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Abstract We consider voting rules on a multidimensional policy space for a contin-
uum of voters with elliptic preferences. Assuming continuity, γ -strategy-proofness—
meaning that coalitions of size smaller or equal to a small number γ cannot manipu-
late—and unanimity, we show that such rules are decomposable into one-dimensional
rules. Requiring, additionally, anonymity leads to an impossibility result. The paper
can be seen as an extension of the model of Border and Jordan (1983) to a continuum
of voters. Contrary, however, to their finite case where single voters are atoms, in our
model with nonatomic voters even a small amount of strategy-proofness leads to an
impossibility.
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1 Introduction

We consider voting rules for situations with a large number of voters, who have single-
peaked preferences on a multidimensional policy space. We assume that the voters
actually constitute a continuum, more precisely, they are elements of a nonatomic
measure space. This is a good approximation of a situation with many voters, such as
for instance national elections, and it makes it possible to accommodate the fact that
in such situations small coalitions have no or only little influence. The policy space is
represented by the hypercube [0, 1]k . A point in this hypercube represents a position
with respect to k different issues or criteria. In the context of a national election, such
a point may also represent a specific political party; in this context, voters normally
vote for a finite number of parties, but allowing them to vote for any position in the
hypercube is again an approximation of the finite party case. See Maus et al. (2006)
for more discussion on this issue.

Single-peakedness of preferences means that each voter has an ideal point, and
preference decreases when moving away from this point. Specifically, we assume
that preferences are separable quadratic, i.e., have elliptic indifference curves: this
leaves sufficient room to model trade-offs between policies (criteria, coordinates)
while potentially allowing for reasonable voting rules.

Our model extends the model of Border and Jordan (1983), where the number of
voters is finite, to a continuum of voters.1 Border and Jordan impose strategy-proof-
ness and unanimity on a voting rule and obtain decomposability: such a voting rule
is completely determined by one-dimensional voting rules applied to each coordinate
separately, and these one-dimensional voting rules are of the type as characterized
earlier in Moulin (1980). It is well-known that, although these one-dimensional vot-
ing rules are group-strategy proof (cannot be manipulated by coalitions of voters) this
property is lost as soon as the dimension is higher than one. See, recently, Barberà
et al. (2010).

In our model, manipulation by single voters is not possible since single voters do
not have any influence. Instead, we impose that coalitions of positive but small size
cannot manipulate, and call this condition γ -strategy-proofness, where γ is a small but
positive number. We also impose unanimity and a weak continuity condition (based,
technically, on convergence in measure). Like Border and Jordan (1983) we obtain
decomposability of the rule into one-dimensional rules. Under the additional condi-
tion of anonymity, these one-dimensional rules are those characterized by Maus et al.
(2006). However, any composition of such rules for higher dimensions fails to be
γ -strategy-proof for any γ > 0. Thus, we obtain an impossibility result: there is no
unanimous, anonymous and continuous rule for more than one dimension which is
non-manipulable, even if we require this only for coalitions of arbitrarily small size.

These results can be considered to be in line with what is known in the literature.
We obtain decomposability just as Border and Jordan (1983), but contrary to them we
obtain from this an impossibility result since, basically, our strategy-proofness condi-
tion is one of group strategy-proofness. Thus, and in contrast to Border and Jordan, our

1 We only mention the directly relevant literature here. For an extensive survey, see Barberà (2010).
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main conclusion is that in situations with a large number of voters there is no scope for
even a weak form of strategy-proofness under reasonable additional conditions. From
a technical point of view, although our proofs share elements with proofs in Border
and Jordan (1983), they are nevertheless considerably different, due to the possibility
of coalitions of any arbitrary size instead of a finite number of ‘atomic’ players.

In Sect. 2 the model is introduced, Sect. 3 deals with the one-dimensional case, and
Sect. 4 presents the mentioned decomposability and impossibility results. Section 5
contains a few concluding remarks about the tightness of the imposed conditions.

2 Preliminaries

Let (�,�, λ) be a nonatomic measure space. Every t ∈ � is a voter and every ele-
ment S of the σ -field � is a coalition. The nonnegative number λ(S) is interpreted as
the size of S. We assume that � has positive measure and normalize its size to one:
λ(�) = 1.

The set of alternatives is the hypercube A = [0, 1]k , where k ∈ N. Let Q denote
the set of all elliptic preferences on A, i.e., binary relations representable by a util-
ity function of the form x �→ −∑k

j=1 w j (x j − p j )
2, x = (x1, . . . , xk) ∈ A, for

some peak p = (p1, . . . , pk) ∈ A and vector of positive weights w ∈ W , where
W = {(w1, . . . , wk) ∈ R

k++ | max{w1, . . . , wk} = 1}. Such a preference can be
identified with the pair (p, w) ∈ A × W , and Q with the set A × W . We endow
Q = A × W with the Borel σ -field.

A profile is a measurable function R : � → Q. Thus, in a profile R every voter t is
endowed with an elliptic preference R(t) ∈ Q. The peak and weight vector of R(t) are
denoted by p(R(t)) and w(R(t)). The set of all profiles is denoted by ρ. Every R ∈ ρ

induces a (probability) measure λR on A by defining λR(B) = λ({t ∈ � | p(R(t)) ∈
B}) for every measurable subset B of A. This measure λR represents the distribution
of the peaks of the votes resulting from an election where every voter t ∈ � votes
according to R(t).

Let J be some ordered index set. A collection of profiles (R j ) j∈J converges to a
profile R if (λ({t ∈ � | R j (t) �= R(t)})) j∈J converges to 0.2

A voting rule or briefly rule is a map F : ρ → A.
A rule F is anonymous if F(R) = F(R̃) for all R, R̃ ∈ ρ such that λ({t ∈ � |

R(t) ∈ Q}) = λ({t ∈ � | R′(t) ∈ Q}) for every measurable subset Q of Q.
A rule F is unanimous if F(R) = p for all R ∈ ρ such that there is a (p, w) ∈ Q

satisfying R(t) = (p, w) for all t ∈ �.
A rule F is continuous if (F(R j )) j∈J (where J is an ordered index set) converges

to F(R) whenever the collection of profiles (R j ) j∈J converges to R ∈ ρ. Observe
that continuity of a rule F implies that coalitions of size zero and in particular single
voters are powerless: that is, F(R) = F(R̃) whenever λ({t ∈ � | R(t) �= R̃(t)}) = 0.
This is a very weak continuity condition: it does not imply anything if each voter’s
preferences in two different profiles are very close.

2 This is convergence in measure.
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Fig. 1 Illustrating the proof of Lemma 1. The number α is the midpoint between F(R) and F(R′).
All voters in S have their peaks to the right of α

Let γ ∈ R, 0 < γ ≤ 1. A rule F is γ -manipulable by a coalition S at a profile
R ∈ ρ if λ(S) ≤ γ and there is a profile R̃ ∈ ρ with R̃(t) = R(t) for all t ∈ �\S
such that F(R̃)P(t)F(R) for all t ∈ S, where P(t) denotes the asymmetric part of
R(t). A rule F is γ -strategy-proof (γ -SP) if it is not γ -manipulable by any coalition
S at any profile R.

3 The one-dimensional case

In the one-dimensional case (k = 1) preferences are completely determined by their
peaks. Therefore, we can identify Q with the set A = [0, 1] and ρ with the set [0, 1]�.
In this case, γ -SP implies that no coalition of any size can manipulate, as the following
lemma shows. The proof of this lemma is illustrated in Fig. 1.

Lemma 1 Let k = 1, let 0 < γ ≤ 1, and let F be continuous and γ -SP. Then F is
γ ′-SP for every γ ′ ∈ (0, 1].
Proof Let γ ′ ∈ (0, 1]. If γ ′ ≤ γ then clearly F is γ ′-SP. Now assume γ ′ > γ and
for contradiction suppose that F is γ ′-manipulable by some coalition S ∈ � at profile
R ∈ ρ. Then γ < λ(S) ≤ γ ′ and there is a profile R′ with R′(t) = R(t) for all
t ∈ �\S such that F(R′)P(t)F(R) for all t ∈ S. Hence F(R′) �= F(R), w.l.o.g.3

F(R′) > F(R). Then p(R(t)) > α for all t ∈ S, where α := 1
2 (F(R) + F(R′)),

since each R(t) is a symmetric single-peaked preference on A = [0, 1].
For each 0 ≤ β ≤ λ(S) let Sβ ⊆ S with λ(Sβ) = β and such that Sβ ⊆ Sβ ′

whenever β ≤ β ′; this is possible since λ is nonatomic. Let Rβ be defined by Rβ(t) =
R′(t) for t ∈ Sβ and Rβ(t) = R(t) for t ∈ �\Sβ . Let β̄ := max{0 ≤ β ≤ λ(S) |
F(Rβ) = F(R)}. Then β̄ is well-defined by continuity of F , β̄ < λ(S) and F(Rβ) >

F(R) = F(Rβ̄ ) for allβ > β̄. Again by continuity of F there is a δ < min{γ, λ(S)−β̄}
such that F(Rβ̄+δ) < α. This implies that the coalition Sβ̄+δ\Sβ̄ γ -manipulates F at
Rβ̄ , a contradiction. 	


We call a one-dimensional rule F strategy-proof if it is γ -SP for every γ ∈ (0, 1].
By Lemma 1, every one-dimensional γ -SP rule F is strategy-proof. In Maus et al.
(2006) all continuous, unanimous, anonymous and strategy-proof one-dimensional
rules have been characterized.4 In this characterization, a central role is played by
the family F of all nondecreasing (i.e., weakly increasing) and continuous functions

3 Without loss of generality.
4 Maus et al. (2006) use the stronger property of Pareto optimality but it is easy to see that their character-
ization still holds with unanimity instead of Pareto optimality. The argument goes as follows. If F is not
Pareto optimal then there is a profile R and an interval [a, b] ⊆ [0, 1] such that almost all peaks of R are
in [a, b] but (say) F(R) < a. Gradually change the profile R to a unanimous profile Q with all peaks at a.
By continuity and SP, F(Q) ≤ F(R) < a, hence F is not unanimous.
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f : [0, 1] → A with f (0) = 0 and f (1) = 1. Let f ∈ F . We define a rule F f

associated with f , as follows. (See Fig. 2 later on for an illustration.) Let R ∈ ρ.
Consider the induced decumulative distribution DR defined by DR(x) := λR([x, 1])
for all x ∈ A. Now

F f (R) := max{x ∈ A | f (DR(x)) ≥ x}. (1)

The rule F f is well-defined since the set of which the maximum is taken is non-
empty (it contains x = 0), f is continuous and DR is left-continuous. The mentioned
characterization is as follows.

Theorem 1 Let k = 1. A rule F is continuous, unanimous, strategy-proof and anon-
ymous if and only if there is an f ∈ F such that F = F f .

Theorem 1 and Lemma 1 imply the following result.

Corollary 1 Let k = 1 and 0 < γ ≤ 1. A rule F is continuous, unanimous, γ -SP
and anonymous if and only if there is an f ∈ F such that F = F f .

4 The general case: decomposability and impossibility

The main result of this section and of the paper is the following decomposability
theorem.

Theorem 2 Let 0 < γ ≤ 1. If a rule F is continuous, unanimous, and γ -SP then for
each j = 1, . . . , k there is a continuous, unanimous and γ -SP rule F j : [0, 1]� →
[0, 1] such that for all R = (p(t), w(t))t∈� ∈ ρ,

Fj (R) = F j ((p j (t))t∈�) for each j = 1, . . . , k ,

where Fj (R) is the j-th coordinate of F(R).

Proof See Appendix. 	

Theorem 2 implies in particular that a rule with the mentioned properties is peaks-

only, i.e., depends only on the peaks and not on the weight vectors of the preferences.
Unfortunately, requiring, in addition, anonymity leads to an impossibility, as the fol-
lowing result shows.

Theorem 3 Let 0 < γ ≤ 1 and let k ≥ 2. There is no rule F that is continuous,
unanimous, anonymous, and γ -SP.

Proof Suppose F is a continuous, unanimous, anonymous, and γ -SP rule. Then
by Theorem 2 and Corollary 1, there are f j ∈ F , j = 1, . . . , k, such that for all
R = (p(t), w(t))t∈� ∈ ρ,

Fj (R) = F f j ((p j (t))t∈�) for each j = 1, . . . , k. (2)
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Fig. 2 Illustrating the proof of Theorem 3. In the left diagram, the thick black curve represents the decu-
mulative distribution of λ1, and the grey curve the distribution resulting from manipulation by T00 ∪ T11.
The right diagram illustrates the situation for the second coordinate, with similar explanation.

We show, for contradiction, that a rule F given by (2) is not γ -SP. We assume k = 2,
the construction that follows can easily be embedded in higher dimensions.

First, choose numbers α, β, and ε such that

• 0 < α < α + ε < 1 and 0 < β − ε < β < 1
• f 1(ξ) > f 1(α) for all ξ ∈ (α, α + ε)

• f 2(ξ) < f 2(β) for all ξ ∈ (β − ε, β).

This is possible since f 1, f 2 ∈ F , i.e., f 1 : [0, 1] → [0, 1] and f 2 : [0, 1] →
[0, 1] are nondecreasing and continuous functions with f 1(0) = f 2(0) = 0 and
f 1(1) = f 2(1) = 1. Let δ be a number such that 0 < δ < 1 and 1 − α − β < δ <

min{1−α, 1−β}. Let � be partitioned into coalitions S00, S10, S01, and S11 such that
λ(S00) = δ, λ(S10) = 1 − β − δ, λ(S01) = 1 − α − δ, and λ(S11) = δ + α + β − 1.
Consider a profile R such that

p(R(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0) if t ∈ S00
(1, 0) if t ∈ S10
(0, 1) if t ∈ S01
(0, 0) if t ∈ S00

for all t ∈ �.

Some of the weight vectors are chosen later in the proof, but they do not influence
F(R), since F is peaks-only.

Let λ1 denote the marginal probability measure on the set of first coordinates [0, 1]
induced by R. Then λ1(0) = 1 − α and λ(1) = α. Therefore, F f 1

((p1(R(t)))t∈�) =
f 1(α). Similarly we derive F f 2

((p2(R(t)))t∈�) = f 2(β). Write x1 = f 1(α) and
x2 = f 2(β), then F(R) = (x1, x2). See Fig. 2 for an illustration.

We now show that F can be γ -manipulated at R. Let 0 < γ 1, γ 2 < ε such that
γ 1 + γ 2 ≤ γ , γ 1 < δ = λ(S00), and γ 2 < δ + α + β − 1 = λ(S11). Let T00 ⊆ S00
with λ(T00) = γ 1 and let T11 ⊆ S11 with λ(T11) = γ 2. Now consider a profile R′ with
p(R′(t)) = (1, 0) for all t ∈ T00 ∪ T11, and with p(R′(t)) = p(R(t)) for all other t .
Then F(R′) = (y1, y2) where y1 = f 1(α + γ 1) > x1 and y2 = f 2(β − γ 2) < y2.
Now it is straightforward to find a weight vector for the voters in T00 such that y P(t)x
for all t ∈ T00, and a weight vector for the voters in T11 such that y P(t)x for all
t ∈ T11; this boils down to constructing two ellipses with centers at (0, 0) and at (1, 1)
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respectively, both crossing through x and having y in the interior. But this means that
T00 ∪ T11 can γ -manipulate F at R by changing their preferences to R′. 	


5 Concluding remarks

How tight are the decomposability (Theorem 2) and impossibility (Theorem 3) results?

5.1 Without unanimity

Under (γ -)strategy-proofness, unanimity is equivalent to the requirement that the vot-
ing rule F be surjective, i.e., its range is [0, 1]k . Without this condition, Theorem 2 no
longer holds: in the following example we construct a voting rule which is (γ -)strat-
egy-proof and continuous but not decomposable.

Example 1 Let k = 2, and for every preference (p, w) let p′ ∈ D := {x ∈ [0, 1]2 |
x1 = x2} be the maximally preferred point of D, i.e., w1(p′

1 − p1)
2 +w2(p′

2 − p2)
2 ≤

w1(x1−p1)
2+w2(x2−p2)

2 for all x ∈ D. Consider the set of symmetric single-peaked
preferences on D, represented by their peaks, and let G be a continuous, unanimous,
strategy-proof and anonymous one-dimensional voting rule on D as in Theorem 1 (D
can be identified with the interval [0, 1]). For a profile R : � → [0, 1]2 × W with
R(t) = (p(t), w(t)) for each t ∈ � we define F(R) = G((p(t)′)t∈�) ∈ D. Then it is
not difficult to check that the voting rule F , defined in this way, is (γ -)strategy-proof
and continuous. Clearly, it is not decomposable in the sense of Theorem 2: F(R)

depends not only on the peaks but also on the weights of the preferences in R.

The basic characteristic of the construction in Example 1 is that for a preference
(p, w) with p not in the range (D in the example) the most preferred point of the range
depends not only on p but also on the weights w. One can show, more generally, that if
this can happen then a voting rule with that range (but full domain) which is continuous
and (γ -)strategy-proof cannot be decomposable. This leads to the conjecture that such
a rule is decomposable exactly when the range is a hypercube (hence, rectangular in
the two-dimensional case).5 Obvious examples are the constant voting rule, or a rule
with range {x ∈ [0, 1]k | ∃ j ∀ �= j [x = 0]}. Without continuity, the range can be
Cartesian without being a hypercube. As an example of the latter, consider the rule,
for k = 2, with range {(0, 0), (1, 0), (1, 1), (0, 1)}, obtained by using majority voting
plus an appropriate tie-breaking rule to decide between up or down and left or right.

Also for the case of finitely many voters, the exact range condition guaranteeing
decomposability under (only) strategy-proofness is, to the best of our knowledge,
an open problem [already mentioned in Border and Jordan (1983)]. For the one-
dimensional case, all rules satisfying strategy-proofness, anonymity, and continuity
are described in Remark 3.7 in Maus et al. (2006).

5 Results like this are reported for the case of finitely many voters in for instance Sprumont (1995) and
Weymark (1999).
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5.2 Without anonymity

We conjecture that dropping anonymity is not going to change Theorem 3 in an essen-
tial way and may only lead to some kind of ‘invisible dictator’ result, as in Kirman and
Sondermann (1972). Dropping anonymity in the one-dimensional case (Theorem 1)
would imply that a rule is no longer characterized by a function f ∈ F (cf. Section 3)
but by some map ϕ : � → [0, 1], satisfying certain conditions (among which are
continuity and monotonicity) and with ϕ(S) representing the outcome of the voting
rule when coalition S votes for 0 while �\S votes for 1.

5.3 Without continuity

Interestingly, dropping continuity allows for rules which perhaps do not offer real
compromises but at least are not dictatorial in any way. An example of such a rule
is to choose the left or right endpoint of the support of a profile on each coordinate
separately by using majority voting plus an appropriate tie-breaking rule.

5.4 Different domains

Finally, changing and in particular enlarging the domain of preferences will in general
only make it more difficult to find strategy-proof voting rules, cf. Zhou (1991) for the
case of finitely many voters.

Appendix: Proof of Theorem 2

We recall that the support of a probability measure μ on A is the set of all points in
A such that every open neighborhood of such a point has positive measure. Equiva-
lently, it is the smallest (in terms of set inclusion) closed subset that has measure 1.
We denote the support of μ by supp(μ) and for j = 1, . . . , k we define the set
supp j (μ) by supp j (μ) = {α ∈ R | α = x j for some x ∈ supp(μ)}. Thus, supp j (μ)

is the projection of supp(μ) on the j-th coordinate.
For a subset X of some Euclidean space we denote by conv(X) the convex hull of X ,

i.e., the smallest convex set containing X . The first lemma shows that a continuous,
unanimous and γ -SP rule assigns to each profile a point each coordinate of which is in
the projection on that coordinate of the support of the probability measure generated
by the profile.

Lemma 2 Let 0 < γ ≤ 1. Let F be continuous, unanimous and γ -SP, and let R ∈ ρ.
Then Fj (R) ∈ conv(supp j (λR)) for each j = 1, . . . , k.

Proof (a) First, suppose that there is an α > 0 such that w j (t) > α for all j = 1, . . . , k
and all t ∈ �, where R(t) = (p(t), w(t)). Suppose, for a contradiction, that F1(R) <

r1 where [r1, r2] = conv(supp1(λR)). Let p := ( 1
2 (r1+F1(R)), F2(R), . . . , Fk(R)) ∈
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A and for each δ > 0 let w(δ) = (δ, 1, . . . , 1) ∈ W . Let

E(δ) := {x ∈ A |
k∑

j=1

w j (δ)(x j − p j )
2 ≤

k∑

j=1

w j (δ)(Fj (R) − p j )
2}

denote the set of points weakly preferred to F(R) by a voter with preference (p, w(δ)).
We first prove the following claim.

Claim. Let 0 < ε < 1
2 (r1 − F1(R)). Then there is a δ > 0 such that for all x ∈ E(δ)

with x1 + ε < p1 and all y ∈ E(δ) with y1 = x1 + ε, we have y P(t)x for all t ∈ �.
Proof. We have to show that there is a δ > 0 such that for all t ∈ � and all x and y

as in the claim the following inequality holds:

w1((x1 + ε) − q1)
2 +

k∑

j=2

w j (y j − q j )
2 < w1(x1 − q1)

2 +
k∑

j=2

w j (x j − q j )
2,

where (w, q) = R(t). This inequality is equivalent to

w1[((x1 + ε) − q1)
2 − (x1 − q1)

2] <

k∑

j=2

w j [(x j − q j )
2 − (y j − q j )

2].

Since x, y ∈ A(δ), the absolute value of the expression at the right-hand side of this
inequality can be made uniformly small (that is, for all (q, w) ∈ Q) by choosing δ

small. The expression at the left-hand side is negative but bounded away from zero:

w1[((x1 + ε) − q1)
2 − (x1 − q1)

2] = w1[(q1 − x1 − ε)2 − (q1 − x1)
2]

= −εw1[2(q1 − x1) − ε]
< −εw1[2(r1 − p1) + ε]
< −εω[2(r1 − p1) + ε].

This concludes the proof of the Claim.
Let m be the smallest integer larger than 1/γ , let ε < (p1 − F1(R))/m, and

take δ as in the Claim. Take S1, . . . , Sm ∈ � pairwise disjoint with λ(Si ) = γ for
i = 1, . . . , m − 1 and λ(Sm) = 1 − (m − 1)γ ≤ γ . Let S0 = ∅. For i = 0, . . . , m
define Ri ∈ ρ by Ri (t) = (p, w(δ)) for all t ∈ ∪i

=0S and Ri (t) = R(t) for all
remaining t . By γ -SP, F(R1) ∈ E(δ) otherwise S1 can γ -manipulate F at R1. By
the choice of δ as in the Claim, we have F1(R1) < F1(R) + ε otherwise S1 can
γ -manipulate F at R0 = R. Again by γ -SP and the fact that F(R1) ∈ E(δ), we
have F(R2) ∈ E(δ) otherwise S2 can γ -manipulate F at R2. Again by the choice
of δ as in the Claim, we have F1(R2) < F1(R1) + ε < F1(R) + 2ε otherwise S2
can γ -manipulate F at R1. By performing this step m times in total we obtain for the
profile Rm that F1(Rm) < F1(R) + mε < p1. By unanimity, however, F(Rm) = p,
a contradiction.
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(b) Now let R ∈ ρ be arbitrary. For w ∈ W and n ∈ N define wn ∈ W by
wn

j = w j if w j ≥ 1/n and wn
j = 1/n if w j < 1/n, for all j = 1, . . . , k. For

each n ∈ N define Rn ∈ ρ by Rn(t) = (p(t), wn(t)) if R(t) = (p(t), w(t)), for
all t ∈ �. We claim that Rn → R for n → ∞. If not, then let S1 ⊇ S2 ⊇ . . .

be defined by Sn = {t ∈ � | Rn(t) �= R(t)} for all n. Then there is a δ > 0
such that λ (∩n∈NSn) ≥ δ, so that in particular ∩n∈NSn �= ∅. Take t ∈ ∩n∈NSn and
let R(t) = (p(t), w(t), then there is some j with w j (t) = 0, a contradiction since
w(t) ∈ W .

By part (a) of the proof, Fj (Rn) ∈ conv(supp j (λRn )) = conv(supp j (λR)) for
each j = 1, . . . , k and all n ∈ N. By continuity of F , this implies Fj (R) ∈
conv(supp j (λR)) for each j = 1, . . . , k. 	


The following lemma shows that a continuous, unanimous, and γ -SP rule is peaks-
only when restricted to profiles that live on only one coordinate.

Lemma 3 Let 0 < γ ≤ 1 and let F be continuous, unanimous, and γ -SP. Let
R = (p(t), w(t))t∈�, R′ = (p(t), w′(t))t∈� ∈ ρ and j ∈ {1, . . . , k} be such
that p(t) = p(t ′) for all  �= j and t, t ′ ∈ �. Then F(R) = F(R′).

Proof W.l.o.g. let j = 1. Take ε > 0 and let S = {t ∈ � | p1(t) < F1(R) − ε}. We
prove that F(Q) = F(R) for the profile Q with Q(t) = (p(t), w′(t)) for all t ∈ S
and Q(t) = (p(t), w(t)) for all t ∈ �\S. Then, since ε > 0 is arbitrary, it follows by
continuity of F that F(R′′) = F(R) for the profile R′′ with R′′(t) = (p(t), w′(t)) for
all t with p1(t) ≤ F1(R) and R′′(t) = (p(t), w(t)) for all other t . By repeating the
argument for voters t with p1(t) > F1(R), we obtain F(R′) = F(R) and the proof is
complete.

We are done if λ(S) = 0. Now assume λ(S) = β̄ > 0, and for each 0 ≤ β ≤ β̄

let Sβ ⊆ � such that (i) λ(Sβ) = β and (ii) Sβ ⊆ Sβ ′
whenever β ≤ β ′ (this

is possible since λ is nonatomic). For each 0 ≤ β ≤ β̄ define the profile Rβ by
Rβ(t) = (p(t), w′(t)) for all t ∈ Sβ and Rβ(t) = (p(t), w(t)) for all t ∈ �\Sβ . By
Lemma 2, F(Rβ) = F(R) for all  �= 1. Let α = max{0 ≤ β ≤ β̄ | F1(Rβ) =
F1(R)}. If α < β̄, take a number α′ with α < α′ ≤ β̄, α′ ≤ α + γ , and such that
F1(Rα′

) > F1(R) − 1
2ε: this is possible by continuity of F . If F1(Rα′

) < F1(R) then

coalition Sα′ \Sα can γ -manipulate F at Rα; if F1(Rα′
) > F1(R) then coalition Sα′ \Sα

can γ -manipulate F at Rα′
. Hence, we have α = β̄, so F(Q) = F(Rβ̄ ) = F(R). 	


The next lemma presents a technical result, which will be used in the proof of
Lemma 5 below.

Lemma 4 Let k ≥ 2 and 0 < ε < 1. Then there is a δ > 0 such that for all p, x, y ∈ A
with either p1 ≤ y1 ≤ x1 − ε or p1 ≥ y1 ≥ x1 + ε we have y P(t)x, where P(t) is
the asymmetric part of R(t) = (p, (1, δ, . . . , δ)) ∈ Q.

Proof Take δ < ε2/(k −1) and let p, x, y ∈ A with p1 ≤ y1 ≤ x1 − ε (the other case
is analogous). Then y P(t)x is equivalent to

δ

⎛

⎝
k∑

j=2

(y j − p j )
2 −

k∑

j=2

(x j − p j )
2

⎞

⎠ < (x1 − p1)
2 − (y1 − p1)

2. (3)

123



SERIEs (2011) 2:485–496 495

The left-hand side of this equation is smaller than δ(k − 1). For the right-hand side
we have

(x1 − p1)
2 − (y1 − p1)

2 ≥ (y1 + ε − p1)
2 − (y1 − p1)

2

= ε(2y1 − 2p1 + ε)

≥ ε2 .

Equation (3) now follows since δ(k − 1) < ε2. 	

The next lemma is the basis for the proof of Theorem 2. It says that the j-th coor-

dinate of the point assigned to a profile by a continuous, unanimous, and γ -SP rule
depends only on the j-th coordinates of the peaks of the voters.

Lemma 5 Let 0 < γ ≤ 1 and let F be continuous, unanimous, and γ -SP. Let k ≥ 2,
j ∈ {1, . . . , k}, and let R, R′ ∈ ρ with R(t) = (p(t), w(t)) and R′(t) = (p′(t), w′(t))
for each t ∈ � such that p′

j (t) = p j (t) and p′
(t) = 0 for all t ∈ � and  �= j . Then

Fj (R′) = Fj (R).

Proof W.l.o.g. assume j = 1. Let m be the smallest integer larger than or equal to 1/γ .
Choose α > 0 arbitrary. Choose ε > 0 arbitrary but with ε < α/(m +2). By Lemma 4
we can choose δ > 0 such that for all p, x, y ∈ A with either p1 ≤ y1 ≤ x1 − ε or
p1 ≥ y1 ≥ x1 + ε we have that a voter with preference (p, (1, δ, . . . , δ)) ∈ Q strictly
prefers y to x . Let Q be the profile with Q(t) = (p′(t), (1, δ, . . . , δ) for all t ∈ �.

First consider the set of voters S1 with p1(R(t)) ≤ F1(R(t))−α for all t ∈ S1. Let
λ(S1) = β1 and let m1 be the smallest integer larger than or equal to β1/γ . By applying
γ -SP m1 times, each time changing the preferences of voters t in a subset of S1 of size
at most γ from R(t) to Q(t), we obtain for the profile R1, defined by R1(t) = Q(t)
for t ∈ S1 and R1(t) = R(t) for t ∈ �\S1, that |F1(R1) − F1(R)| < m1ε by the
choice of δ.

Second, consider the set of voters S2 with p1(R(t)) ≥ F1(R(t))+α for all t ∈ S2.
Let λ(S2) = β2 and let m2 be the smallest integer larger than or equal to β2/γ . Repeat
the above argument to obtain a profile R2, defined by R2(t) = Q(t) for all t ∈ S2 ∪ S1

and R2(t) = R(t) for all t /∈ S2 ∪ S1, and such that |F1(R2) − F1(R1)| < m2ε,
hence |F1(R2) − F1(R)| < (m1 + m2)ε. Hence, F1(R2) is a number in the interval
(F1(R) − (m1 + m2)ε, F1(R) + (m1 + m2)ε).

Finally, change the preferences of the remaining voters t , those in �\(S1∪S2), from
R(t) to Q(t). Let m3 be the smallest integer larger than or equal to (1 − β1 − β2)/γ .
By γ -SP it now follows that F1(Q) is a number in the interval (F1(R) − (m1 +
m2 + m3)ε, F1(R) + (m1 + m2 + m3)ε). Since m1 + m2 + m3 ≤ m + 2, we have
|F1(Q) − F1(R)| < (m + 2)ε < α.

By Lemma 3 we have F(R′) = F(Q), so in particular |F1(R′) − F1(R)| <

(m + 2)ε < α. Since this holds for every α > 0 we conclude that F1(R) = F1(R′).	

Proof of Theorem 2 Let F be continuous, unanimous, and γ -SP. For each
j = 1, . . . , k define F j : [0, 1]� → [0, 1] by F j ((x(t))t∈�) = F(Rx j

) for each
(x(t))t∈� ∈ [0, 1]�, where Rx j ∈ ρ is some profile with p j (Rx j

(t)) = x(t) and
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p(Rx j
(t)) = 0 for all  �= j and t ∈ �. Then F j is well-defined because of

Lemma 3, and F j inherits continuity, unanimity, and γ -SP from F . The proof of the
theorem is complete by applying Lemma 5. 	


Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.
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