the two extremes.
18 A detailed explanation of this technique can been found in Timm (2002).
19 In all cases the rank test of Spearman is about 0.98.
20 We do not include these results to save space.
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variability is quite important in several regions. The correlation coefficient has also
been estimated recursively throughout the sample to capture changes in synchroni-
sation over time. Figure 6 shows the evolution of the regional average of ρSi j and
its value for each region and SP. The similarity of the business cycles of EXT and
CVAL with respect to both other regions and Spain has reduced dramatically during
the last decade, indicating a lack of convergence. This similarity has also decreased in
BAL, AST and CLM but, to a lesser extent. Other regions, such as LAR, NAV, CAN
and CYL also show a loss of synchronisation during the long expansion phase but
seem to recover it during the current recession. Finally, ARA, MAD and PVAS show
a remarkable stability.

In spite of the differences, we can conclude that the regional cycles are suffi-
ciently correlated to explore the existence of some common cycles across Spanish
regions. Firstly, we test different degrees of multivariate synchronisation between the
17 regions by using the statistic previously described. As we suspected, the test rejects
all hypotheses from non-synchronisation to perfect synchronisation, passing through
intermediate degrees (ρ = 0.1,0.2,…,0.9), and the matrix is nearly singular even when
a great intensity of shrinkage is considered (see Table 2). However, if we apply the
bootstrapped version, we are not able to reject the null in any case, reflecting the loss
of power.

As we cannot obtain any conclusion from the multivariate synchronisation test
when we apply it to all the regions, we will explore the possibility of finding groups or
clusters of regions with similar business cycle features. The natural way, using clus-
tering techniques, does not seem the best way in this case. An eye-ball examination
of the three multidimensional scaling maps demonstrates that, although some regions,
such as EXT, CVAL, AST and BAL, appear isolated from the rest, it is not easy to
establish a clear pattern of clustering. So, we will deal with the regional clustering
using an alternative approach in Sect. 4.

4 Is there a common cycle? Dynamic factor models

In the previous section, we have only used categorical variables which describe the
path of the cycle. These categorical variables are obtained by filtering the original
adjusted data using non-parametric cycle dating techniques and finding the turning
points that represent the business cycle. These techniques summarize all the charac-
teristics of the series in a dichotomous variable that represents the position of the unit
(region or country) in the business cycle. Although they are very intuitive and useful,
some information which could be taken into account for comparing the behaviour of
the different regions is lost. So, in this section, we are going to use the original series
that contain different and complementary information.

As well as cycle dating approaches (parametric and non-parametric) to characterise
the business cycle, there are other techniques that analyse comovements of economic
variables using original data and extracting common factors.21 One basic feature of the

21 As Harding and Pagan (2002a) point out, these “can be thought of as a hybrid scheme” when standard
dating methods are applied to the common factor obtained by using dynamic principal components. See
Forni et al. (2004).
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Table 2 Multivariate synchronisation test

Test Asymptotic critical value Bootstrap critical value

SPPS 2312.62 164.22 7.67 × 104

SMS

ρ = 0.1 1897.07 164.22 6.385 × 104

ρ = 0.2 1553.17 164.22 5.134 × 104

ρ = 0.3 1280.91 164.22 4.051 × 104

ρ = 0.4 1080.30 164.22 3.25 × 104

ρ = 0.5 951.33 164.22 2.84 × 104

ρ = 0.6 894.00 164.22 2.71 × 104

ρ = 0.7 908.33 164.22 2.98 × 104

ρ = 0.8 994.30 164.22 3.45 × 104

ρ = 0.9 1151.91 164.22 3.83 × 104

P S 267.24 27.59 26.30

business cycle is, precisely, the presence of comovements across economic variables.
Comovement measures constructed in the frequency domain, principal components
and dynamic factor models are the main branches of this approach that deals with the
original information. Of them, dynamic factor models (DFM henceforth) have recently
emerged as a powerful tool to analyse shocks in large databases. The idea underlying
DFM is simple: movements in a large number of economic series can be modelled
through a small number of reference series or common factors. The DFM allow us
to “ let the data speak” without imposing a priori restrictions as in other approaches.
We explore the concept of comovements in regional IPIs to assess to what extent the
Spanish business cycle is shared by the regional ones.22

In this section, we first carry out a preliminary analysis of comovements by using
an index proposed by Stock and Watson (2010). Second, we estimate the optimal
number of factors, both static and dynamic, present in the 17 Spanish regions and
identify the national component. Then, we apply a DFM to test whether the 17 Spanish
regions move according to common driving forces. Finally, we subtract the component
associated with the Spanish cycle and form clusters using the idiosyncratic regional
components.

4.1 Some stylized comovements

In our preliminary analysis of comovements for regional output fluctuations, we first
calculate the index used by Stock and Watson (2010) which summarizes the possible
time-varying comovements among the regional IPIs. From here to the end of the sec-
tion, we use the original regional IPI series yti with i = 1 . . . 17 seasonally adjusted

22 There are also approaches in the literature that deal simultaneously with comomovements and business
cycle dating. For a summary, see Camacho et al. (2010).
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Fig. 7 Comovements

and cleaned of outliers. We have opted for this filter because it conserves business
cycle signals better than other alternatives such as growth rates or cycle-trend compo-
nents. Figure 7 shows the evolution of the regional industrial index (dashed lines) in
levels (top figure). It also shows (solid lines) the median and 25 and 75% percentiles.
There is a considerable dispersion of the regional business cycles, which increases
dramatically after 1999, just after Spain joined the EMU and underwent a long period
of prosperity before the current crisis.

The measure proposed by Stock and Watson (2010) is based on Moran’s spatial
correlation index and captures the comovements over time across all regions through
the rolling cross-correlation in differences. It has the following expression:

Îi =
∑N

j=1
∑i−1

j=1
̂cov(�yit ,�y jt )/N (N − 1)/2

∑N
i=1

̂var(�yit )/N
,

where,

̂cov(�yit ,�y jt ) = 1

25

t+10∑

s=t−12

(�yis − �yit )(�y js − �y jt ),

̂var(�yit ) = 1

25

t+10∑

s=t−12

(�yis − �yit )
2,
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�yit = 1

25

t+10∑

s=t−12

�yis,

N = 17

The outcome, time series Ît , is plotted at the bottom of Fig. 7. We observe that the
synchronisation of comovements is 0.53, on average, during all the period, reaching
its minimum value (around 0.18) in 1994.6 and its maximum in 2009.10 (more than
0.8).23 So, it seems there is an inverse relationship between economic growth and
regional comovements which has been especially intense in the recent big recession.
This result is very similar to that obtained with the correlation index from the BB cycle
dating whose regional average was 0.53. Furthermore, some regions showed a loss
of synchronisation during the expansion phase but began to recover it in the current
recession.

4.2 Factor models

The seminal work of Geweke (1977) proposed a DFM as a time series extension of fac-
tor models previously developed for cross-sectional data. The main empirical finding
that a few factors are able to explain a large fraction of the variance of many macroeco-
nomic series was first reported by Sargent and Sims (1977) and confirmed afterwards
by Giannone et al. (2004) and Watson (2004). The underlying idea of a DFM is that a
few latent dynamic factors, ft , drive the comovements of a high-dimensional vector of
time series variables, Xt , which is also affected by a vector of mean-zero idiosyncratic
disturbances, et . These idiosyncratic disturbances arise from measurement error and
from special features that are specific to an individual series. The latent factors follow
a time series process, which is commonly taken to be a vector autoregression (VAR).24

In this section, firstly, we estimate the minimum number of factors that explain the
maximum variation of the regional IPI. Secondly, we identify the common factor as
the national component, remove it and look for idiosyncratic sources of variations that
decrease when aggregating the data and construct clusters with them.

4.2.1 How many factors are there in the Spanish regions?

Bai and Ng (2002) developed a formal statistical procedure that consistently estimates
the number of factors in a set of data with cross-sectional and temporal dimensions,
N and T, respectively. Let Yit be the observed data for region i in time t . The factor
model then has the following expression:

Yit = λ′
i Ft + εi t ,

23 Notice that the sample is not able to evaluate the comovements in the 90s crisis with accuracy because
the rolling procedure loses most of the observations in this period.
24 See Stock and Watson (2010) for a comprehensive survey of this literature.
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Fig. 8 Cluster map

where Ft is a vector of r common factors, λ′
i is a vector of factor loadings associated

with Ft and εi t is the idiosyncratic component of Yit . The product λ′
i Ft is called the

common component of Xit . For all the units and using matrix notation

Yt = 
Ft + εt

where the dimensions of Yt ,
, Ft , and εt are N x1, N xr, r x1 and N x1, respectively.
They propose estimating the common factors by minimizing the following expression:

V (k, Fk) = min



1

T N

N∑

i=1

T∑

t=1

(Yit − λi k F̂k
t )2

and consider the estimation of the number of factors r as a model selection problem
so they construct different information criteria. When this procedure is applied to
regional IPI growth, all the criteria coincide in estimating 5 factors.25

Having established the number of factors, we re-estimate the factor model with 5
common factors in order to obtain the idiosyncratic component of each region and
we calculate the specific variance as � = �y − 

′. We have also included SP in
this exercise to study its behaviour and compare it with the regional ones. Figure 8
shows these values. We observe that AST and EXT have the largest idiosyncratic
components and LAR, BAL, CAN and MUR also have large variances, while the low-
est variances are found in AND, CAT, PVAS and NAV. These results confirm those
obtained in Sect. 3, where EXT and AST, in most cases, and the islands, in some
cases, presented very peculiar behaviours, while PVAS and MAD were the regions

25 This result is obtained with a maximum value of 5 factors that explain 70% of the variation in the data.
If we increase the maximum, we can find up to 18 factors. This result points to certain weaknesses in the
estimation of the number of common factors.
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most connected with the rest (CAT and CYL were closer to the first group than to the
last two regions).However, the idiosyncratic factor of SP is nearly zero. This result
is not surprising because, if we decompose the error term of each region into two
components εi t = ut + ξi t , one common and the other idiosyncratic, and we calculate
their mean, we obtain εt = ut + ∑N

i=1 ξi t/T and, applying the Law of Large Num-
bers, the last term tends to zero. Furthermore, if we estimate the common factor, its
correlation with Spanish data is 0.93. So, we confirm that the Spanish IPI is a good
representation of the aggregated regional ones and, consequently, suitably represents
the common Spanish business cycle.26 Nevertheless, although the Spanish business
cycle is the result of aggregating regional ones, it does not mean that it is identical to
any of the regional cycles because, within this common cycle, there are 17 different
behaviours. After confirming this fact, we have removed SP from the estimation of
the DFM because it is redundant and may bias the rest of the results.

Up to now in this section, we have only considered static common factors. But,
as Bai and Ng (2007) point out, these may be dynamically related and, consequently,
the spectrum of r will have a reduced rank. The rank is actually q, the number of
dynamic factors or primitive shocks. These authors propose a method for estimating
the minimum number of primitive shocks based on the eigenvalues of the correlation
or covariance matrix of a set of innovations of dimension r × r . They define two
statistics as the sequential sum of the eigenvalues and estimate q̂3 and q̂4 as the min-
imum values that allow us to bound this sum. The value of q is estimated using the
correlation matrix for r = 5, which explain around 97% of the data variability, and we
find that q̂3 =1 and q̂4 = 2. If we increase the number of static factors to r = 9 (which
explain 99% of the variation in the data), q̂3 maintains 1 dynamic estimated factor and
q̂4 is now 2. When r is between 1 and 4, both tests estimate q = 1. Similar results are
obtained when the covariance matrix is used; both tests estimate q = 1 for r = 1 . . . 4
and q̂3 = 1 and q̂4 = 2 for r = 5. Therefore, the results suggest that a common
dynamic factor or primitive shock is the most plausible conclusion from our analysis
and, consequently, that Spanish regions have a dynamic common factor that is iden-
tified with the national component. In the next section, we will extract this common
factor and construct clusters with the residuals of the regional idiosyncratic factors.

4.2.2 Cluster analysis

Up to this point, we have documented a certain degree of synchronisation in regional
cycles but, also, a high degree of heterogeneity. In this section, we focus on this idio-
syncratic component and look for clusters in the Spanish business cycles. We follow
the approach of Stock and Watson (2010) who suppose that regional variations are
independent of the national one. So, we remove the common factor associated with the
national component to make the comovements between regions more visible, using

26 This result seems very robust against other methodologies. Taking the average of regional cycle dating
obtained previously with BB techniques, we find a correlation of 0.92 with respect to SP cycle dating.
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this model:

Yit = αi + λ′
i Ft + εi t ,

Ft = Ft−1 + ηt

εi t =
k∑

j=1

ρi jεi t− j + uit

where εi t are the idiosyncratic terms or the contribution of regional factors to the total
variation of the data and k = 12 and (ηt , εi t− j ) are i.i.d. N(0,ση) and N(0,σε), respec-
tively.27 This model has been estimated by maximum likelihood, using least-squares
estimates of the coefficients as starting values and the first principal component as
an estimator of Ft . Then, we remove the common factor and obtain the residuals ε̂i t

which are used in the cluster analysis.
The goal of the cluster analysis is to identify groups of regions. Regions in the same

cluster will be more synchronised and share more similar business cycle features than
regions in other groups. Two types of clustering methods have been used: the hier-
archical and the partitioning algorithms. The first starts by forming a group for each
individual. New items are then added employing some criterion of similarity, in our
case minimizing the increase of the Euclidean square distance within clusters. The
process goes on until all the individuals are in a single cluster. The sequence of clus-
tering is displayed in a plot called a tree diagram or dendrogram where we can see the
detailed process. Looking at these results, 3 or 4 clusters seems to be the most suitable
decision. This method offers us a first approximation of the number of clusters present
in our set of regional business cycles. In a second step, we apply a non-hierarchical
clustering method called k-means that requires deciding the number of groups before-
hand. Furthermore, through the method of Bai and Ng (2002), four common factors
have been identified, which gives us a clue about the number of regional clusters.

The k-means clustering method creates a single level of clusters and assigns each
region to a specific cluster. The algorithm finds a partition in which regions within
each cluster are as close to each other as possible and as far from the regions in other
clusters as possible. Each cluster is defined by its centroid, or centre, which is the
point at which the sum of the distances from all the objects in the cluster is minimized.
The iterative algorithm minimizes these distances within all the clusters but its final
results depend on the first random assignation. To overcome the two disadvantages of
the k-means method (the selection of the number of clusters and its dependence on the
initial partition), Stock and Watson (2010) propose a modified algorithm that repeats
the procedure for multiple starting values and analyses the value of the minimized
objective function as a proxy of the most suitable number of clusters.

27 We should note that we are implicitly assuming that the IPI variables exhibit a unit root captured by the
common factor Ft . To verify this hypothesis, we have applied a wide battery of unit root tests to both the
raw and the transformed variables, given the distortion caused by the methods for removing the seasonal
component on the unit root inference, as is reported in Maravall (1993). In any event, the results obtained
confirm the presence of a unit root and are available upon request.
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We apply this method to the idiosyncratic regional factors.28 Increasing from 2 to 3
clusters reduces the value of the minimized objective function by approximately 20%,
and increasing from 3 to 4 and 4 to 5 reduces the value by 21 and 27%, respectively.
After five clusters, the value of the objective function is not reduced. Therefore, taking
these results together with the findings from the hierarchical method and the optimal
number of common factors, we select five clusters.

The result with k = 5 groups determines that ARA, CANT, GAL, MAD, MUR,
NAV and PVAS are included in the first cluster, CAT, CVAL and LAR in the second,
AST in the third, AND, BAL, CYL and CLM in the fourth and the other regions, CAN
and EXT, in the fifth. All of these five groups fit in with the regional features identified
in the previous sections of this paper quite well. On the one hand, there are the regions
most isolated from the rest and with the largest idiosyncratic components (groups 5,
4 and 3) and, on the other hand, there are the most synchronised regions where the
patterns are more stable throughout the sample. The map of Fig. 8 illustrates these
results.

5 An economic characterisation of cluster patterns

In this section, we will try to find the sources of the similarities as well as the discrep-
ancies among the previously identified clusters. Disparities in regional business cycles
have often been attributed either to idiosyncratic shocks or to differences in charac-
teristics such as their sectorial composition. In the literature, there are some attempts
to explain correlations across economies, countries or regions and that, basically, use
macroeconomic variables.29

However, as well as these structural variables, the business cycle features and the
degree of regional synchronisation found in Sect. 3, could be important to understand
and characterise the five clusters identified. We have selected the probability of being
in a recession, the correlation coefficients with the other regions and with Spain and
four representative structural variables, namely, industrial weight, unemployment rate,
per capita income level and human capital.30

The characterisation of the five clusters is presented in Fig. 9.31 The largest Group
1 (ARA, CANT, GAL, MAD, MUR, NAV and PVAS), contains the majority of the
most developed regions of the country. It presents the highest level of human capital
(22.5) and the lowest unemployment ratio (12.36). Furthermore, the per capita income
level is the second highest of the clusters, while the average industrial weight is clearly

28 We have used an adapted version, both for the DFM and the cluster analysis, of the original Gauss code
of Stock and Watson (2010). The other procedures have been computed with Matlab. Codes are available
upon request.
29 Clark and van Wincoop (2001) introduce the importance of growth rates and Bordo and Helbling (2003)
try to measure the effect of the exchange rate regime; Camacho et al. (2006) and Owyang et al. (2005) use
a wide set of variables.
30 Average industrial weight over total output (1991–2008) and average unemployment rate (1991:III–
2009:III) from the INE; average per capita income in PPP at current prices (1991–2008) from Funcas and
average percentage of population with a university degree from Ivie (1991–2007).
31 The values of the variables have been standardised, the regional average being 100.
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Fig. 9 Cluster features

above the Spanish mean. When we observe the basic features of the business cycle
phases, this group clearly has the lowest probability of being in a recession (0.37). It is
also the group that is most synchronised with the other regions (0.59) and, particularly,
with Spain (0.8).

Group 2 (CAT, CVAL and LAR) presents similar characteristics to the previous
one. This group includes three of the most industrialised regions in our sample (23.85
of industrial weight). It is the wealthiest group, as its average per capita income level
is 12,041.28 euros. Its average unemployment rate (13.6) also confirms its similarity
to Group 1. However, the average percentage of population with a university degree
is 7pp lower than in Group 1. The probability of being in a recession is 0.43. The
correlation, both with respect to the other regions and to Spain, is the second highest
of the groups (0.52 and 0.66, respectively).

Group 3 shares some of the positive characteristics of the previous groups together
with some of the negative characteristics of the last two groups. It is made up of just
one region, AST. When we consider the human capital level, it occupies the second
position of the ranking (17.13 years) and it is in an intermediate position when we
focus on the other structural variables. Nevertheless, the recession phase lasts more
than in any other group (0.58) and is the region that is least correlated with Spain
(0.46). Although it is not the least correlated to the other regions, it is clear that it
presents important cyclical discrepancies.

Group 4 brings together four regions (AND, BAL, CYL and CLM) where the unem-
ployment ratio is high and where the level of population with a degree is almost 10pp
less than in Group 1. The weight of the industrial sector is below the Spanish average;
it would be lowest if CYL were not included in the group, as some of its specific
features have more to do with those of Groups 1 and 2. Furthermore, the distortions
of CYL and, especially, of BAL make this group the third wealthiest. However, the
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cycle is fairly symmetric as the probability of being in a recession is 0.46. It is the
third group in the ranking in terms of degree of synchronisation.

Finally, Group 5 is made up of EXT and CAN. It is the poorest group in per
capita income levels (10,156.89 euros), the population with a degree is 11.77 and the
unemployment ratio is the worst (21.33). The importance of the services sector in the
islands and the productive structure of EXT which is more oriented towards agricul-
ture and construction make this group the lowest in industrial weight. In spite of this,
the probability of being in a recession is the same as in Group 2. Its connection to the
other regions is the lowest (0.43), although it is much more correlated with Spain than
Group 3.

In sum, the groups with a high unemployment rate, on average, are more isolated
from the rest, while groups with high industrial weight and per capita income levels or
where the population is more educated also show a higher degree of synchronisation.
So, economic policies that focus on the improvement of these variables may enable a
higher degree of regional convergence, measured through the level of synchronisation.

These results should be taken into account by policy-makers and academics when
dealing with the Spanish business cycles. Policy-makers should take advantage of
devolution and the degree of freedom that the Spanish fiscal system offers to design
specific regional measures. Technicians that work in the field of cycle dating and
that forecast recessions should be conscious of the differences across regions and use
regional comovements to analyse Spanish economic developments.

In addition, to better understand the features of the clusters we also test the influ-
ence of the geographical situation, namely, the border effect, which has been calculated
using the results from Sect. 3.2. Following Croux et al. (2001), this effect can be easily
measured through the following ratio:

bi =
1

nb

∑nb
j=1 ρSi j

i
n

∑n
j=1 ρSi j

,

where nb is the number of neighbouring regions and n the total number of regions.
A ratio above 1 indicates that regions have more cyclical similarities with their neigh-
bours than with the other regions. The non-parametric Wilcoxon-rank test is used to
check the statistical significance of this effect.

The results show that, in general, neighbourhood does not matter, which is con-
firmed by the non-rejection of the null hypothesis of the Wilcoxon test at 5% of
significance (Table 3). NAV and LAR are the regions with the highest border effects,
while AND, CLM and EXT present values under one.32 These regions, that have
been receiving structural and cohesion funds from the EU, continue to be the most
isolated ones and, as we saw in the previous cluster characterisation, they also pres-
ent some of the worst results in terms of macroeconomic variables. Other regions
with an important border effect are GAL, PVAS, CANT and AST, which we could
denominate the Cantabrian coast group. In the last three regions, the weight of the

32 A similar approach is found in Croux et al. (2001) with a measure of dynamic correlation. They conclude
that, for most US states and, to a lesser extent, for European countries, borders matter. Their ratios are higher
than ours for the regions in both areas.
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Table 3 Do borders matter?

The critical value of the
Wilcoxon test at 5% is 35

Ratio Neighbour regions

AND 0.83 3

ARA 1.02 6

AST 1.08 3

BAL 1.16 2

CAN − 0

CANT 1.12 3

CYL 1.06 9

CLM 0.89 7

CAT 0.92 3

CVAL 1.05 5

EXT 0.90 3

GAL 1.15 2

MAD 0.97 2

MUR 0.95 3

NAV 1.34 3

PVAS 1.14 4

LAR 1.31 4

Wilcoxon test 53

industrial sector in the 90s was really important and they share some characteristics
with GAL. Indeed, all four regions, but AST, belong to Group 1. NAV, LAR and ARA
(which also presents a significant border effect) are traditionally identified as the Ebro
Valley regions. The high border effect of BAL, considering that it consists of a group
of islands, is striking but we establish that its boundaries are CAT and CVAL. Thus,
although, for whole sample, neighbourhood is non significant, we see that, for most
regions, political boundaries influence their degree of synchronisation and help to give
a complementary explanation to the clusterisation patterns previously found.

6 Conclusions

We have carried out a comprehensive analysis of Spanish regional business cycles
by using different approaches. In sum, this paper has found severe dissimilarities in
regional business cycles, highlighting the importance of considering business cycles
from a regional point of view. The most isolated regions are characterised by low
asymmetries in their business cycle phases while more synchronised regions show
high asymmetries in favour of expansions and cumulation during them. Evidence of
an inverse relationship between economic growth and regional comovements is found,
which hinders convergence. We do not find signs of convergence in most regions,
which is confirmed both by the recursive coefficients and the comovement index. This
result should be taken into account for economic policy design, as convergence is a
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long-run economic process more than a process related to fluctuations in the economy.
When grouping regions, we find that clusters with an important industrial weight, per
capita income and human capital and a low unemployment rate also show a high degree
of synchronisation.

There are many papers on intra-country linkages in an international context, but
this paper is the first to propose a systematic analysis of these linkages in Spain.
Although policy-makers may not consider this analysis to be a previous step to deciding
whether or not to belong to more integrated economic areas, it is surely fundamental for
reducing intra-country economic heterogeneity through the design of adequate eco-
nomic policies. We carry out this analysis for Spain, contributing to its scarce regional
business cycle literature. Given that the cycle of some regions is not similar to that
of the country as a whole and that the Spanish path is not the same as those of the
17 regional business cycles but is merely a consequence of aggregating them, car-
rying out economic policy measures at national level could bring about unwanted
distortions in some regions and slow down their convergence processes, which would
be further evidence of the need to apply specific economic measures. Macroeconomic
stabilization policies, which are primarily related to the cyclical evolution of the econ-
omy, are very constrained in the European Union by the common monetary policy and
the Stability and Growth Pact. Therefore, fiscal policy and devolution should be used
to reduce regional disparities because, if their regional cyclical shapes are different,
policy measures to fight recessions could be too accommodative for some regions and
too tight for others.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.
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