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1 Introduction

The purpose of this note is to illustrate the power of an ingenious technique pioneered
independently by Barbera and Peleg (1990) and Laffond (1980) and called the tech-
nique of option sets1 which has been used extensively and successfully to characterize
the implications of strategyproofness in many different settings. To quote Zhou (1991),
one, out of many scholars, who has used it: “It is direct and simple, invoking neither
the Arrow theorem, nor any monotonicity argument. Yet, it is so powerful that under
its framework many interesting issues can be addressed”. Out of many contributions,2

we can cite for instance Barbera et al. (1997, 1998) who use the technique of option
sets to investigate the case in which the domain is the class of multidimensional single-
peaked preferences and the range is a compact set and Berga and Serizawa (2000) who
use it in their exploration of maximal domains for strategyproofness.

This simple notion is defined as follows. Consider a society of individuals who has
to select an alternative out of a feasible set X and a social choice mechanism mapping
any conceivable profile R of preferences into an alternative. The option set OS(R−S)

of a coalition S of individuals (given the preferences R−S reported by the individuals
outside the coalition) is the set of alternatives that they can reach through an appropriate
joint report RS of their preferences. Therefore, the option set of coalition S describes
the “scope of influence” of coalition S given the profile R−S of reports by individuals
outside S. A social environment is characterized by a set X and and a domain D of
admissible preferences. Given a social environment (X,D), the technique of options
sets consists in sorting out gradually the properties that these different option sets must
possess if the mechanism is required to satisfy some properties, on top of which some
weak or strong versions of strategyproofness.

In this note, we illustrate this technique in the case where X = R
m and D is the set

of Euclidean preferences. This result is extracted from a work that was done 20 years
ago3 (Bordes et al. 1990). The result states that, if m ≥ 2, any surjective and coa-
litional strategyproof mechanism is dictatorial. The main part of the proof consists
in the analysis of the case where there are two dimensions and two individuals. It
uses elementary tools from basic geometry and is self contained. Most of the proof
consists in showing that to prevent the mechanism to be manipulated by any one of
the two individuals, say 2, the option set of 2 must be a disk. This proof is 20 years
old and, likely, some better self-contained proofs can be provided. Since then, many
new results have been discovered. In the last section, we offer a brief account of some
of the main achievements and open problems in this branch of the literature.

2 The model

We consider a society N = {1, 2, . . . , n} of individuals who has to select an alternative
in the Euclidean space X = R

m . The preference Ri of any individual i ∈ N is entirely

1 Border and Jordan (1983) call them manipulation sets. These sets also appear in Laffont (1987).
2 I cannot cite here all the contributions who use that technique as they are too many.
3 The old version was containing a brief account of some of the results contained in the doctoral thesis of
G. Laffond. In the last part of this note, we offer a short presentation of some of his ideas.
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described by a point pi ∈ R
m and defined as follows: x Ri y iff ‖ x − pi ‖≤‖ y − pi ‖

where ‖ . ‖ denotes the usual Euclidean norm on R
m .4 The point pi is called the

peak of individual i as it is the (unique) mostly preferred alternative of individual i :
any individual orders alternatives according to their distance with respect to his peak.
If an alternative is interpreted as the location of a public facility and pi as the place
of residence of individual i , Euclidean preferences can be interpreted as preferences
for smallest distances to the facility when the transportation network is unrestricted.
Hereafter, we will denote by E the domain of Euclidean preferences over R

m .
A social choice mechanism is a mapping C from En into X . Since preferences in

E are identified to their peaks, we will alternatively describe C as a mapping from
R

nm into R
m mapping a profile p = (p1, p2, . . . , pn) of peaks into a social alterna-

tive C(p) = (C1(p), C2(p), . . . , Cm(p)). Given a profile p ∈ R
nm and a coalition

S ⊆ N , we denote by p−S ∈ (Rm)N\S the restriction of the profile to N\S. A social
choice mechanism C is strategyproof if there does not exist i ∈ N , p ∈ R

nm and
p̂i ∈ R

m such that ‖ C(p−i , p̂i ) − pi ‖<‖ C(p) − pi ‖. A mechanism is coali-
tional strategyproof if if there does not exist S ⊆ N , p ∈ R

nm and p̂S ∈ (Rm)S

such that ‖ C(p−S, p̂S) − pi ‖<‖ C(p) − pi ‖ for all i ∈ S. The range of the
mechanism C is the set R(C) ≡ {x ∈ R

m: x = C(p) for some p ∈ R
nm}. The mecha-

nism C is unanimous if C(p, p, . . . , p) = p. C is anonymous if C(p1, p2, . . . , pn) =
C(pσ(1), pσ(2), . . . , pσ(n)) for all permutations σ: N → N and all p ∈ R

nm . C is
(componentwise) continuous if each component C j is continuous. Finally, a social
choice mechanism C is dictatorial if there exists i ∈ N such that C(p) = pi for all
p ∈ R

nm .

3 The result

Proposition If m ≥ 2, then any coalitional strategyproof social choice mechanism C
over the domain E such that R(C) = R

m is dictatorial.

4 The proof

As already pointed out, the proof is based on the technique of options sets. Given a
profile p ∈ R

nm and a coalition S ⊆ N , we define the option set of coalition S at profile
p denoted OS(p) as the set {x ∈ R

m : x = C(p−S, p̂S) for some p̂S ∈ (Rm)S}. It will
be often denoted OS(p−S) as it only depends upon the subprofile p−S . When S = {i}
for some i ∈ N , OS(p) will be denoted Oi (p−i ). The option set of a coalition S,
given the preferences reported by the individuals outside the coalition, is the set of
alternatives attainable by the members of S if they jointly control the preferences that
they report. It is the range of the social choice mechanism CS(p−S) defined on (Rm)S .
We note that ON (p) = R(C).

The following two properties are quite general (i.e. independent of the specific
Euclidean setting considered here) and have been demonstrated several times. We will
not repeat these arguments here.

4 ‖x‖ = 〈x, x〉 1
2 where 〈., .〉 denotes the usual inner product.
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Step 1: if p ∈ R(C), then C(p, p, . . . , p) = p
Step 2 (closeness): for all p ∈ R

nm and S ⊆ N , OS(p−S) is a closed subset of R
m .

4.1 The case where n = m = 2

In this section we will denote simply O1(p2) and O2(p1) the options set of individuals
1 and 2. Step after step, we will refine our knowledge of the options sets.

Step 3: p1 ∈ O2(p1) and p2 ∈ O1(p2)

Step 4: ‖ C(p1, p2) − p2 ‖≤‖ p′
2 − p2 ‖ for all p′

2 ∈ O2(p1) and ‖ C(p1, p2) −
p1 ‖≤‖ p′

1 − p1 ‖ for all p′
1 ∈ O1(p2).

Step 5 (Efficiency): C(p1, p2) ∈ [p1, p2]
Step 6 (Star-shapedness): O2(p1) is star-shaped with respect to p1.
If O2(p1) = {p1} the conclusion follows. Suppose that there exists t �= p1 such

that t ∈ O2(p1). We want to show that [p1, t] ⊆ O2(p1). Let z ∈ [p1, t] and assume
on the contrary that z /∈ O2(p1). Since O2(p1) is closed, so is E ≡ [z, t] ∩ O2(p1).
This implies that the program Min

w∈E
‖ w − z ‖ has a solution, say v. By construction:

[z, v[∩O2(p1) = ∅. Let p2 ∈] z+v
2 , v[. Since ] z+v

2 , v[∩O2(p1) = ∅, we deduce from
step 5 that C(p1, p2) ∈ [p1, z[. Since ‖ v − p2 ‖<‖ z − p2 ‖, this contradicts step 4.

An immediate consequence of step 6 is the following. Given any ray L with end-
point p1, if L ∩ O2(p1) is bounded, then there exists z = z(L) such that L ∩ O2(p1) =
[p1, z].

Step 7 (Tangency): let L be a ray with endpoint p1 and L⊥(z) be the line orthogo-
nal to L containing z = z(L). Then O2(p1) is contained in the half plane P(z) with
frontier L⊥(z) and containing p1, i.e. 〈x − z, p1 − z〉 ≥ 0 for all x ∈ O2(p1).

Assume on the contrary that there exists x ∈ O2(p1) such that:

〈x − z, p1 − z〉 < 0

Then, there exists y ∈ L such that ‖ y − x ‖<‖ y − z ‖. The existence of such y
follows from the fact that if we take y on L sufficiently far from z, then x will be in the
interior of the disk centered on y with radius ‖ y − z ‖. This argument is illustrated
in Fig. 1.

From steps 4 and 5, C(p1, y) = z but since x ∈ O2(p1), there exists p2 such
that x = C(p1, p2). Since ‖ y − C(p1, p2) ‖<‖ y − C(p1, y) ‖, this contradicts
strategyproofness.

Step 8: if O2(p1) ∩ L is bounded for some L , then O2(p1) is bounded.
The claim follows from a repeated application of step 7.
Step 9: if O2(p1) ∩ L = {p1} for some L , then O2(p1) = {p1}.
As for step 8, it follows from a repeated application of step 7.
At this stage, for every p1 ∈ R

2, there are three possible cases:
Case 1: O2(p1) = {p1}
Case 2: O2(p1) = R

2

Case 3: O2(p1) is a compact subset of R
2, star-shaped with respect to p1 and such

that O2(p1) ∩ L �= {p1} for all rays L with endpoint p1.
We demonstrate that case 3 cannot hold true. Suppose on the contrary that it does.
Step 10 (Convexity): O2(p1) is convex.
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Suppose on the contrary that there exist u, t ∈ O2(p1) and w ∈]t, u[ such that
w /∈ O2(p1). Consider the ray L with endpoint p1 and containing w. By construction,
we deduce w /∈ [p1, z(L)]. In the triangle p1ut , either u or t is above the line L⊥(z)
and therefore does not belong to O2(p1). This argument is illustrated in Fig. 2.

Let p1 = (0, 0). Let (k, 0) ∈ O2(p1) be on the frontier of O2(p1) and let f :
[0, k] → R+, defined by: f (a) = b where b is the unique value of c such that (a, c)
belongs to the frontier of O2(p1). From the properties of O2(p1), the function f is
well defined. From step 10, f is concave and therefore (Rockafellar 1970), it is left
differentiable and right differentiable everywhere. Let f ′+(a) and f ′−(a) be the right
and left derivatives of f at a.
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Step 11: f ′+(a) = f ′−(a) ≡ f ′(a).
Without loss of generality, assume on the contrary that f ′+(a) ≤ 0 < f ′−(a).5

Let L− be the line with slope f ′−(a) containing (a, f (a)). Since O2(p1) is con-
vex, it is included in the half plane with frontier L− and containing p1. Let L be
the line orthogonal to L− containing p1 and w = z(L). Necessarily, w = L− ∩ L
as otherwise (a, f (a)) /∈ O2(p1) contradicting our assumption. From step 9, we
deduce that [w, (a, f (a))] ⊆ O2(p1). Since further [w, (a, f (a))] ⊆ L−, we deduce
that any ray L ′ with endpoint p1 and intersecting [w, (a, f (a))] satisfies: z(L ′) =
L ′ ∩ [w, (a, f (a))]. But this contradicts step 7. The argument is illustrated in Fig. 3.

From step 11, we know that f is differentiable.
Step 12 (Geometry): O2(p1) is a disk centered on p1.
From step 7 we know that (1, f ′(a)) is orthogonal to (a, f (a)) for all a ∈]0, k[,

i.e. f is solution of the differential equation:

a + f (a) f ′(a) = 0

Let F(a) = f (a)2. F is solution of the differential equation:

2a + F ′(a) = 0

whose solutions are:

F(a) = C − a2 for some constant C

and therefore:

f (a) =
√

C − a2 for some constant C

Since f (k) = 0, we deduce that C = k2.

5 We normalize to 0 the slope of the line orthogonal to the line generated by p1 and (a, f (a)) and passing
through (a, f (a)).
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Step 13: case 3 does not hold true.
From step 11 O2(p1) is a disk centered on p1. Let p2 /∈ O2(p1), z =

[p1, p2] ∩ O2(p1) and p′
1 ∈ O2(p1) such that p1 ∈ [p′

1, p2]. From step 5,
we know that C(p′

1, p2) ∈ [p′
1, p2]. Let us show that C(p′

1, p2) = z. Suppose
not. Then either C(p′

1, p2) ∈ [p′
1, z[ or C(p′

1, p2) ∈]z, p2]. In the first case,
‖ C(p′

1, p2) − p1 ‖<‖ z − p1 ‖=‖ C(p1, p2) − p1 ‖ contradicting step 4. In
the second case, ‖ z − p′

1 ‖=‖ C(p1, p2) − p′
1 ‖<‖ C(p′

1, p2) − p′
1 ‖ contradicting

also step 4.
Since C(p′

1, p2) /∈ {p′
1, p2}, we deduce from step 11 that O2(p′

1) is a disk centered
on p′

1. Further, since C(p′
1, p2) = z, the radius of the disk is ‖ z − p′

1 ‖. Let p′
2 /∈

O2(p′
1) ∪ [p1, p2], v = C(p1, p′

2) and w = C(p′
1, p′

2) as illustrated in Fig. 4.
Since v =‖ C(p1, p′

2) − p′
1 ‖<‖ C(p′

1, p′
2) − p′

1 ‖= w, we contradict step 4.
At this stage, we know that for all p1 ∈ R

2, either O2(p1) = {p1} or O2(p1) = R
2.

The following claim shows that we can invert the quantifiers.
Step 14 (Dichotomy): either O2(p1) = {p1} for all p1 ∈ R

2 or O2(p1) = R
2 for

all p1 ∈ R
2.

Assume on the contrary that there exist p1, p′
1 ∈ R

2 such that: O2(p1) = {p1}
and O2(p′

1) = R
2. Let p2 be outside the disk centered on p′

1 with radius ‖ p1 − p′
1 ‖.

We have C(p′
1, p2) = p2 and C(p1, p2) = p1. Since ‖ p1 − p′

1 ‖<‖ p2 − p′
1 ‖, we

contradict step 4.
The proof of the result when n = m = 2 is complete. When O2(p1) = {p1} for all

p1 ∈ R
2, 1 is a dictator and when O2(p1) = R

2 for all p1 ∈ R
2, 2 is a dictator.
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4.2 The case where m = 2 and n ≥ 2

The proof is by induction on n. From the preceding section, we know that the result
holds true when n = 2. We assume that it holds true when the number of individuals
is less than n − 1. Let us consider the option set O−1(p1) of the coalition S = N\{1}
when individual 1 reports the preference p1.

Step 15: either O−1(p1) = {p1} or O−1(p1) = R
2.

The proof follows with no changes the arguments from step 6 to step 13 once steps
4 and 5 have been replaced, respectively, by the following two properties:

‖ C(p1, p, p, . . . , p) − p ‖≤‖ x − p ‖ for all x ∈ O−1(p1)

C(p1, p, p, . . . , p) ∈ [p1, p]

The first property follows in fact from an argument similar to one implicit in
step 1 applied to the mechanism C−1(p1) while the second follows from efficiency.
If O−1(p1) = {p1}, then O−1(p′

1) = {p′
1} for all p′

1 ∈ R
2, i.e. 1 is a dictator. Indeed,

assume on the contrary that O−1(p′
1) = R

2 for some p′
1 ∈ R

2. Let p2 be outside the
disk centered on p′

1 with radius ‖ p1 − p′
1 ‖. We have C(p′

1, p2, p2, . . . , p2) = p2
and C(p1, p2, p2, . . . , p2) = p1. Since ‖ p1 − p′

1 ‖<‖ p2 − p′
1 ‖, we contradict our

assumption that C is strategyproof.
If O−1(p1) �= {p1}, then O−1(p′

1) = R
2 for all p′

1 ∈ R
2. Since C is coali-

tional strategyproof, C−1(p1) is also coalitional strategyproof. Since R(C−1(p1)) =
O−1(p1) = R

2, we deduce from the induction hypothesis that C−1(p1) is dictatorial.
Let i(p1) be this dictator. We now show that i(p1) is constant. Suppose that it is not
constant and without loss of generality, assume that there exist p1, p′

1 ∈ R
2 such that:

i(p1) = 2 and i(p′
1) = 3. Then for all p2, p3 ∈ R

2

C(p1, p2, p3, . . .) = p2 and C(p′
1, p2, p3, . . .) = p3

If p2, p3 are such that ‖ p1 − p3 ‖<‖ p1 − p2 ‖, then the two equalities above
contradict the assumption that C is strategyproof.

4.3 The case where m ≥ 2 and n ≥ 2

The proof is by induction on m. From the preceding section, we know that the result
is true when m = 2. We assume that it is true when the number of dimensions is less
than m − 1. Let p ∈ R

nm . If there exists an hyperplane H such that pi ∈ H for all
i = 1, . . . , n, then we deduce from the efficiency of C that C(p) ∈ H as the convex
hull of the set {p1, . . . , pn} is contained in H . We deduce from the induction hypothe-
sis that the restriction C H of the social choice choice mechanism C to Hn is dictatorial.
Let i(H) be the dictator attached to C H . We claim that i(H) is constant. Take another
hyperplane H ′. If H ′ ∩ H �= ∅, then obviously i(H ′) = i(H). If H ′ ∩ H = ∅,
there exist a third hyperplane H ′′ such that H ′′ ∩ H �= ∅ and H ′′ ∩ H ′ �= ∅. Then,
i(H) = i(H ′′) = i(H ′). Let i(H) = 1 for all hyperplanes H . It remains to show that
1 is a dictator.
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If n ≤ m, it follows from the argument above. If n > m, consider p ∈ R
nm and

let z = C(p). Let zn ≡ C(p1, p2, . . . , pn−1, z). We claim that zn = z. Indeed, if
zn �= z, then since ‖ C(p1, p2, . . . , pn−1, pn)− z ‖<‖ C(p1, p2, . . . , pn−1, z)− z ‖,
we would contradict our assumption that C is strategyproof. By repeating n − m + 1
times this argument, we obtain:

C(p1, p2, . . . , pm−1, z, z, . . . , z) = z

Since the set {p1, p2, . . . , pm−1, z} is contained in an hyperplane, we conclude that
z = p1.

5 Related literature

In this last section, we offer a brief and selective review of the related literature and
formulate some open problems.

5.1 The case where m = 1

The result has been established under the assumption that there are at least two dimen-
sions. When m = 1, the result does not hold. There exist coalitional strategyproofness
social choice mechanisms which are not dictatorial. The exploration of the class of
strategyproof mechanisms in the one dimensional setting started with the seminal
paper of Moulin (1980). A complete account of is large literature can be found in
Barbera (2010).

5.2 Changing the domain and/or the range

In this paper, a social choice mechanism has been defined as a function from R
mn

into R
m . We could consider the general case of a function C from An into B where

A and B are both subsets of R
m : A and B would represent, respectively, the set of

admissible individual ideal points and the set of feasible social alternatives. Note that
if A = R

m and C is not surjective, in contrast to what has been assumed in our
result, then B denotes simply the range of the mechanism, i.e. R(C). In Bordes et
al. (1990), we prove that any coalitional strategyproof onto social choice mechanism
C : R

2 → B where B is an equilateral triangle is dictatorial.
To the best of our knowledge, few authors have considered the general case. The

unique exception is van der Stel’s thesis (1993) who offers a very general and stimu-
lating analysis of the case where A = B, i.e. C is a social choice mechanism from An

onto A. He proves the following generalization of our result: if A is an open subset
of R

m , then any coalitional strategyproof onto social choice mechanism is dictatorial.
His proof is different from ours and uses as auxiliary steps several other results.

The general study of the implications of coalitional strategyproofness for an arbi-
trary A seems rather intricate. Consider the case where A = {(0, 0), (0, 1), (1, 0),
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(1, 1), ( 1
2 , 1

2 )}, i.e. the set of admissible ideal points as well as the set feasible alter-
natives is assumed to be the set of vertices of the unit square together with its center.
Consider the mechanism C : An → A defined as follows:

C(p) =
{

p if p = (p, p, . . . , p)
( 1

2 , 1
2

)

otherwise

Since
( 1

2 , 1
2

)

is at least second best alternative for all Euclidean preferences with an
ideal point in A, it is easy to check that, this mechanism is coalitional strategyproof.
We could object that in this example A is not a product set. Having a product set
does not help either. In the case where A = {(0, 0), (0, 1), (1, 0), (1, 1)}, the mecha-
nism C defined by C(p) = (p1

1, p2
2) (individual 1 is a dictator on the first coordinate

while individual 2 is a dictator on the second coordinate) is coalitional strategyproof.
This mechanism is decomposable6 in the sense that the choice of the j th coordinate
only depends upon the vector p j = (p j

1 , p j
2 , . . . , p j

n).
The finite sets A considered in the above examples are nonconvex but convexity of

A is not necessary for the equivalence of coalitional strategyproofness and dictator-
ship either, as illustrated by the the case where A is the unit circle. To the best of our
knowledge, the characterization of the sets A for which coalitional strategyproofness
is equivalent to dictatorship is still open.

5.3 Strategyproofness and efficiency

Can we replace, in the statement of the result, coalitional strategyproofness by (Pareto)
efficiency and strategyproofness? By definition, the answer is affirmative when n = 2.
But it is not when n ≥ 3. For instance when X = R

2 and n = 3, the social choice
mechanism selecting the median of the coordinates of the ideal points for each of the
two coordinates is surjective, strategyproof and Pareto efficient. Looking at our proof
is quite instructive. While the coalitional strategyproofness property is preserved when
we move from the mechanism C to the (sub)mechanism C−i (pi ), the Pareto efficiency
property is not. The induction argument which is used in our proof breaks down.

These observations raise a new question: what are the implications of the conjunc-
tion of strategyproofness and efficiency in the Euclidean setting? This question has
been explored by Peters et al. (1992, 1993a,b) in a series of important papers. They
consider the subclass of anonymous social choice mechanisms. One striking result
that Peters et al. (1992) establishes asserts that if C is a strategyproof and efficient
social choice mechanism, then C is continuous. Following Moulin (1980) (for the case
where m = 1) and Border and Jordan (1983), they define the notion of coordinate-
wise median scheme as follows. A collection {x1, x2, . . . , xm} ⊆ R

m is a coordinate
system if 〈x j , xk〉 = 0 for all j, k = 1, . . . , m with j �= k, i.e. {x1, x2, . . . , xm} is an
orthogonal basis of R

m . Let k ∈ N so that k + n is odd. A social choice mechanism C
is a coordinatewise median social choice mechanism with k constant points (phantom

6 A proof that decomposability follows from strategyproofness whenever the domain consists of a rich set
of separable preferences appears in Le Breton and Sen (1999).
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points) if there exists a coordinate system and points c1, c2, . . . , ck ∈ {R∪{−∞,∞}}m

such that:

C j (p) = Med
(

p j
1 , p j

2 , . . . , p j
n , c j

1 , c j
2 , . . . , c j

k

)

where Med denotes the median of the subsequent real numbers and all coordinates
are expressed with respect to the given coordinate system. They show that if m ≥ 2
and n is even, or if n ≥ 3, then there does not exist surjective social choice mecha-
nism which are anonymous, efficient and strategyproof. However when m = 2 and
n is odd, the class of anonymous, efficient and strategyproof social choice mecha-
nisms is nonempty. More precisely, the class of anonymous, efficient and strategyproof
social choice mechanisms coincides exactly with the class of coordinatewise median
social choice mechanism without constant points. This result was established also by
Kim and Roush (1984) with the additional assumption that C is continuous. But, as
already pointed out by Peters, van der Stel and Storcken, this property is implied by
the others and is therefore redundant.

5.4 Strategyproofness

Coalitional strategyproofness is often strictly more demanding than strategyproof-
ness. It is therefore natural to wonder what is the class of strategyproof social choice
mechanisms when X = R

m . The coordinatewise median social choice mechanisms
are strategyproof. More generally, we can construct componentwise social choice
mechanisms by constructing separately a social choice mechanism for each of the m
components where the choice of the j th social coordinate only depends upon the vec-
tor p j = (p j

1 , p j
2 , . . . , p j

n). Such mechanisms have been called decomposable as the
initial problem has been decomposed into m one dimensional problems. Strategyproof-
ness follows from the fact that Euclidean preferences are separable, i.e. preferences
over one coordinate do not depend upon what has been decided upon the other coordi-
nates. Therefore, existence of nondictatorial social mechanisms is not an issue here. It is
legitimate to wonder what is the exact class of strategyproof social choice mechanisms.

This a difficult question which has been addressed by Laffond (1980) in his thesis
and also by Kim and Roush (1984). Kim and Roush focus on the case where X = R

2.
They prove that a social choice mechanism is continuous and anonymous (but not
necessarily surjective) iff it is a coordinatewise median social choice mechanism with
n + 1 constant points. Peters et al. (1993b) proves that if C is strategyproof then C
is continuous iff R(C) is convex. They further point out that if C is surjective then
C is strategyproof and anonymous iff it is a coordinatewise median social choice
mechanism with n − 1 constant points.

Laffond’s work (1980) considers the case where n = 2 but m is arbitrary. He
focuses on the class of anonymous, continuous, surjective and strategyproof social
choice mechanisms. As already pointed out, to conduct his analysis, he also invented
the technique of option sets. His analysis consists in a gradual exploration of the prop-
erties of the sets O2(p1) and O1(p2). First, he demonstrates that if C is surjective,
continuous and strategyproof, the option sets are closed and convex subsets of R

m .
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This implies that C(p1, p2) is the projection of p1 on O1(p2) and the projection of
p2 on O2(p1). Of course some consistency condition is needed since the two options
sets cannot be constructed independently of each other. The main part of his work
consists in sorting out the implications of this consistency. We have no space here to
go through all his lengthy analysis. We just sketch some of his main ideas. To show
what kind of mechanisms will appear out of Laffond’s exploration, consider, for the
sake of illustration,7 the case where C(p1, p2) is the projection of p2 on p1 + K2
where K2 is the convex cone {x ∈ R

2: x1 ≤ 0, x2 ≤ 0 and x2 ≤ x1}. By construc-
tion, O2(p1) = p1 + K2 and C is not manipulable by 2. It is easy to show that C
is not manipulable either. Further, it can be verified that O1(p2) = p2 + K1 where
K1 = −K ⊥

2 where K ⊥
2 ≡ {x ∈ R

2 : 〈x, y〉 ≤ 0 for all y ∈ K2}. K ⊥
2 is called the

polar of the cone K2. The construction is illustrated in Fig. 5.
Another illustration is the case where individual 1 is a dictator on the first coordinate

and individual 2 is a dictator on the second coordinate. In such case, K2 is the vertical
axis and K1 is the horizontal axis. In the first example, K1 has a nonempty interior
while its is empty in the second one. These two examples violates anonymity. Ano-
nymity prevails iff K ⊥

2 = −K1. Such cones are called self-polar (or self dual cones).
Let K be an arbitrary closed and convex self-polar cone with an nonempty interior.
As shown by Laffond, the social choice mechanism where equivalently the social
outcome is the projection of p1 on p2 + K or the projection of p2 of 2 on p1 + K is
strategyproof, anonymous and continuous. This construction leads to a large family of
anonymous, surjective, continuous and strategyproof social choice mechanism. What
mechanisms do we find in that family?

7 This example appears in Border and Jordan (1983).
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First, and not surprisingly (from what precedes), we find the class of coordinatewise
median social choice mechanism with one constant point at infinity. The self-polar
cone attached to any such mechanism is (up to a rotation) the positive orthant R

m+.
When m = 2, R

2+ is the unique (up to a rotation) self-polar cone of R
2. When m = 2,

any social choice mechanism constructed along these lines is decomposable. However,
when m ≥ 3, this is not true anymore. This follows from the fact that when m ≥ 3,
the family of self-polar cones is much richer. The analysis of these objects is a well
defined area in mathematics (see, e.g. Barker and Foran 1976; Iochum 1984) and one
merit of Laffond’s construction is to point out this connection.

The above construction raises the following question: What is the specificity of the
class of anonymous, surjective, continuous and strategyproof social choice mecha-
nisms constructed by Laffond through self-polar cones? Laffond shows that, to answer
the above question, we have to examine the asymptotic cone8 of the option set O(p).
In particular, he first shows that if C is an anonymous, surjective, continuous and
strategyproof social choice mechanism, then O1 = O2 ≡ O where O is a corre-
spondence with closed and convex values such that K (O(p)) is independent of p, i.e.
K (O(p)) = K (O(p′)) ≡ K for all p, p′ ∈ R

m . He further shows that if K has a
nonempty interior, then C belongs to the class which has just been constructed, i.e.
O(p) = p + K and K is self-polar.

5.5 Superdomains

The set of Euclidean preferences on R
m is in one to one correspondence with R

m .
Many authors have explored the questions examined in this note for sets of preferences
who are supersets of the set of Euclidean preferences. One important such a superdo-
main is the set of diagonal (separable) quadratic preferences. They are described by
utility functions u such that:

u(x) = −
m

∑

j=1

α j (x j − p j )2 where α = (α j )1≤ j≤m ∈ R
m++

Another (larger) superdomain is the all set of quadratic preferences described by
utility functions u such that:

u(x) = −
m

∑

k=1

m
∑

j=1

αk j (x j − p j )2 where

α = (αk j )1≤k, j≤m is a symmetric positive definite matrix

Border and Jordan’s (1983) seminal contribution contains many important results
on these two domains. They demonstrate that a surjective social choice mechanism C

8 The asymptotic cone K (A) of an arbitrary closed and convex subset A of R
m is defined as follows:

K (A) = {x ∈ R
m : ∀λ ≥ 0, ∀y ∈ A, x + λy ∈ A}.
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over the domain of diagonal quadratic preference is strategyproof iff it is decompos-
able, i.e. if there exist m surjective and strategyproof social choice mechanisms C j

such that:

C(p, α) = (C(p1), C(p2), . . . , C(pm))

Among other things, decomposability obliges to abandon the idea of using the
information on preferences which is contained in the vectors αi ∈ R

m++ and therefore
to limit the information on preferences to the peaks of the individual preferences.9

This decomposability result implies here a property which has been called in the
literature a tops only property.10 In many other social environments settings, it is also
an implication of strategyproofness.

They prove that any surjective and strategyproof social choice mechanism over the
set of quadratic preferences is dictatorial. Their result has been generalized by Zhou
(1991) who weakens the surjectivity assumption to a very weak range condition.

The superdomains discussed above are parametric. We could consider classes of
preferences which are not described by a finite set of parameters. For example we
could consider the class of preferences on R

m represented by utility functions u such
that:

u(x) =
m

∑

j=1

v j (x j )

where each v j : R → R has a unique maximizer from which it decreases monotoni-
cally in either direction. This domain has been explored by many authors including
among others (Barbera et al. 1993). It is important to note that if it can been shown that
strategyproofness implies the top only property, then we are back to the parametric
domains considered earlier. Barbera (2010) offers a detailed exposition of this area of
research.

Finally, we could also consider the questions explored in this note for a class of pref-
erences generated by a distance different from the Euclidean distance. This question
is explored extensively in van der Stel who considers some other norms. In location
problems, the set A is a assumed to be a closed and connected subset of R

m and for
all p, q ∈ A, the distance between d(p, q) is the shortest distance from p to q (and
q to p). Schummer and Vohra (2002) have examined the implications of surjectivity
and strategyproofness in the case where A is the union of a finite number of closed
curves of finite length.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.

9 Decomposability implies more restrictions.
10 On this, see Weymark (1999).
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