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Abstract We study a problem of individual manipulation in an impartial culture
(IC) framework using computer modeling. We estimate the degree of manipulability
of ten positional voting rules in the case of multiple choice for 3 and 4 alternatives.

Keywords Manipulability · Positional voting rules · Multiple choice ·
Extended preferences

JEL Classification D7

1 Introduction

Gibbard (1973) and Satterthwaite (1975) showed that for at least 3 alternatives and any
single-valued choice rule every non-dictatorial voting rule is individually manipula-
ble. Later Duggan and Schwartz (2000) generalized this result for the case of multiple
choice (when more than 1 alternative can be socially chosen). But if we know that
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every social choice rule is manipulable, how can we find the least manipulable one?
A non-exhaustive list of papers studying to which extent known social choice rules are
manipulable includes Chamberlin (1985), Nitzan (1985), Kelly (1993), Aleskerov and
Kurbanov (1999), Smith (1999), Favardin and Lepelley (2006), Pritchard and Wilson
(2007) and Aleskerov et al. (2011a,b).

All those papers differ in main assumptions about profile probability distributions,
a measure of manipulability, tie-breaking assumptions and sets of rules under study.
There are several assumptions about individual preferences interdependence, but the
most popular are impartial culture (IC) and impartial anonymous culture assumptions
(IAC). Under the IC it is assumed that all individual orderings over alternatives are
equally possible and individual preferences are independent. Thus, in this model one
studies all profiles of preferences which are equally possible. Under IAC one looks
only on those profiles which cannot be constructed one from another by changing the
order of preferences in a given profile. Those profiles are called voting situations and
under IAC it is assumed that these situations are equally possible. IAC is useful when
one wants to find an exact formula for the number of manipulable voting situations
(Gehrlein and Fishburn 1976). In this work we use Impartial Culture model in order
to estimate the degree of manipulability of known voting rules. We use several mea-
sures of manipulability including most popular and most native one: the share of all
manipulable profiles. This measure is used almost in all papers in this field.

The next important feature is the way to deal with the possibility of multiple choice.
For all rules there are some profiles where these rules give a tie as the result of voting.
Most of the papers use alphabetical tie-breaking rules: in the case of tie first alter-
native in alphabetical order is chosen (for example, see Nitzan 1985, Aleskerov and
Kurbanov 1999, Favardin and Lepelley 2006). The deficiency of this method is that
it breaks symmetry between the alternatives because first alternatives in alphabetical
order have more chances to be selected as the final outcome. Pritchard and Wilson
(2007) use the random tie-breaking rule where in the case of a tie the final outcome
is choosing randomly. In this case one can compare some sets of alternatives using
some stochastic order. Voting rules in a more general framework of multiple choice
were studied in Aleskerov et al. (2011a,b). In our research we use the same model
and estimate the degree of manipulability of ten positional voting rules in the case of
multiple choice.

The structure of the paper is as follows. Section 2 introduces the basic notation
and concepts. Section 3 presents the indices to measure the degree of manipulability
of social choice rules and explains the computational scheme. Section 4 presents the
social choice rules under study. Section 5 presents and discusses the results.

2 The framework

Here we use the same notations as in Aleskerov and Kurbanov (1999) and almost the
same model as in Aleskerov et al. (2011b). We consider a finite set A consisting of m
alternatives, m = 3, 4. Let A = 2A\{∅} denote the set of all non-empty subsets of A.
Each agent from a finite set N = {1, . . . , n}, n > 1, is assumed to have a preference
Pi ∈ L over alternatives where L is the set of linear orders on A.
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An ordered n-tuple of preferences Pi is called a (preference) profile, �P . A group
decision is made by a social choice rule based on �P and is considered to be an element
of A. Thus we define a social choice rule as a mapping C : Ln → A.

Every agent i is assumed to have an extended preference E Pi over A which is
induced by her preference Pi over A.

There are many preference extension axioms. One can find them, for example,
in Barbera (1977), Gärdenfors (1976) and Kelly (1977). The detailed survey can be
found in Barbera et al. (2004). In this paper we use the concepts of weak and strong
manipulation. In the weak manipulation case we assume that not all possible sets can
be compared by an agent. In this paper to describe the weak manipulation case we use
Kelly’s Dominance Axiom (strong version) introduced in Kelly (1977) and presented
according to Pattanaik (1978).

Kelly’s Dominance Axiom (strong version) ∀i ∈ N and ∀ �P, �P ′ ∈Ln, if [(∀x ∈ C

( �P) and ∀y ∈ C(
−→
P ′) ⇒ x Pi y or x = y) and (∃z ∈ C(

−→
P ) and ∃w ∈ C(

−→
P ′)] ⇒

z Piw)] then C(
−→
P )E Pi C(

−→
P ′).

For the strong manipulation case we use several concepts. First of all we consider
two methods to obtain E Pi from Pi , both of which are based on lexicographic compar-
isons used by Pattanaik (1978). The methods we consider are the leximax and leximin
extensions, as described by Ozyurt and Sanver (2009).

Under the leximax extension, two sets are compared according to their best ele-
ments. If they are the same, then the ordering is made according to the second best
elements, etc. The elements according to which the sets are compared will disagree
at some step—except possibly when one set is a subset of the other, in which case
the smaller set is preferred. Formally, take any Pi ∈ L and any distinct X, Y ∈ A.
Write X = {x1, . . . , x|X |}, Y = {y1, . . . , y|Y |} and let, without loss of generality,
∀ j ∈ {1, . . . , |X | − 1}, x j+1 Pi x j and ∀ j ∈ {1, . . . , |Y | − 1} y j+1 Pi y j . The leximax
extended preference E Pi is defined as follows

1. If |X | = |Y |, then X E Pi Y iff xh Pi yh for the smallest h ∈ {1, . . . , k} for which
xh 	= yh .

2. If |X | 	= |Y | and ∃h ∈ {1, . . . , min{|X |, |Y |}} for which xh 	= yh , then X E Pi Y
iff xh Pi yh for the smallest h ∈ {1, . . . , min{|X |, |Y |}} for which xh 	= yh .

3. If |X | 	= |Y | and ∀h ∈ {1, . . . , min{|X |, |Y |}} xh = yh thenX E Pi Y iff |X | < |Y |.
The concept of the leximin extension is defined similarly so that it is based on the
ordering of two sets according to a lexicographic comparison of their worst elements.
Again the elements according to which the sets are compared will disagree at some
step—except possibly when one set is a subset of the other, in which case the larger set
is preferred. So, given any Pi ∈ L and any distinct X, Y ∈ A, where X = {x1, . . . , x|X |}
and Y = {y1, . . . , y|Y |} are such that ∀ j ∈ {1, . . . , |X | − 1} x j+1 Pi x j and
∀ j ∈ {1, . . . , |Y | − 1} y j+1 Pi y j , the leximin extended preference E Pi is defined as
follows

1. If |X | = |Y |, then X E Pi Y iff xh Pi yh for the greatest h ∈ {1, . . . , k} for which
xh 	= yh .

2. If |X | 	= |Y | and ∃h ∈ {1, . . . , min{|X |, |Y |}} for which xh 	= yh , then X E Pi Y
iff xh Pi yh for the smallest h ∈ {1, . . . , min{|X |, |Y |}} for which xh 	= yh .
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3. If |X | 	= |Y | and xh = yh ∀h ∈ {1, . . . , min{|X |, |Y |}} then X E Pi Y iff
|X | > |Y |.

We also introduce two probabilistic methods of preference extension.
In contrast to lexicographic methods, these methods of preferences extension sug-

gest that for a voter not only the presence of the alternative in a social choice is impor-
tant, but the probability that this alternative would be the final outcome is important as
well. Here two algorithms are considered: an ordering is constructed based on the prob-
ability of the best alternative and an ordering is constructed based on the probability
of the worst alternative.

Ordering based on the probability of the best alternative is produced on the ele-
ment-wise comparison of two social choices. If the best alternatives of two sets are
the same, then the set, in which the probability that this alternative would be the final
outcome is higher, is more preferable. In fact, it will be the smaller set. If the best
alternatives are the same and have equal probability to be the final outcome, then next
alternatives are compared in the same way.

Example In the set {a, b, c} the probability that alternative a would be the final out-
come equals 1

3 (we assume that each alternative of the winning set has an equal
probability to be chosen as the final outcome). In the set {a, c} this probability equals
1
2 . In other words, if the preference over alternatives is a Pi bPi c, in the extended pref-
erence based on the probability of the best alternative algorithm these sets are ordered
as {a, c}E Pi {a, b, c}.

Let us describe this method formally. From the preferences Pi ∈ L we can get
extended preferences E Pi based on the probability of the best alternative by the fol-
lowing algorithm.

Two social choices X, Y ∈ A are compared. Let us sort alternatives from each
social choice from the most preferred to the least one, i.e., let X = {x1, . . . , x|X |}
and Y = {y1, . . . , y|Y |}, where ∀ j ∈ {1, . . . , |X | − 1} x j Pi x j+1 and ∀ j ∈
{1, . . . , |Y | − 1} y j Pi y j+1. We put

• If x1 Pi y1, then X E Pi Y .
• If x1 = y1 and |X | < |Y |, then X E Pi Y .
• If x1 = y1 and |X | = |Y | = k, where k ∈ {2, . . . , m − 1}, then X E Pi Y if and

only if xh Pi yh for the least h ∈ {2, . . . , k} for which xh 	= yh .

For example, for three alternatives and the preference relation a Pi bPi c over them,
the extended preferences E Pi based on the probability of the best alternative are

{a}E Pi {a, b}E Pi {a, c}E Pi {a, b, c}E Pi {b}E Pi {b, c}E Pi {c}

The ordering based on the probability of the worst alternative is similar to the pre-
vious one, but in this case the probability of the worst alternative is considered. The
set in which this probability is higher is less preferable.

Let us give it formally. Two social choices X, Y ∈ A are compared. Let us sort
alternatives from each social choice from the most preferred to the least one, i.e.,
X = {x1, . . . , x|X |} and Y = {y1, . . . , y|Y |}, where ∀ j ∈ {1, . . . , |X | − 1} x j Pi x j+1
and ∀ j ∈ {1, . . . , |Y | − 1} y j Pi y j+1. We put
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• If x|X | Pi y|Y |, then X E Pi Y .
• If x|X | = y|Y | and |X | > |Y |, then X E Pi Y .
• If x|X | = y|Y | and |X | = |Y | = k, where k ∈ {2, . . . , m − 1}, then X E Pi Y if

and only if xh Pi yh for the least h ∈ {2, . . . , k} for which xh 	= yh .

For example, for 3 alternatives and preferences a Pi bPi c over them, extended pref-
erences E Pi based on the probability of the worst alternative will be

{a}E Pi {a, b}E Pi {b}E Pi {a, b, c}E Pi {a, c}E Pi {b, c}E Pi {c}

3 Manipulability indices and computation scheme

Number of alternatives being m, the total number of possible linear orders is equal
to m!, and the total number of profiles with n agents is equal to (m!)n . Nitzan (1985)
introduces the following index, which was also used by Kelly (1993). We call this index
as Nitzan–Kelly’s index and denote as NK, to measure the degree of manipulability of
social choice rules

NK = d0

(m!)n
,

where d0 is the number of profiles in which manipulation takes place.
Aleskerov and Kurbanov (1999) introduce an index to measure the freedom of

manipulation. In Aleskerov et al. (2011a) we introduced two similar indices: the
degree of nonsensitivity to a preference change and the probability of getting worse.
Here we also introduce the degree of an uncertain change. This index is used here
because we consider the case of weak manipulation, where not all outcomes of voting
can be compared. Let us note that for an agent there are (m! − 1) linear orders to use
instead of her sincere preference. Denote as κ+

i j (i = 1, . . . , n; 0 ≤ κ+
i j ≤ m! − 1)

the number of orderings in which voter i is better off in the j th profile. Similarly,
κ0

i j is the number of orderings in which the result of voting remains the same, κ−
i j

is the number of orderings in which the voter is worse off and κ?
i j is the number of

orderings in which the result of voting changes to the outcome incomparable by the
given extension axiom.1 It is obvious that κ+

i j + κ0
i j + κ−

i j + κ?
i j = (m! − 1). Dividing

each κi j by (m! − 1) one can find the share of each type of orderings for an agent i in
the j th profile. Summing up each share over all agents and dividing it by n one can
find the average share in the given profile. Summing the share over all profiles and
dividing this sum to (m!)n we obtain four indices

I +
1 =

∑(m!)n

j=1

∑n
i=1 κ+

i j

(m!)n · n · (m! − 1)
; I 0

1 =
∑(m!)n

j=1

∑n
i=1 κ0

i j

(m!)n · n · (m! − 1)
;

I −
1 = −

∑(m!)n

j=1

∑n
i=1 κ−

i j

(m!)n · n · (m! − 1)
; I ?

1 =
∑(m!)n

j=1

∑n
i=1 κ?

i j

(m!)n · n · (m! − 1)
.

1 The last number is always equal to zero in the case of strong manipulation because all sets can be
compared.
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It is obvious that I +
1 + I 0

1 + I −
1 + I ?

1 = 1.
We performed the calculation of indices for 3 and 4 alternatives. For 3, 4 and 5

voters, the respective indices are computed exhaustively (i.e., all possible profiles are
checked for the manipulability), and for larger number of voters the statistical scheme
is used.

In both exhaustive and statistical schemes, for each profile under consideration, all
(m!−1) manipulating orderings for each voter are generated and the respective choice
sets of manipulating profiles are compared with the choice of the original profile.

All indices were calculated for the rules defined in the next session.

4 Voting rules

We consider the following ten social choice rules.
1. Plurality Rule Choose alternatives that are ranked first by the maximum number

of agents, i.e.

a ∈ C( �P) ⇔ [∀x ∈ A n+(a, �P) ≥ n+(x, �P)],

where n+(a, �P) = card{i ∈ N |∀y ∈ A a Pi y}
2. q-Approval Let us define

n+(a, �P, q) = card{i ∈ N |card{Di (a)} ≤ q − 1},

where Di (a) = {y ∈ A : y Pi a} is the upper contour set of a ∈ A in Pi ∈ L. Let
n+(a, �P, q) be the number of agents for which a is ranked among the first q alter-
natives in their preference ordering. The integer q can be called as the degree of the
procedure. We define q-Approval as follows

a ∈ C( �P) ⇔ [∀x ∈ A n+(a, �P, q) ≥ n+(x, �P, q)],

i.e., the alternatives which are admitted to be among the q best by the highest number
of agents are chosen. It can be easily seen that Plurality Rule is a special case of
q-Approval where q = 1.

3. Borda’s Rule Let ri (x, �P) be the cardinality of the lower contour set of x ∈ A
in Pi ∈ �P , i.e. ri (x, �P) = |Li (x)| = |{b ∈ A : x Pi b}|. The sum of ri (x, �P) over all
i ∈ N is called the Borda score of alternative a.

r(a, �P) =
n∑

i=1

ri (a, Pi ).

The alternatives with maximum Borda score are chosen., i.e.

a ∈ C( �P) ⇔ [∀b ∈ A, r(a, �P) ≥ r(b, �P)].
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4. Black’s Procedure Let us define the majority relation μ for a given profile �P

xμy ⇔ card{i ∈ N |x Pi y} > card{i ∈ N |y Pi x}.

Condorcet winner CW ( �P)in the profile �P is an element undominated in the majority
relation μ (constructed according to the profile), i.e.

CW ( �P) = [a|¬∃x ∈ A, xμa]

Black’s rule picks the unique Condorcet winner if it exists and the Borda winner(s)
otherwise.

5. Threshold rule (Aleskerov et al. 2010) Let v1(x) be the number of agents for
which the alternative x is the worst in their ordering, v2(x)—is the number of agents
placing x the second worst, and so on, vm(x)—the number of agents considering the
alternative x as their best one. Then we order the alternatives lexicographically. The
alternative x is said to V -dominate the alternative y if v1(x) < v1(y) or, if there exists
k not more than m, s.t. vi (x) = vi (y), i = 1, . . . , k − 1, and vk(x) < vk(y). In other
words, first, the number of worst places are compared, if these numbers are equal then
the number of second worst places are compared and so on. The alternatives which
are not dominated by other alternatives via V are chosen.

6. Hare’s Procedure First, if an alternative is chosen by a simple majority of voters,
then this alternative is chosen, and the procedure stops. Otherwise, the alternative a
with the minimum number of votes is omitted. Then the procedure is applied to the
set X = A\{a} and to the profile �P/X until the alternative ranked first by a simple
majority is found.

7. Antiplurality Rule The alternative, which is regarded as the worst by the minimum
number of agents, is chosen, i.e.,

a ∈ C( �P) ⇔ [∀x ∈ A n−(a, �P) ≤ n−(x, �P)],

where n−(a, �P) = card{i ∈ N |∀y ∈ A y Pi a}.
8. Inverse Borda’s Procedure For each alternative Borda’s count is calculated. Then

the alternative a with the minimum count is omitted. Borda’s count are re-calculated
for profile �P/X , X = A\{a}, and procedure is repeated until choice is found.

9. Nanson’s Procedure (modified)2 For each alternative Borda’s count is calculated.
Then average count is calculated, r = (

∑
a∈Ar(a, �P))/|A|, and alternatives c ∈ A

are omitted for which r(c, �P) < r . Then the set X = {a ∈ A : r(a, �P) ≥ r} is con-
sidered, and the procedure is applied to the profile �P/X . Such procedure is repeated
until choice set will not be empty.

10. Coombs’ Procedure Alternative a which is the worst for the maximum number
of agents is omitted. Then the profile is contracted to the �P/X , X = A\{a}, and the
procedure is repeated until the choice set will not be empty.

2 As anonymous referee pointed out, in original Nanson’s rule alternatives with the average Borda score
are also eliminated.
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5 Results

When we use all preferences extension methods defined above for three alternatives
a Pi bPi c we have four linear extended orderings

1. (Leximin3) {a}E Pi {a, b}E Pi {b}E Pi {a, c}E Pi {a, b, c}E Pi {b, c}E Pi {c}
2. (Leximax3) {a}E Pi {a, b}E Pi {a, b, c}E Pi {a, c}E Pi {b}E Pi {b, c}E Pi {c}
3. (PWorst3) {a}E Pi {a, b}E Pi {b}E Pi {a, b, c}E Pi {a, c}E Pi {b, c}E Pi {c}
4. (PBest3) {a}E Pi {a, b}E Pi {a, c}E Pi {a, b, c}E Pi {b}E Pi {b, c}E Pi {c}

For Kelly’s Dominance Axiom we have only the following relations in the extended
preferences

(KellyDA3)

{a}E Pi {a, b}E Pi {b}E Pi {b, c}E Pi {c}
{a}E Pi {a, c}E Pi {c}
{a}E Pi {a, b, c}E Pi {c}

In Tables 1 and 2 the results of the NK index calculation for 3 alternatives and
3 and 4 voters are given. We also provide here the results from our previous papers.
For comparison with the case of the single-valued choice, we provide in the TBR col-
umn, the results for alphabetical tie-breaking rule. For all rules except the Threshold
rule the same results were obtained in Aleskerov and Kurbanov (1999).

As it is seen from the Tables the degree of manipulability of most social choice
rules is underestimated in the case of the alphabetical tie-breaking rule. It is easy to
show an example of profile which is manipulable for the extended preferences and
not manipulable for tie-breaking framework. For the case of a random tie-breaking
there are the results from Pritchard and Wilson (2007) for the first three rules. An
interesting fact is that the results coincide with the results for KellyDA3. It can be
explained by the fact that the algorithm used for the random tie-breaking mechanism
gives the similar extended preferences as KellyDA for 3 alternatives.

Table 1 NK index for 3 alternatives and 3 voters

Rule Extension

Leximin3 Leximax3 PWorst3 PBest3 KellyDA3 TBR

Plurality 0.2222 0 0.2222 0 0 0.1667

q-Approval q = 2 0.1111 0.6111 0.1111 0.6111 0.1111 0.2639

Borda 0.3056 0.4167 0.3056 0.4167 0.25 0.2361

Black 0.0556 0.1667 0.0556 0.1667 0 0.1111

Threshold 0.3056 0.4167 0.3056 0.4167 0.25 0.3611

Hare 0.2222 0 0.2222 0 0 0.1111

Inverse Borda 0.0556 0.1667 0.0556 0.1667 0 0.1111

Nanson 0.0556 0.1667 0.0556 0.1667 0 0.1111

Coombs 0.2222 0.5000 0.2222 0.5000 0.1667 0.2222
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Table 2 NK index for 3 alternatives and 4 voters

Rule Extension

Leximin3 Leximax3 PWorst3 PBest3 KellyDA3 TBR

Plurality 0.3333 0.3333 0.3333 0.3333 0.3333 0.1852

q-Approval q = 2 0.2963 0.2963 0.2963 0.2963 0.2963 0.2755

Borda 0.3611 0.4028 0.3611 0.4028 0.2917 0.3102

Black 0.2361 0.2778 0.2778 0.2361 0.1667 0.1435

Threshold 0.4028 0.4028 0.4028 0.4028 0.4028 0.3380

Hare 0.3333 0.3333 0.3333 0.3333 0.3333 0.0926

Inverse Borda 0.2361 0.2778 0.2778 0.2361 0.1667 0.1435

Nanson 0.2361 0.2778 0.2778 0.2361 0.1667 0.1435

Coombs 0.2778 0.2778 0.2778 0.2778 0.2778 0.2222

Also an interesting result is that NK index for lexicographic methods is equal to the
same index for probabilistic methods. To be precise, for most rules and for 3 voters
case the index for Leximax3 is equal to PBest3, and the index for Leximin3 is equal
to PWorst3. One can see that Leximax3 and PBest3, as well as Leximin3 and PWorst3
differ only on the pairs {a, c} and {a, b, c}. These results imply that a manipulation
between these sets is not recognized for the rules, for which the NK indices are equal
for Leximax3 and PBest3 (or Leximin3 and PWorst3).

The results for KellyDA3 and for the strong manipulation case are almost the same
or differ a bit for most rules. This means that relations added by stronger methods do
not strongly influence the results because manipulation between incomparable sets is
not often possible. We will show this by introducing the results for I ?

1 index.
In Figs. 1 and 2 NK index for PWorst3 and PBest3, respectively, is shown. On

X-axis the logarithm of the number of voters is given. We calculate all indices for 3
to 25 voters and then 29, 30, 39, 40 and so on up to 100. That explains such strange
behavior of the index. For easy presentation we provide only figures for five rules: rules
6, 8–10 from the list given above and Black’s procedure. We do not give the results
for Antiplurality rule because for 3 alternatives it is the same as q-Approval voting
for q = 2. We already presented the results for rules 1–5 and Leximax3 and Leximin3
(which are similar to the probabilistic methods as we show above) in Aleskerov et al.
(2011a) and Black’s procedure was the least manipulable rule in almost all cases.

As it is seen from Figs. 1 and 2, the behavior of the index depends on the rule con-
sidered. For rules 6–10 there is a period of 2 in the index changes for Inverse Borda
and Nanson rule, and a period of 6 for the Hare and Coombs rules. Antiplurality rule
(not shown) as mentioned above coincides with q-Approval q = 2 and has the period
of 3 (the number of alternatives). An interesting result is that the length of the period
for the Hare and Coombs rules remains unchanged when we consider 4 alternatives.
This very result gives an insight to algebraic properties of the rules and it might help in
an analytical study of manipulability of voting rules. In Fig. 3 NK index for PWorst4
is given.
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Fig. 1 NK index for PWorst3

Fig. 2 NK index for PBest3

From these figures we observe that the relative position of the rules from the NK
index point of view is quite similar for PWorst3. The periods in index changes remain
the same for all shown rules except Antiplurality. Now the period of this rule is 4.
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Fig. 3 NK index for PWorst4

An interesting result is that the Inverse Borda rule becomes less manipulable than
Nanson’s rule for odd number of voters.

Let us return to the case of 3 alternatives to compare the results of strong and weak
manipulation. In Fig. 4 NK index for KellyDA3 is given.

As one can see the rules have the same behavior (specially the index periodicity).
The only main difference is the value of index. We can interpret NK index for KellyDA3
as the degree of minimal manipulation (for all methods of strong manipulation NK
index is higher or at least the same).

We can summarize the results in the following tables. Tables 3 and 4 show the least
manipulable rules in the Nitzan–Kelly sense for 3 and 4 alternatives, respectively.

We can outline two main results from the tables and figures. First of all, the least
manipulable rule in most cases depends on extension axiom used. But in some cases
we can find the least manipulable rule. For example, for 3 alternatives and 8, 14 or 20
voters the best rule for every method is Hare’s rule. Nanson’s rule is the best one for
16 voters.

In Aleskerov et al. (2011a) five rules were studied—Plurality rule, Approval with
q = 2, Borda rule, Threshold rule and Black’s procedure. It turned out that for all exten-
sion methods and almost all number of voters the least manipulable rule was Black’s
procedure. However, now it is the least manipulable only in few cases. Nanson’s and
Hare’s rules are the best rules in Nitzan–Kelly sense.

As it is seen from Table 4 Nanson’s and Inverse Borda rules appear in a switching
manner in the table. The difference between them is defined on the fourth decimal of
the value of NK index. We believe that more detailed study is needed.
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Fig. 4 NK index for KellyDA3

Table 3 The least manipulable rules according to NK index and 3 alternatives

Method Number of voters

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Leximin3 Bl Bl IB H IB H IB N N H N H N N N N N H

IB IB N N N

N N

Leximax3 P Bl H Bl H H H Bl H Bl H H H N H N H H

H IB

N

C

PWorst3 Bl Bl IB 2-A IB H IB N N N N H N N N N N H

IB IB N N N

N N

C

PBest3 P Bl H H H H H Bl H H H H H N H H H H

H IB

N

KellyDA3 P Bl Bl H IB H IB N N H N H N N N H N H

H IB IB N N

Bl N N

IB

N
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Table 4 The least manipulable rules according to NK index and 4 alternatives

Method Number of voters

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Leximin4 IB A IB H IB H IB N IB H IB H IB N IB N IB N

N

Leximax4 P P H Bl H H H N H N H H H N H N H H

H H

PWorst4 IB A IB Bl IB H IB N IB N IB H IB N IB N IB N

N

PBest4 P Bl H H H H H N H H H H H N H H H H

H IB

N

KellyDA4 P Bl IB H IB H IB N IB H IB H IB N IB H IB H

H IB

N

P Plurality, B1 Black, IB Inverse Borda, 2-A q-Approval q = 2, A Antiplurality, N Nanson, H Hare,
C Coombs

In order to find the most suitable rule to implement in most cases we should use
additional criteria. One of them can be another way to compare rules from the freedom
of manipulation point of view. The results for I +

1 index and PWorst3 are presented in
Fig. 5.

Fig. 5 I+
1 index for PWorst3
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It is important to note that this index in some sense addresses the problem to what
extent a manipulation is hard to implement. The lesser is the freedom of manipulation
the harder it is to find the way to manipulate. As one can see from the figures Coombs’
rule has smaller freedom of manipulation than Hare’s rule in most cases. The results
here also depend on the extension axiom used. The results are summarized in the
following table.

An interesting result here is that Nanson’s rule has the least freedom of manipula-
tion when the number of voters is at least 14. Although there is no dominating rule
for small number of voters, for 4, 7, 9–11, 13–20 the results do not depend on the
extension method used for the case of strong manipulation.

Another useful index is I ?
1 . As we already mentioned above, using I ?

1 index we can
explain in some way why the degree of manipulability for the weak and strong manip-
ulation does not differ a lot. In Table 6 the calculation of all I1 indices for Nanson’s
rule, 3 alternatives, 4 voters and all extension methods is given. For all four methods
of the strong manipulation we have the same results for this number of voters, so they
are grouped together.

Table 5 The least manipulable rules according to I+
1 index and 3 alternatives

Method Number of voters

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Leximin3 Bl C H IB C N IB N H N C N N N N N N N

IB N N

N

Leximax3 P C H P C H IB N H N C N N N N N N N

H Bl N

IB

N

PWorst3 Bl C H C C N IB N H N C N N N N N N N

IB N

N

PBest3 P C H H C H IB N H H C N N N N N N N

H Bl N

IB

N

Table 6 I1 index for Nanson’s rule

Type Index

I+
1 (%) I 0

1 (%) I ?
1 I−

1 (%)

Weak manipulation 1.11 33.89 10.28% 54.72

Strong manipulation 2.50 33.89 – 63.61
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One can see that the value of I ?
1 in KellyDA3 is mainly added to the I −

1 value when
we use stronger axioms. Moreover, I ?

1 is rather small, that is why the results of the
strong and weak manipulability do not differ a lot.

In this paper we have compared ten different positional rules from their vulnerabil-
ity to manipulation point of view using different measures and extension axioms. We
show that there is no rule which dominates the others for all extension methods, but
from several points of view Nanson’s and Hare’s rules are the least manipulable. It is
important to note that if we add additional rules to our analysis they can outperform
these rules in terms of manipulabilty.
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