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Abstract This paper presents results on the transitivity of the majority relation and
the existence of a median representative ordering. Building on the notion of interme-
diate preferences indexed by a median graph, the analysis extends well-known results
obtained when the underlying graph is a line. In contrast with other types of restric-
tions such as single-peakedness, intermediate preferences allow for a clear distinction
between restrictions on the set of preferences characteristics and those on the set of
alternatives.

Keywords Majority rule · Median graph · Tree · Condorcet winner ·
Intermediate preferences

JEL Classification D720 · D710

1 Introduction

The majority rule is a prominent voting rule if any. Though, there are difficulties
due to the possibility of majority cycles and the non-existence of a majority win-
ner, as illustrated by the famous Condorcet paradox. But difficulties are unavoidable
as they are bound to arise in some form with any non dictatorial rule, as shown by
Arrow (1963). Not surprisingly, starting with Black (1948), a large literature tries to
find conditions under which the majority rule is well-behaved. This paper provides
an additional contribution to this literature. It displays families of preferences that
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guarantee the transitivity of the majority rule, meaning that the majority rule is tran-
sitive no matter what the profile of individuals’ preferences in the family. Preferences
are characterized by a parameter and satisfy two conditions, one on the parameter
space and one on how these preferences depend on the parameter. Specifically, the
parameter space is a median graph and the preferences satisfy an intermediateness
assumption, terms that will be explained below. Under these conditions, not only the
majority rule is transitive but also it coincides with the preference ordering associated
with a ‘representative’ characteristic.

Following Black (1948), various restrictions on preferences over a one-dimensional
set of alternatives have been introduced and shown to guarantee the existence of a
Condorcet winner: single-peakedness, single-crossing, order restriction, and recently
top-monotonicity by Barbera and Moreno (2009), which encompasses all of them (we
refer the reader to their paper for precise definitions of these restrictions and their
comparison). A one-dimensional set of alternatives is however a strong limitation.
Unfortunately, extending these positive results to a multi-dimensional space turns out
to be disappointing. Not only the extensions of the previous properties -say single-
peakedness- fail to guarantee the existence of a Condorcet winner but also majority
cycles are pervasive. A Condorcet winner exists under very specific configurations
on the profile of these preferences (Kramer 1973; Plott 1967, or Demange 1983 for a
survey on these issues). In other words, restrictions on the distribution of preferences
within the society are necessary. Although interesting, these restrictions are so strong
that they are most likely to fail. Furthermore, they are not robust to a change in the pref-
erences of a single individual: if the restrictions are satisfied, a single change typically
leads to cycles, thereby precluding a general prediction of the majority mechanism. As
a result, the strategy-proofness of the majority rule has no meaning since the majority
choice is not well-defined for most of the profiles.

This paper shows that the positive aggregation results that hold on a line can be
extended if the preferences’ characteristics belong to a median graph. The alterna-
tive space, in particular its dimension, does not matter, under the proviso that the
intermediateness assumption on preferences is satisfied.

The analysis relies on the two separate concepts of median graph on one hand and
intermediate preferences on the other hand. A graph on a set defines a betweenness
relationship on the elements in the set, such as the natural one if the graph is a line. The
graph is median when this betweenness relationship satisfies a simple requirement:
any triple has a unique median. Important examples of median graphs are trees, which
include lines as a particular case, and hypercubes, composed with all points of coor-
dinate 1 or 0. The main property used in this paper is that any profile of characteristics
in a median graph admits a local Condorcet characteristic, namely a characteristic
that beats all its neighbors for the graph distance (Bandelt and Barthélémy 1984).

Intermediateness of preferences preserves the betweenness structure of the char-
acteristics space in the following sense. The order associated to a characteristic that
is between two other characteristics ranks any pair of alternatives as these two others
whenever they agree on the ranking of the pair. Intermediate preferences were intro-
duced in social choice by Kemeny and Snell (1962). Grandmont (1978) studies the
majority rule for families indexed by a parameter running in (a convex set of) a multi-
dimensional space. He shows that if a characteristic satisfies a kind of ‘total’ median
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property in the characteristics space,1 then the preference order associated with this
characteristic coincides with the majority relation. Hence the profile can be aggre-
gated in a consistent way and furthermore there is a ‘representative’ characteristic.
A difficulty with this result, as argued above, is that typically a characteristics’ profile
admits no total median when the characteristics run in a multi-dimensional real space:
some very strong conditions on the distribution of the characteristics in the profile are
needed for a majority winner to exist.

Our approach builds on the same idea as Grandmont of distinguishing between the
characteristics’ space and the alternatives’ space. Recall, the characteristics’ space is
a median graph and preferences are intermediate. The basic argument is as follows.
First, any profile of characteristics admits a local Condorcet characteristic, which beats
all its neighbors under the graph-distance. Second, under intermediate preferences, a
local Condorcet characteristic results in a representative characteristic, meaning that
the majority relation coincides with the ordering associated with this characteristic.

The argument makes clear the underlying structure allowing for the positive result,
in particular because it disentangles properties on the structure of the preferences from
those on the set of alternatives. Such kind of argument cannot be used with the sin-
gle-peakedness type of condition, in which what matters in a preference ordering is
the peak -the most preferred alternative- making the conditions on the dimensions of
the set of preferences and that of the alternatives intertwined.

The literature on median graphs is extremely vast. Median graphs have been intro-
duced independently in different equivalent ways in various fields, as they are related
to lattice theory and important notions used in classification. Links between various
definitions appear in Mulder (1980) and there are several surveys e.g. Van De Vel
(1993). However, apart from some basic results for our need such as the existence of
local Condorcet characteristic (Bandelt and Barthélémy 1984), this paper is almost
self-contained. Most used properties are rather easy to show (once they are known),
and I give their proofs.

The graph structure on the set of characteristics can be taken literally, as in the
problem of locating some facilities in which individuals’ characteristics are their loca-
tions on a transportation network (see e.g. Hansen and Thisse 1981, in particular for
a first comparison between Condorcet winners and median points). However a graph
can also represent of an ideological space, as in the hypercube with 0-1 coordinates.

Finally, median graphs have recently been used in social choice by Nehring and
Puppe (2007). A betweenness relationship on the space of alternatives allows them to
define single-peakedness in a general abstract framework and to analyze the possibility
of strategy-proof rules. The setting is different from ours since it is the set of alterna-
tives that is endowed with a median structure rather than the set of characteristics.

The plan is as follows. Section 2 presents the framework, introduces the basic
definitions of median graph and intermediate preferences, and illustrates with some
examples. Section 3 gives the main result, which states that the majority rule is cycle-
free for a family of intermediate preferences on a median graph. It concludes with a
comparison between intermediateness and single-peakedness.

1 In a setting with an infinite number of agents, the ‘total’ median characteristic is such that any half
hyper-plane through it cuts the characteristics profile into two sets of equal measure.

123



98 SERIEs (2012) 3:95–109

2 The framework

The framework represents a standard situation in which a group of individuals-a
society- has to choose an alternative in a feasible set and use the majority rule to
do so.

There is a finite set N = {1, . . . , i, . . . , n} of individuals who have preferences over
these alternatives. To simplify the presentation, n is assumed to be odd throughout the
paper. In what follows, X will denote a set of alternatives (finite or infinite), R will
be a preference ordering on X , i.e. a binary relation that is complete (x Ry or y Rx)
thus reflective (x Rx) and is transitive. The strict relation P is defined by: x Py if x Ry
but not y Rx . The ordering R is said to be strict when either x Py or y Px for distinct
elements.

Let R = (R1, . . . , Rn) denote the profile of the n individuals’ preferences relations
over X . The majority relation Rmaj is defined by comparing for any pair x ,y in X the
number of individuals i who strictly prefer x to y, n(x, y), with the number of those
who strictly prefer y to x , n(y, x). Denoting by |A| the cardinality of set A, we have
n(x, y) = |{i, x Pi y}|. The majority relation Rmaj is defined by

x Rmaj y if n(x, y) ≥ n(y, x). (1)

A (weak) Condorcet winner is an alternative x which is weakly preferred to any other
for the majority relation:

x is a Condorcet winner if n(x, y) ≥ n(y, x) for each y in X. (2)

Alternatively, since we have y Pmaj x iff n(y, x) > n(x, y), no y ‘beats’ or dominates
a Condorcet winner x .

We consider a family of preference orderings, denoted by O, indexed by θ running
in a set �: O = {Rθ , θ ∈ �}. All individuals have preferences in O: i’s preference
ordering is Rθ i , determined by i’s characteristic θ i . A characteristic profile is a n-tuple
(θ1, . . . , θn) in �N , and the set of admissible relation profiles is ON . The set � is
assumed to be finite.

2.1 Betweenness relationships, intermediate preferences

There is a natural notion of betweenness for binary relationships according to which a
relation is between two others if it ranks two alternatives as these two others whenever
they agree on the ranking on the two alternatives (Kemeny and Snell 1962). Formally
R′ is said to be between R and R′′ if for all x and y in X

(a) x Ry and x R′′y imply x R′y and (b) (x Py and x R′′y) or (x Ry and x P ′′y) imply
x P ′y.

In short the relation R′ does not introduce new disagreement between R and R′′.
Consider now O a family of preference orders indexed by θ in a set �. The notion of

intermediate preferences assumes that � is endowed with a ‘betweenness’ relationship
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and that this relationship is inherited by the preferences. We first need to define the
notion of betweenness relationship for an (abstract) set �. There are several equivalent
ways to do so and I present here the formulation in terms of graph.

Graphs and Betweenness relations A betweenness relation is derived from a graph
structure that links the elements of �. In short, a vertex is said to be between two others
if it belongs to a shortest path joining them. Let us describe this formally.

A (non-directed) graph G = (�, E) on � is specified by a set E of unordered pairs
of distinct elements of �. A pair (θ, θ ′) in G is called an edge between θ and θ ′. In
the graph terminology the elements of � are called vertices and two elements linked
by an edge neighbors. A path between θ and θ ′ is a sequence θ1, . . . , θ j , . . . , θp in �

for which θ = θ1, θ ′ = θp and the pairs (θ j , θ j+1) are edges for j ∈ {1, . . . , p − 1}
and all distinct. In the sequel I assume that there is a path between any two pairs in �,
i.e., the graph is connected.

A shortest path linking two points is one with the minimal number of edges in a
path joining the two vertices. This minimal number is defined as the distance between
the two points. A vertex θ ′ is between θ and θ ′′ if it belongs to a shortest path joining
θ and θ ′′ or, equivalently, if the distance between θ and θ ′′ is the sum of the distances
between θ and θ ′ and between θ ′ and θ ′′. The interval between θ and θ ′′, denoted by
[θ, θ ′′], is the set of all vertices between θ and θ ′′:

[θ, θ ′′] = {θ ′, d(θ, θ ′′) = d(θ, θ ′) + d(θ ′, θ ′′)}. (3)

Intermediate preferences We now define the intermediateness property for a fam-
ily of preferences. The property is defined relative to a betweenness relationship on the
set of characteristics: it requires the betweenness relationship to carry over to orders.
Formally

Definition 1 Let � be endowed with a betweenness relationship described by the
graph G = (�, E). The family O = {Rθ , θ ∈ �} satisfies the intermediateness prop-
erty if for any θ and θ ′′ in �, Rθ ′ is between Rθ and Rθ ′′ whenever θ ′ is between θ

and θ ′′.

In some problems, the parameters and the graph structure are ‘natural’. In the problem
of locating public facilities for example, individuals’ preferences are parameterized by
their location on a transportation network (see for example Hansen and Thisse 1981
and the references therein). In some other problems, an appropriate parameterization
exists if the family satisfies some conditions. For example, some conditions on pref-
erences on triples guarantee that a family can be parameterized by a tree (Demange
1982).2

The set � is assumed to be finite to simplify the presentation. The analysis read-
ily extends to an infinite set � in some situations. In the problem of locating public
facilities for example, any characteristic (location) along the transportation network
may be feasible making the set � infinite: each point on the arc defined by an edge

2 The conditions are: For every triple of alternatives, there is one which is never ranked worst by any order.
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Fig. 1 Median graphs: tree, with four-cycles

may be a feasible parameter. For a thorough analysis on this type of construction and
the implication on the existence of Condorcet winners, we refer the reader to Bandelt
(1985).

2.2 Median graph, median space

Definition 2 A median graph G = (�, E) is such that for every triple (α, β, γ ) made
of elements in �, a unique vertex μ is between (α, β), (β, γ ) and (α, γ ): {μ} =
[α, β] ∩ [β, γ ] ∩ [α, γ ] or, equivalently

d(α, β) = d(α, μ) + d(μ, β), d(β, γ ) = d(β, μ) + d(μ, γ ) and d(γ, α)

= d(γ, μ) + d(μ, α). (4)

This vertex is the unique metric median of the triple, that is the unique point that
minimizes the sum of the distance to the three elements in the triple.

The set � (endowed with the median graph structure G) is called median space.

Note that the median of a triple is not required to be an element of the triple, as
illustrated in Fig. 1 by the triples (α, β, γ ). Trees are median graphs. Line, a particular
case of tree, is also a median graph for which the median of the triple is always a
member of the triple. A median graph may admit cycles, however only of length four.
Figures 1 and 2 represent various median graphs. More details are given in Sect. 2.3.

Local Condorcet characteristic/median Given a graph G = (�, E) on �, the
(opposite of) the distance to a point defines preferences over �. They will be called
distance-preferences or d-preferences. Let us consider the majority rule in the set of
characteristics for the d-preferences. Given a n-characteristics profile (θ1, . . . , θn)

and two vertices θ, θ ′, let nd(θ, θ ′) be the number of characteristics in the profile
that are closer to θ than to θ ′: nd(θ, θ ′) = |{i, d(θ i , θ ′) > d(θ i , θ)}|. A Condorcet
characteristic is a Condorcet winner for this majority relation: θmaj is a Condorcet
characteristic for the n-characteristics profile (θ1, . . . , θn) if

nd(θ, θmaj ) ≤ nd(θmaj , θ) each θ distinct from θmaj .
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Fig. 2 Median graphs: cube, grid

A local Condorcet characteristic is only compared with its neighbors. A characteristic
θ loc is a local Condorcet characteristic for the n-characteristics profile (θ1, . . . , θn)

if

nd(θ, θ loc) ≤ nd(θ loc, θ) each θ with (θ, θ loc) ∈ E, (5)

that is θ loc is not beaten by any of its neighbors in the graph G.
A key property for our analysis is that a median graph guarantees the existence of

a local Condorcet characteristic, namely θ loc exists for each characteristics’ profile
(Bandelt and Barthélémy 1984). The local Condorcet characteristic is unique and coin-
cides with the ‘metric’ median.3 Thus, if a Condorcet characteristic exists, local and
global Condorcet characteristic coincide. In particular, on a line, the local Condorcet
characteristic is the standard median.

Note finally that, in a median graph, a local Condorcet characteristic satisfies the
stronger property that nd(θ, θ loc) ≤ n/2 for any neighbor θ : no θ is at an equal distance
to two adjacent points, because otherwise the graph would have an odd cycle.

2.3 Examples

Trees Trees are median graphs. A Condorcet characteristic exists for any profile, as
can been proved in different ways (it follows from Demange 1982 since distance-pref-
erences are single-peaked or from Bandelt and Barthélémy 1984).

Let us give a simple example of intermediate preferences family. An alternative is a
pair (α, p) where α is in � and p is a scalar. α can be interpreted as the ‘location’ for
a public good and p as its access price. Preferences over alternatives are represented
by the utility functions

u(α, p, θ) = v − p − d(α, θ).

3 The ‘metric’ median is a point that minimizes the sum of the distance to all characteristics in the profile.
It is unique in a median graph for an odd n.
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Consider two alternatives (α, p) and (β, q). We have

u(α, p, θ) > u(β, q, θ) ⇔ d(β, θ) − d(α, θ) > p − q.

Define �(θ) = d(β, θ)−d(α, θ). To prove that preferences are intermediate it suffices
to show that for any θ ′ between θ and θ ′′ the following inequality holds

�(θ ′) ≥ min(�(θ),�(θ ′′)). (6)

Because � is a tree, the interval [α, β] is the unique path joining α to β. Consider
first the case where the three points θ , θ ′, and θ ′′ are on this path. For any γ on [α, β]
we have d(α, γ ) + d(γ, β) = d(α, β). Hence �(γ ) = d(α, β) − 2d(α, γ ). Apply
this to γ = θ, θ ′, θ ′′. The inequality �(θ ′) ≥ min(�(θ),�(θ ′′)) is equivalent to
d(α, θ ′) ≤ max(d(α, θ), d(α, θ ′′)). This inequality surely holds: if θ ′ is not on the
path between α and θ then θ ′ is on the path between α, θ ′′. The general case follows
by considering the projections of the characteristics on [α, β]. Let γ̂ this projection,
(which is simply here given by m(α, γ, β).) We have d(α, θ) = d(α, τ̂ )+d (̂τ , τ ) and
d(β, θ) = d(β, τ̂ ) + d (̂τ , τ ). hence �(τ) = �(̂τ). It suffices then to show that ̂θ ′ is
between ̂θ and ̂θ ′′. �	

Taking a fixed null price, alternatives are locations and preferences coincide with
d-preferences. This proves that the family of d-preferences on a tree satisfy interme-
diateness.

Hypercubes An important example of median graph is a hypercube, also called
a p-cube, which describes points with coordinates equal to 0 or 1: the p-cube is
{0, 1}p. Figure 2 represents the hypercube with 8 vertices {0, 1}3. Individuals char-
acteristics are represented by an element in an hypercube in the following situation:
Various dimensions affect individuals’ preferences and for each one, the characteristic
is binary; a dimension for instance is home ownership, marital status, worker status
and so on.

The edges of the graph link the vertices the coordinates of which differ in a single
value. The betweenness relationship follows: A vertex θ ′ is between θ and θ ′′ if a
coordinate of θ ′ is equal to 1 (respectively to 0) when both corresponding coordinates
of θ and θ ′′ are equal to 1 (respectively to 0). The median of three vertices (α, β, γ ) is
the unique point for which each coordinate equals to the majority position: coordinate
k of the median is equal to 1 if at least two values in the triple αk, βk, γk assume value
1, and is equal to 0 otherwise. The median of a profile of vertices is obtained by taking
the point for which each coordinate is the median of the coordinates. For example, the
median of the triple α′ = (0, 0, 1), δ′ = (1, 1, 1), β = (0, 1, 0) is γ ′ = (0, 1, 1).

Note that a Condorcet characteristic may not exist, as illustrated in Fig. 2 by the pro-
file (α′, β, β, δ, γ ). Characteristic β is the local Condorcet characteristic, but is beaten
by γ ′. As shown by Bandelt and Barthélémy (1984), the median graphs that guarantee
a Condorcet characteristic are precisely those which are cube-free. (The graph in Fig. 3
for example is cube-free and a Condorcet characteristic always exists. For the profile
with an individual on each vertex for instance, the Condorcet characteristic is θ ′.)
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Fig. 3 d-preferences are
not intermediate

d-preferences A natural question is whether the d-preferences satisfy intermediate-
ness. This is true if � is a tree, as follows from the first example in Sect. 2.3. This is
not true otherwise (assuming at least five characteristics). If � is a median graph but
not a tree, it contains a cycle of length four. With 5 points (or more), d-preferences
are not intermediate, as illustrated in Fig. 3. Both θ and θ ′′ prefer α to β but θ ′, which
is between θ and θ ′′, prefers β to α.

2.4 Discrete convexity and cutting edges

Assuming both intermediate preferences and a median parameter space has some
implications. Intermediateness can be stated in terms of the discrete convexity associ-
ated with the graph. A set is said to be convex if it includes all intervals between any
of two elements. With intermediate preferences, the set of characteristics for which
alternative x is preferred to alternative y is convex.

To simplify the presentation, let us assume strict preferences. The set of character-
istics are partitioned into two convex sets: those for which alternative x is preferred
to alternative y and those for which alternative y is preferred to alternative x . These
properties are similar to those of a ‘half-space’ in a multi-dimensional space. Important
examples of such sets are described by an edge. Given an edge (α, β) and a character-
istic θ , the unique median of the triple (θ , α, β) can only be α or β. This is because
the edge (α, β) is the unique shortest path between α and β hence, by definition, the
median of the triple belongs to it. Thus the set of characteristics is partitioned into two
convex sets: those closer to α than β and those closer to β than α.

We show here that intermediate preferences can be described by such ‘cutting
edges’. Given a graph on the parameters’ space, a cutting edge represents a switch
in preferences. A cutting edge for the two distinct alternatives x and y is an edge
(α, β) such that x is preferred to y by the α-ordering and y is preferred to x by the
β-ordering. Such an edge surely exists if x is not unanimously preferred to y or the
other way around. Intermediate preferences on a median graph are characterized by
cutting edges associated to each pair of alternatives.

Lemma Let O = {Rθ , θ ∈ �} be a family of strict preferences where � is a median
space. A cutting edge for two alternatives x and y is an edge (α, β) such that x Pα y
and y Pβ x. If the intermediateness property is satisfied, then the cutting edge is unique
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and furthermore it determines the orderings over the two alternatives: x Pθ y if α is
between θ and β and y Pθ x otherwise.

Proof Consider a cutting edge (α, β) for the two alternatives x and y. For every char-
acteristic θ , the unique median of the triple (θ , α, β) is either α or β. If it is α, then α

is between θ and β and we prove that x Pθ y. If we had y Pθ x , intermediate preferences
and the assumption y Pβ x would imply y Pαx , a contradiction. Hence x Pθ y (because
preferences are strict). Similarly y Pθ x in the other case where β is the median of
the triple (θ , α, β). This implies that the cutting edge is unique and characterizes the
preferences over x and y. �	

Let us illustrate in an hypercube. In a 3-cube as on Fig. 2, the points which are
closer to α than to β are those in the vertical face {α, α′, γ, γ ′}. More generally, in a
cube, two points linked by an edge differ in a single component, and the points which
are closer to α than to β are those which agree with α on that component. Let α and
β differ on the k-component, say with αk = 0, βk = 1. If (α, β) is a cutting edge for
x and y and preferences are intermediate, then all points whose k-component is null
prefer x to y and those whose k-component is 1 prefer y to x .

Projection on convex sets in a median graph Let C be convex. Given θ let ̂θ be
a point in C that minimizes the distance between θ and a point in C . For a median
graph, ̂θ has nice properties and can be qualified as the projection of θ on C (it is often
called a ‘gate’ in graph theory): It is unique and furthermore4 it is between θ and every
element in C :

d(θ, γ ) = d(θ,̂θ) + d(̂θ, γ ) every γ ∈ C. (7)

3 Median representative rule

By combining a median graph structure for the set of characteristics and the property
of intermediate preferences, one obtains the following theorem.

Theorem 1 Let � be a median space and let O = {Rθ , θ ∈ �} be a family of inter-
mediate preferences on a set of alternatives X. Let n be odd and θ loc be the local
Condorcet characteristic of the profile (θ1, . . . , θn).

(a) If preferences are strict, then the majority relation Pmaj coincides with Pθ loc :

x Pmaj y if and only if x Pθ loc y. (8)

4 The proof that̂θ is unique is easy. By contradiction let θ1 and θ2 be two distinct points in C whose distance
to θ is minimum. Consider the median μ of the three points (θ, θ1, θ2). Since μ is between θ1 and θ2, μ is in C
by convexity. Applying the conditions (4) to the triple (θ, θ1, θ2) we also have d(θ, θ1) = d(θ, μ)+d(μ, θ1)

and d(θ, θ2) = d(θ, μ) + d(μ, θ2). By definition, since μ is in C , d(θ, θ1) ≤ d(θ1, μ) so we must have
d(μ, θ1) = 0, i.e. μ coincides with θ1 and similarly for θ2, this gives the contradiction.
Given γ an element of C , a similar argument implies that ̂θ must be the median of the triple (θ,̂θ, γ ): this
proves that ̂θ is between θ and γ , hence (7).
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(b) If � is a tree (and preferences not necessarily strict)

x Pmaj y implies x Rθ loc y. (9)

When preference orderings are strict, the majority relation is strict as well (because
n is odd) and exactly coincides with the order associated with the characteristic θ loc:
θ loc can be qualified as a representative characteristic.

When preference orderings are not strict, the majority relation and the ordering
associated with θ loc never rank a pair in opposite order. This implies that if the prefer-
ence Rθ loc has a unique top alternative, this alternative is a Condorcet winner. The two
orderings however may not coincide, as illustrated by the following example. There
are three characteristics on a line α, β, γ with β between α and γ . Let two alternatives
x and y for which x Pα y, y Iβ x , and y Pγ x where I denotes indifference. Take five
individuals, 2 at α, 2 at β, and 1 at γ so β is the winner characteristic, here the usual
median. Then x is preferred to y by the majority but not by the median.

Theorem 1 fails when the condition (b) is not required on intermediate preferences
(note that this condition only matters for preferences that are not strict orderings). The
following simple example illustrates this point. Take as above three characteristics on
a line α, β, γ and two alternatives x and y. Let x Pα y, y Pβ x , and x Iγ y. Condition (a)
is met but (b) is violated. Take five individuals, 2 at each extreme α or γ and 1 at the
winner characteristic β. Then x is preferred to y under the majority relation but the
median prefers y to x .

The characteristic θ loc is independent of the voting problem at hand, provided that
the same parameter space commands the preferences. A similar property holds true
when preferences are single-peaked on a line: the median characteristic is independent
of the voting problem so that its peak is a Condorcet winner (but the median may not
be a representative characteristic simply because preferences are not characterized by
their peak).

Finally, the transitivity of the majority relation when the characteristics are on a
tree can also be derived from a more general result on the core. The core of any super-
additive game built on intermediate preferences on a tree is non-empty (Demange
1994). In particular the core of a majority game is non-empty under intermediate pref-
erences. Since the core of a majority game can only contain a Condorcet winner, this
implies the existence of a Condorcet winner. An application of the same argument to
any subset of alternatives proves the transitivity of the majority rule.

Proof The proof is by contradiction. Let x beat y for the majority rule and assume
that y is (weakly) preferred to x by θ loc: x Pmaj y and y Rθ loc x . Denote n = 2k + 1.

We first show that y Rθ loc x implies that the number of individuals who strictly prefer
x to y is smaller than n/2: |{i, x Pθ i y}| ≤ k or denoting by C the set of characteristics
for which x is strictly preferred to y:

|{i, θi ∈ C}| ≤ k where C = {θ, x Pθ y}. (10)

The set C is convex and by assumption θ loc does not belong to C . Consider the pro-
jection ̂θ loc of θ loc on C . There is μ neighbor of θ loc on [̂θ loc, θ loc], i.e. on a shortest
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Fig. 4 θ closer to θ loc than to μ: θ loc is between θ and ̂θ loc (left) or not (right)

path between ̂θ loc and θ loc, hence d(μ, θ loc) = d(μ,̂θ loc) + 1. We show that μ

is closer to each element γ in C than θ loc. Standard distance inequality d(μ, γ ) ≤
d(μ,̂θ loc) + d(̂θ loc, γ ) applies, hence

d(μ, γ ) ≤ d(θ,̂θ loc) − 1 + d(̂θ loc, γ ).

Now, since ̂θ loc is the projection of θ loc on C , (7) holds for γ ∈ C : d(θ loc, γ ) =
d(θ loc,̂θ loc) + d(̂θ loc, γ ), and we obtain

d(μ, γ ) ≤ d(θ loc, γ ) − 1 every γ ∈ C.

Thus the characteristics in C are closer to μ than to θ loc. By assumption θ loc is a local
Condorcet characteristic, hence it is not beaten by its neighbor μ for the distance-
preferences: the number of characteristics in the profile closer to μ than to θ loc is not
greater than n/2, i.e. than k. This implies |{i, θi ∈ C}| ≤ k, which proves (10), the
desired result.

(a) follows: If preferences are strict, x beats y by a majority implies that the number
of individuals who strictly prefer x to y is strictly larger than k: |{i, θi ∈ C}| > k, in
contradiction with (10). This proves that x Pmaj y implies x Pθ loc y. Since both relations
Pmaj and Pθ loc are strict, they coincide.

For (b) we assume � is a tree and furthermore that y Pθ loc x to get the contradiction.
Take a characteristic θ distinct from θ loc that is closer to θ loc than to μ. We show
that θ loc is between θ and ̂θ loc as illustrated in Fig. 4 on the left (the property fails
in general median spaces as illustrated in the graph on the right) and that y Pθ x . The
path from θ loc to ̂θ loc is: θ loc, μ,…, ̂θ loc. The path from θ to θ loc does not contain μ,
(because θ is closer to θ loc than to μ). Hence the two paths from θ to θ loc and from
θ loc to ̂θ loc intersect only at θ loc: thus the unique path joining θ to ̂θ loc is formed by
their union. This proves that θ loc is between θ and ̂θ loc. This implies that y Pθ x thanks
to intermediate preferences, and the fact that x P̂θ loc y and y Pθ loc x .

So we have proved that y Pθ x for all θ closer to θ loc than to its neighbor μ. Since
θ loc is a local Condorcet characteristic there are at least k + 1 such characteristics,5

at least as many as those in C ; x Pmaj y is impossible. �	
Two consequences can be drawn from Theorem 1.

5 We use the fact here that a point is never at the same distance of two points linked by an edge, as shown
in Sect. 2.4.
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First, as is well known, a majority relation that is transitive and strict on a product
domain of preferences is not subject to the standard difficulties of aggregation and
manipulation of preferences. Specifically the majority relation satisfies all the axioms
of Arrow theorem and furthermore the associated mechanism is strategy-proof. We
state this last result as a Corollary and give the proof for completeness. Here the mech-
anism asks to each individual a characteristic (or alternatively a preference in O) and
selects the alternative that is preferred by the majority order of the announced profile,
i.e., the top alternative for θ loc.

Corollary Let � be a median space and let O = {Rθ , θ ∈ �} be a family of interme-
diate strict preferences on a set of alternatives X. Let n be odd and θ loc be the local
Condorcet characteristic of the profile (θ1, . . . , θn). The majority mechanism, which
assigns to each (θ1, . . . , θn) the top alternative of θ loc, is strategy-proof.

Proof Let τ the profile obtained from θ = (θ1, . . . , θn) by changing θ1 by τ 1, and let y
and x the majority alternatives respectively associated to τ and θ . Strategy-proofness
requires that individual 1 does not benefit from announcing τ 1 instead of θ1 if his
true characteristic is θ1: x Rθ1 y. Suppose by contradiction y Pθ1 x . Then, since x is a
Condorcet winner at profile θ , there are more individuals in 2, . . . ,n who prefer x to
y. But this is also true at profile τ since the characteristics of these individuals are
unchanged. �	

Second, Theorem 1 bears on the majority relation but readily extends to some vari-
ations. Specifically, consider a relation that is obtained by adding ‘phantom’ voters
in a similar way as in Moulin (1980). Fix a profile (τ 1, . . . , τ p), the profile of p
phantom voters. The relation is defined as the majority relation of the extended pro-
file with n + p characteristics obtained by adding the fixed profile (τ 1, . . . , τ p) to
the individual characteristics’ profile (θ1, . . . , θn). Under the assumptions of Theo-
rem 1, the relation satisfies the same properties since it is the majority rule over On+p

restricted to some profiles. Hence the aggregation and strategy-proof results hold for
these modified majority relations.

3.1 Concluding remarks

It is useful to clarify the differences between single-peaked and intermediate prefer-
ences and the types of associated results. For that we use the tree example. The set
of alternatives X is endowed with a tree structure. To simplify consider strict pref-
erences. A preference ordering on X with top alternative x is single-peaked if the
ordering decreases along any path starting at x : if y is between x and z surely y is pre-
ferred to z. A Condorcet winner always exists for single-peaked preferences on a tree
(Demange 1982). The majority relation however may not be transitive as illustrated by
the following example. Consider a star with four points with t in the center. Observe
that distinct orders may have the same top alternative, so the family is not indexed by
X . Here the set of single-peaked orders is composed with all the orders which rank t
first or second. The set does not guarantee the transitivity of the majority relation as
illustrated with three individuals and preferences: if N = {1, 2, 3}, t P1x P1 y P1z,
t P2 y P2z P2x , t P3z P3x P3 y. The majority relation has a cycle on {x, y, z} (Fig. 5).
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Fig. 5 No restriction on
the ranking of x, y, z for
single-peakedness preferences

Consider now a family of intermediate preferences indexed by a point running on
the tree where the index represents the peak of the preference. A single relation has t
as the peak. This precludes the above example with the (dominated) Condorcet triple
and the non-transitivity of the majority rule. Although this example may suggest that
the framework with intermediate preferences is more restrictive than the one with sin-
gle-peaked preferences, this is not true since intermediate preferences allow for any
set of alternatives. This fact has been somewhat blurred because the line model is the
prominent model. In that case, although the distinction exists, it may be thought to be
rather mild. This is definitely not the case when the sets � and X are distinct.

To conclude, given the tremendous literature on the majority rule, there is little
hope to find exciting and entirely new families that guarantee the existence of a Con-
dorcet winner. Our results can be seen as extending some of the results that have been
obtained when the characteristics are ordered on a line or on a tree to more general
median graphs, in particular to hypercubes which can be a good representation of
qualitative characteristics. It remains to interpret intermediateness in these contexts
and to see whether there are interesting applications.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.

References

Arrow KJ (1963) Social choice and individual values, 2nd edn. Yale University Press
Bandelt HJ (1985) Networks with Condorcet solutions. Eur J Oper Res 20:314–326
Bandelt H-J, Barthélémy JP (1984) Medians in median graphs. Discrete Appl Math 8(2):131–142
Barbera S, Moreno B (2009) Top monotonicity: a common root for single peakedness, single crossing and

the median voter result. Working paper
Black D (1948) On the rationale of group decision-making. J Political Econ 56:23–34
Demange G (1982) Single-peaked orders on a tree. Math Soc Sci 3:389–396
Demange G (1983) Spatial models of collective choice. In: Thisse JF, Holler H-G (eds) Locational analysis

of public facilities. North Holland, pp 153–182
Demange G (1994) Intermediate preferences and stable coalition structures. J Math Econ 23:45–58
Grandmont J-M (1978) Intermediate preferences and the majority rule. Econometrica 46:317–330
Hansen F, Thisse JF (1981) Outcomes of voting and planning: Condorcet. Weber and Rawls locations.

J Public Econ 16:1–15
Kemeny JG, Snell JL (1962) Mathematical models in the social sciences. Ginn, New York
Kramer GH (1973) On a class of equilibrium conditions for majority rule. Econometrica 41:285–297
Moulin H (1980) On strategy-proofness and single-peakedness. Public Choice 35(4):437–455
Mulder HM (1980) The interval function of a graph, vol. 132. Centrum Voor Wiskunde en Informatica,

pp. 1–191. http://repository.cwi.nl/search/fullrecord.php?publnr=12991

123

http://repository.cwi.nl/search/fullrecord.php?publnr=12991


SERIEs (2012) 3:95–109 109

Nehring K, Puppe C (2007) The structure of strategy-proof social choice. Part I: general characterization
and possibility results on median spaces. J Econ Theory 135:269–305

Plott CR (1967) A notion of equilibrium and its possibility under majority rule. Am Econ Rev 57:788–806
Van De Vel MLJ (1993) Theory of convex structures. North Holland

123


	Majority relation and median representative ordering
	Abstract
	1 Introduction
	2 The framework
	2.1  Betweenness relationships, intermediate preferences
	2.2 Median graph, median space
	2.3 Examples
	2.4 Discrete convexity and cutting edges

	3 Median representative rule
	3.1 Concluding remarks

	References


