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Abstract The theory of games against nature relies on complete preferences among
all conceivable acts (case 1). Aumann and Drèze (Am Econ J Microecon 1(1):1–16,
2009) consider situations where preferences are defined only for a given set of acts
(case 2). We extend these results to situations where (i) only the set of optimal elements
from a given set of acts is known (case 3); (ii) only a single optimal act is known (case
4). To these four cases correspond four nested sets of admissible subjective probabil-
ities. Cases 3 and 4 define the extent to which probabilities must be specified to solve
a decision problem.

Keywords Games · Decisions · Probability · Elicitation

JEL Classification D81 · C72

1 Introduction

The standard model of decision theory, as used e.g. by Savage (1954) or Anscombe
and Aumann (1963), proceeds from complete preferences on a comprehensive set of
acts. Specifically, let S be the set of states of nature s and C be the set of pure con-
sequences c. In Savage, the set of acts F is the set of mappings f of S into C . In
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Anscombe–Aumann, it is the set of probability distributions over F , say �(F). Yet, a
standard decision problem calls for the choice of some element from a proper subset
of F , say the set R of alternatives really open to choice.1 Additional acts, elements
of F \ R or �(F) \ �(R), are introduced for analytical convenience, and for the
strength of conclusions thereby reached: preferences are represented by subjectively
expected utility, with utility u defined uniquely up to positive linear transformations
and subjective probability p defined uniquely.

The Savage framework is an extension of that introduced in von Neumann
and Morgenstern (1944) where “states” boil down to outcomes of random devices
with known (objective) probabilities. In that framework, preferences over “lotteries”
are assumed complete, continuous and transitive. But already in von Neumann and
Morgenstern (1944, p.19), and next in Aumann (1962), reference is made to the pos-
sibility of replacing the completeness axiom by a partial preference ordering over
lotteries. The more structured result in that vein is the “extended multi-utility theo-
rem” in Dubra et al. (2004): “there exists a uniquely defined, closed and convex set of
utility functions verifying the expected utility theorem”.

More recently, Aumann and Drèze (2009)—hereafter ASR—have presented a par-
allel analysis for decisions in games of strategy (GoS). They look at a game from
the view-point of a single player, called “the protagonist”; all other players are com-
bined into a single “opponent”. Let then S be the set of the opponent’s strategies
s, R be the set of the protagonist’s strategies r , and C be the set of possible out-
comes of the game for the protagonist. Each strategy r ∈ R defines a mapping hr

of S into C . ASR proceeds from complete preferences over �(R ∪ C) and derives a
subjective-expected-utility representation of these preferences. Utility is still unique
up to positive linear transformations. Subjective probability is in general not unique:
there may exist several probabilities, like p and p′, such that the expected utilities
u p(r) = �s ps u(hr (s)) and u p′(r) = �s p′

s u(hr (s)) are equal, for each r ∈ R
– a property labeled “payoff-equivalence” in ASR. In such cases, preferences over
�(R ∪ C) do not permit discrimination between p and p′. And such cases arise when
the matrix [u(hr (s)], r ∈ R, s ∈ S, has rank less than S—a situation avoided under
a comprehensive set of acts.2

The reason for entertaining preferences over �(R ∪ C), neither more nor less, is
twofold: (i) introducing hypothetical strategies r̃ �∈ R changes the game, with potential
consequences for preferences and their expected-utility representation; (ii) R will typ-
ically fail to include constant strategies, with hr (s) = c ∀s ∈ S, some c ∈ C;
accordingly, u(c) cannot be inferred from preferences over �(R) alone; elements of
�(R ∪ C), called “hybrid lotteries” in ASR, are introduced to that end. The complete
preferences over �(C) thus entail a unique (up to positive linear transformations)
utility function for consequences.

The main theorem in ASR, hereafter MTASR, which asserts existence of a
subjective-expected-utility representation of preferences over �(R ∪ C) verifying

1 If I must choose one of two acts, each of which assigns identical consequences to states s and s′, the
respective probabilities of s and s′ are irrelevant—only their sum matters.
2 F includes acts that “stake a prize” on a single state, and this feature applies to every s in S.
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payoff-equivalence, is of course applicable to games against nature (GaN) as well—
although the motivation for restricting attention there to preferences over �(R ∪ C)

instead of the full �(F) is less compelling.3 Still, it is a useful result in that context,
because the decision maker might have difficulty in forming meaningful preferences
between highly hypothetical options or might be reluctant to evaluate carefully acts
that are clearly irrelevant.4

In games of strategy, preferences over mixed strategies are meaningful: these are
precisely the objects of choice open to the protagonist. Yet, these preferences are
not “observable”, in particular not subject to (potentially) observable binary choices.
The only observable choices concern optimal strategies: the subset, say M ⊂ R, or
�(M) ⊂ �(R), some element of which the protagonist will actually play. Indeed,
the protagonist must choose some mixed strategy, and the set of preferred choices is
�(M). Thus the definition of M , and preferences over �(M ∪ C), are “operational”
concepts. In fact, they are the very concepts entertained, for a different context, in the
“revealed-preferences” theory of Samuelson (1938) and his followers.

Under a more restrictive notion of “operationalism”, one might regard a single
element of M as “observable”, namely the strategy, say r∗, actually played by the
protagonist.

The present paper develops this revealed-preferences approach to decision theory
for both GaN and GoS (Sect. 2), and relates it to standard decision theory as well as
to ASR (Sect. 3). Our basic result, Theorem 1, is based on axiomatisation of M and
of preferences that are complete only on �(M ∪ C): “there exists a uniquely defined
convex set of probabilities on S verifying (together with u(c)) the subjective expected
utility theorem”.

The parallelism with the main theorem in Dubra et al. (2004) is striking. Start-
ing from known probabilities, these authors elicit from incomplete preferences over
lotteries a set of admissible utility functions. Starting instead from a fully elicited
utility function, we derive from incomplete preferences over acts a set of admissible
probabilities.

Corollary 2 treats the case where preferences are complete only on �(r∗ ∪ C).

Corollary 3 in Sect. 3 offers a concise summary conclusion by relating the extent of
identification of subjective probabilities to the number of linearly independent acts or
strategies over which preferences are observed.

For completeness, Sect. 4 relates our results to those obtaining in the related but
distinct context of “games of strength and skill” (in the terminology of von Neumann
and Morgenstern (1944)) or “games with moral hazard” (in the terminology of Drèze
(1987)); namely one-person games where the occurence of the “states” is influenced
by the (unobserved) strategy choices of the decision maker. In that context, alternative
probabilities are associated with alternative strategy choices, but a parallel identifica-
tion issue arises.

Some concluding remarks are offered in Sect. 5.

3 In particular, adding hypothetical acts does not affect nature’s choices.
4 In particular, existence of a dominant strategy eliminates the need to assess alternatives.

123



262 SERIEs (2012) 3:259–271

2 Basic result

2.1

We adopt the notation of ASR, and interpret it indifferently for GaN’s or for GoS’s.
A game G consists of

• a finite set R with elements r (the pure strategies of the protagonist or the acts of
the decision maker),

• a finite set S with elements s (the pure strategies of the opponent or the states of
nature; states for short),

• a finite set C with elements c (pure consequences),
• a function h : R × S → C (the outcome function of the protagonist in a GoS or

the definition of the acts in a GaN).

Thus, G = (R, S, C, h). We write hr (s) for the consequence associated with the pair
(r, s) ∈ R × S.

For a finite set A, the set of probability distributions on A is denoted �(A), with
elements α. Thus, γ ∈ �(C) is a mixed consequence, and ρ ∈ �(R) is a mixed
strategy in a GoS or a lottery over acts in a GaN. We also write ρs for the mixed
consequence associated by ρ with state s. As for �(R ∪C), with elements λ, it is a set
of hybrid lotteries defined by triplets (ρλ, γ λ, tλ) ∈ �(R) × �(C) × [0, 1]. In state
s, the hybrid lottery λ entails the mixed consequence λs yielding ρλ

s with probability
tλ and γ λ with probability (1 − tλ); so, we write λs = tλρλ

s + (1 − tλ)γ λ ∈ �(C).

Similarly, when � is a lottery between r and r ′ with probabilities (t, 1 − t), we write
� = tr + (1 − t)r ′ or � = (r, r ′; t).

In order to develop our “revealed preference” analysis, we start from a partial
ordering � on �(R ∪ C), which in particular separates a set of preferred mixed
strategies �(M), M ⊆ R, from the remaining mixed strategies, �(R) \ �(M). The
interpretation is that the protagonist in the game G is indifferent between playing any
strategy ρ ∈ �(M)but will not play any ρ′ ∈ �(R) \ �(M).

Three assumptions characterize our partial ordering � on �(R∪C). By definition,
� is transitive and reflexive; but it is not necessarily complete; it embodies the usual
definitions of indifference (∼) and strict preference (�).

Assumption 1 There exists M ⊆ R, M �= ∅, such that: ρ ∼ ρ′ ∀ ρ, ρ′ ∈ �(M) and
ρ � ρ′ ∀ ρ ∈ �(M), ρ′ ∈ �(R) \ �(M).

Assumption 1 amounts to the assertion that the protagonist will play the game (M �= ∅),
and reveals her full set of preferred strategies �(M).

Next, we define a complete preference ordering � on a set �(A) to be an N − M
preference ordering if it satisfies the standard axioms of utility theory5, as stated for
instance in von Neumann and Morgenstern (1944) or Luce and Raiffa (1957). And we
define an N − M utility on �(A) to be a real-valued function u on �(A) such that,
∀ α, α′ ∈ �(A) and ∀ t ∈ [0, 1],

5 i.e., complete ordering, independence and continuity.
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• α � α′ iff u(α) ≥ u(α′);
• u(tα + (1 − t)α′) = tu(α) + (1 − t) u(α′).
As is well known, an N − M preference admits an N − M utility representation.

Assumption 2 The restriction of � to �(M ∪ C) is an N − M preference.

Thus, on �(M ∪ C), the preference ordering is complete and admits an N − M utility
representation.

Assumption 3 For λ, λ′ ∈ �(R ∪ C), if λs � (�)λ′
s ∀s ∈ S, then λ � (�)λ′.

Assumption 3 introduces a condition of monotonicity which extends our partial pref-
erence ordering to those elements of �(R ∪ C) \ �(M ∪ C) among which a (weak)
preference domination holds. Note that λs � λ′

s is well defined in view of Assump-
tion 2, applied to �(C) ⊂ �(M ∪C). Assumption 3 embodies the “reversal of order”
condition of Anscombe and Aumann (1963) and a weak form of the “sure-thing prin-
ciple” of Savage (1954).6

Assumptions 1–3 have an important implication.

Proposition 1 Let ρ, ρ′, ρ′′ ∈ �(R) be such that, for some t ∈ (0, 1), ρs ∼ tρ′
s +

(1 − t)ρ
′′
s for all s ∈ S; then, ρ ∈ �(M) if and only if ρ′ ∈ �(M) and ρ′′ ∈ �(M).

Proof By Assumption 3, ρ is indifferent to tρ′ + (1 − t)ρ′′. If ρ ∈ �(M), then
tρ′ + (1 − t)ρ′′ ∈ �(M), with � � �′ and � � �′′. Accordingly, by Assump-
tion 2, ρ ∼ ρ′ and ρ ∼ ρ′′, so that ρ′ ∈ �(M) and ρ′′ ∈ �(M). Conversely, either
ρ′ /∈ �(M) or ρ′′ /∈ �(M) implies ρ /∈ �(M). ��

This is a natural property: in GaN, ρ could not be part of the preferred set �(M) if
it is a convex combination (preference wise) of a preferred and a discarded strategy, or
of two discarded strategies. The status of this property in GoS is discussed in Sect. 5.2.

Theorem 1 Under Assumptions 1, 2 and 3, there exist:

• an N − M utility u on �(C),

• a non-empty convex set 	 ⊂ �(C) such that γ ∈ 	 and ρ ∈ �(M) imply γ ∼ ρ,

• a non-empty convex set P3 of probabilities on S such that, for all p ∈ P3, but only
for p ∈ P3:

(i) u p(ρ) := �s∈S ps u(ρs) = u(γ ) ∀ρ ∈ �(M), γ ∈ 	;
(ii) u p(ρ) > u p(ρ

′) ∀ ρ ∈ �(M), ρ′ ∈ �(R) \ �(M).

This theorem establishes that the choice by the protagonist of the set M of preferred
strategies is sustained by a subjective expected utility analysis, where probabilities are
in general not unique, but satisfy payoff equivalence over �(M). Indeed, (i) implies
u(γ ) = u p(ρ) = u p′(ρ) for all p, p′ ∈ P3 and ρ ∈ �(M).7 Theorem 1 covers case 3

6 “Reversal of order” is defined and discussed in Sect. 4.
7 It is not claimed that u p(�) = u p′ (�) when � ∈ �(R) \ �(M). And it is not claimed that P3 is closed.

For instance, let S = {1, 2}, r =
(

1
2 , 1

2

)
� r ′ =

(
3
4 , 1

4

)
and R = {r, r ′}. Disregarding r ′, P3 contains

every probability p = (t, 1 − t), t ∈ [0, 1]. Taking r ′ into account imposes t < 1
2 .
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in the abstract (hence the notation P3). Because P3 is convex, it can be defined as
containing all the vectors p verifying (i) and (ii); in that sense, P3 is unique.

Note that conclusion (i) of the theorem is implied by MTSAR applied under restric-
tion of R to M . Under that restriction, �(R) \ �(M) is an empty set, and conclusion
(ii) is void. The proof to follow is needed to obtain (ii), then Corollary 1. Note further
that, when �(R) \ �(M) �= ∅, the elements of that set matter to the contents of P3,
though not to its dimension (number of linearly independent elements). In contrast,
the elicitation of 	 may reduce by one the dimension of P3.

The logic of the proof is elementary. Represent an act or strategy r in R by the
S-vector of its (expected) utilities. �(R) is then described by a convex polyhedron in
S-space, and �(M) is a face of that polyhedron. P3 is the set of vectors normal to that
face, hence has complementary dimension.8

Corollary 1 If �(M ∪ 	) contains k, and at most k, linearly independent elements,
then P3 contains S − k + 1, and at most S − k + 1 linearly independent elements.

Proof P3 is the set of solutions to the system of linear equalities and inequalities

u p(�) = γ̃ , � ∈ �(M), u p(�) < γ̃ , � ∈ �(R) \ �(M), γ̃ ∈ 	.

There are k (and at most k) linearly independent equalities in S-space. Corollary 1 is
equivalent to Proposition 2.4, p. 87 of Nemhauser and Wolsey (1988).9 ��

2.2

Proof of Theorem 1 Assume w.l.o.g. that C contains γ, γ ′ with γ � γ ′. (Otherwise,
take u to be identically 0, and P3 the set of all probability distributions on S.)

From Assumption 2, we obtain directly the utility u, which we normalize (arbi-
trarily), and the set 	. Next, we eliminate temporarily from consideration any state
ŝ ∈ S such that there exist ρ, ρ′ ∈ �(M) with ρs ∼ ρ′

s ∀s and ρŝ � ρ′
ŝ . Indeed, it

will be the case that pŝ = 0 ∀ p ∈ P3. Denote by S̄ the set of remaining states, i.e.
those not thereby eliminated.
Convention: for the rest of this proof, we represent a hybrid lottery λ by the S̄-vector
of the (expected) utilities u(λs) of its mixed consequences in states s ∈ S̄. Thus, λ is
a point in Euclidean S̄-space �S̄ .

Preference relations among consequences are thus replaced by inequalities among
utilities; every hybrid lottery in �(R ∪ C) is defined by a point in �S̄ ; and every
γ ∈ �(C) is a point on the main diagonal of �S̄ . We henceforth write γ̃ for the unique

8 In the example of footnote 7, M = {r} contains a single element, and P3 =
{

t ∈ [0, 1] : t < 1
2

}
contains

S = 2 linearly independent elements.
9 Alternatively stated, P3 defines the null space of the S × k matrix U − Vγ , where columns of U are
linearly independent utility vectors associated with elements of �(M ∪ 	) and Vγ is the S × k matrix with
all elements equal to γ̄ —so that p(U − Vγ ) = 0 for all p in P3. The rank of U − Vγ is k − 1, since
γ ∈ M ∪ 	.
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point of the main diagonal of �S̄ corresponding to 	. As for �(R), it is a convex
compact polyhedron in �S̄ , with extreme points in R.

By the definition of S̄, if ρ ∈ �(M), then there does not exist ρ′ ∈ �(R) with
ρ′ > ρ.10 Accordingly, for every ρ ∈ �(M), {ρ + �S̄+} ∩ �(R) = {ρ}.

We now consider the sets of hybrid lotteries �(M ∪	) and �(R ∪	) ∈ �S̄ . These
subsets of �(M ∪ C) and �(R ∪ C) respectively correspond to the convex hulls of
the union of M , respectively R, with the point γ̃ on the main diagonal of �S̄ defining
the utility of a mixed consequence indifferent to playing the game G. (That is, γ̃ is
the subjective value of G.)

The properties of �(M) ⊆ �(R) also hold for �(M ∪	) ⊆ �(R∪	), in particular
Proposition 1.

Lemma 1 Let λ, λ′, λ′′ ∈ �(R ∪ 	) be such that, for some τ ∈ (0, 1), λs = τλ′
s +

(1−τ)λ′′
s ∀s ∈ S̄; then,λ ∈ �(M∪	) if and only ifλ′ ∈ �(M∪	)andλ′′ ∈ �(M∪	).

Proof With λ := tρ + (1 − t)γ̃ , λ′ := t ′ρ′ + (1 − t ′)γ̃ , λ′′ := t ′′�′′ + (1 − t ′′)γ̃ and
λ = τλ′ + (1 − τ)λ′′, let τ̂ := τ t ′ + (1 − τ)t ′′ ∈ (0, 1) and ρ̂ = τ t ′ρ′+(1−τ)t ′′ρ′′

τ̂
,

so that λ = τ̂ ρ̂ + (1 − τ̂ )γ̃ . If λ ∈ �(M ∪ 	) so that λ ∼ ρ ∼ γ̃ , then λ ∼
τ̂ ρ + (1 − τ̂ )γ ∼ τ̂ ρ̂ + (1 − τ̂ )γ̃ implying ρ ∼ ρ̂. By Proposition 1, ρ ∈ �(M) if
and only if ρ′, ρ′′ ∈ �(M) hence λ′, λ′′ ∈ �(M ∪ 	). ��

It follows from lemma 1 that, for every λ ∈ �(M ∪	), {λ+�S̄+}∩�(R∪	) = {λ}.
It also follows that �(M ∪ 	) is a face of the polyhedron �(R ∪ 	).11

Lemma 2 Either �(M) = �(R) or �(M ∪ 	) ∩ ri�(R ∪ 	) = ∅, where ri stands
for “relative interior”.

Proof See Corollary 18.1.3 in Rockafellar (1970). ��
To prove Theorem 1, let then M∗ := ∪λ∈�(M∪	) {λ+�S̄+}, a convex set. By lemma 2,
ri M∗ ∩ ri �(R ∪ 	) = ∅. Accordingly there exists a hyperplane, say B separating
M∗ from �(R ∪ 	) (Rockafellar 1970, Theorem 11.3), and containing �(M ∪ 	) =
M∗∩�(R∪	). And there exists a normal vector to B, say p̄, with p̄ � 0, �s∈S̄ p̄s =
1, p̄λ = p̄λ′ ∀ λ, λ′ ∈ �(M ∪ 	) and p̄λ > p̄λ′ ∀ λ ∈ �(M ∪ 	), λ′ ∈ �(R ∪ 	) \
�(M ∪ 	).

Denote by P̄3 the set of all vectors in �S̄+ verifying these four properties. We have
just shown that P̄3 is non-empty. Also, P̄3 is convex because each of the four defining
properties is preserved under convex combinations.12

Abandoning our convention, let P3 ⊂ �S be the set of vectors p defined by:
∃ p̄ ∈ P̄3, pS̄ = p̄; ps = 0 ∀ s ∈ S \ S̄. That is, the restriction of P3 to �S̄ is given by

P̄3 and the restriction of P3 to �S\S̄ is the zero vector. Then P3 satisfies conclusions
(i) and (ii) of Theorem 1. ��

10 Vector inequalities are ≥,>, �.
11 “A face of a convex set C is a convex subset C ′ of C such that every (closed) line segment in C with a
relative interior point in C ′ has both endpoints in C ′ ” (Rockafellar 1970, p. 162).
12 Actually P̄3 is (i) the union of the normal cones to the set of hyperplanes containing �(M) and separating

�(R) from {x + �S̄+, x ∈ �(M)}, (ii) intersected with the unit simplex of �S̄+.
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3 Nested identification of subjective probabilities

3.1

To cover case 4 in the abstract, we now introduce the corollary to Theorem 1 holding
when Assumptions 1 and 2 are weakened as follows:

Assumption 1* There exists r∗ ∈ R such that r∗ � ρ ∀ ρ ∈ �(R).

Assumption 2* The restriction of � to �(r∗ ∪ C) is an N − M preference.

Corollary 2 Under Assumptions 1*, 2* and 3 there exist:

• an N − M utility u on �(C),

• a non-empty convex set 	 ⊂ �(C) such that γ ∈ 	 implies γ ∼ r∗,
• a non-empty convex set P4 of probabilities on S, P4 ⊇ P3, such that, for all p ∈ P4,

but only for p ∈ P4:

(i) u p(r∗) = �s∈S psu(r∗
s ) = u(γ ) ∀ γ ∈ 	;

(ii) u p(r∗) ≥ u p(ρ) ∀ ρ ∈ �(R).

Proof Repeating step by step the reasoning in the proof of Theorem 1, with M sys-
tematically replaced by {r∗}, we obtain successively the N − M utility u on �(C), the
set 	 and a non-empty convex set of probabilities P4 satisfying conclusions (i) and
(ii) of Corollary 2. Furthermore, P4 ⊇ P3 because every p ∈ P3 satisfies conclusions
(i) and (ii) in Corollary 2, and P4 is comprehensive. ��

Remark When r∗ in 	 is a strictly dominant strategy, P4 is the unit simplex of �S

(and S̄∗ = S). When r∗ belongs to the relative interior of �(M), P4 = P3.13

3.2

Turning to case 2 in the abstract, ASR rests on Assumption 3 and

Assumption 2’ There is an N − M preference � on �(R ∪ C).

Theorem 2 Under Assumptions 2’ and 3, there exist

• an N-M utility on �(C),

• a non-empty convex set P2 ⊆ P3 such that, for all λ, λ′ ∈ �(R ∪ C), λ � λ′ iff,
for each p ∈ P2, but only for p ∈ P2, u p(λ) ≥ u p(λ

′),
• for all λ ∈ �(R ∪ C), for all p, p′ ∈ P2, u p(λ) = u p′(λ).

13 If r∗ is a pure strategy (or act), then it belongs to ri�(M) only if M = r∗; if r∗ is allowed to be a mixed
strategy, the remark assumes significance.
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Proof of Theorem 2 14 By Assumption 2’, the preferences � on �(R ∪ C) admit a
representation through an N − M utility V such that, for all λ in �(R ∪ C)

V (λ) =
∑
r∈R

tλ(r)V (r) +
∑
c∈C

tλ(c)V (c).

For � ∈ �(M), for every p ∈ P3,

V (�) =
∑

s

ps u (h�(s)) = γ̄ .

Let r ∈ R be such that r � r for all r ∈ R; and let r∗ belong to M , so that r∗ � r for
all r ∈ R. Define �̄ = 1

2r + 1
2r∗. (The mean is convenient, but any other intermediate

level would do.) Let then I ⊂ �(R ∪ C) denote the indifference class

I := {λ ∈ �(R ∪ C) : λ ∼ �̄}.

and let �I := {λ ∈ �(R ∪ C) : λ ≺∼ �̄} denote the set of lotteries in �(R ∪ C) with
expected utility not exceeding ρ̄. Thus, I is the preferred set for �I :

∀�, �′ ∈ I, � ∼ �′; ∀� ∈ I, �′ ∈ �I \ I, � � �′.

We may apply Theorem 1 with (I,�I ) taking the place of (M, R), thus obtaining
a convex set of probabilities PI with the properties of P3 in Theorem 1. This set PI is
the set P2 of Theorem 2.

Indeed, V (�̄) = 1
2 V (r) + 1

2 V (r∗) = 1
2 V (r) + 1

2 γ̃ . Hence, for all p ∈ PI ,

V (�̄) = 1

2
u p(r) + 1

2
u p(r

∗) = 1

2
u p(r) + 1

2
γ̃ ,

implying u p(r∗) = u p′(r∗) = γ̃ and u p(r) = u p′(r) for all p, p′ in PI . This last
property is readily extended to every r in R as follows. If V (r) > �̄, there exists t
in (0, 1) such that tr + (1 − t)r ∈ I ; if V (r) < �̄, there exists t in (0, 1) such that
tr + (1 − t)r∗ ∈ I . In either case, it follows that u p(r) = u p′(r) = V (r) for all p, p′
in PI = P2. And P2 ⊆ P3 because P3 is comprehensive by definition. ��
Corollary 3 (i) If �(R ∪ C) contains k, and at most k linearly independent ele-

ments, then P2 contains S − k + 1, and at most S − k + 1, linearly independent
elements.

(ii) If R = F and C contains c, c′ with c � c′, then P2 is a singleton.

Proof (i) follows from Corollary 1, and (ii) follows from (i). ��

14 Theorem 2 could be proved by invoking MTASR, or lemma 1 in Castagnoli et al. (2003). We offer a
proof invoking Theorem 1, thereby paving the way for Corollary 3 and making this paper self-contained.
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In a sense, Corollary 3 offers a concise interpretation of this paper: if subjective
probabilities are elicited from complete preferences among k acts (or strategies) with
linearly independent vectors of state-contingent utilities, the set admissible probabili-
ties Pk is (S − k + 1)-dimensional. If one adds another linearly independent act, Pk+1
is (S − k)-dimensional, with Pk+1 ⊂ Pk . This summarises the “nested identification”
feature.

4 Complement: relation to moral hazard

As a natural complement, we relate our result on the dimension of P3 or P2 in Cor-
ollaries 1 and 3 to a similar result characterising the set of subjective probabilities in
a game with moral hazard (GwMH); see Drèze (1987, Sects. 6 and 7, in particular
lemma 7.2). In that context, the decision maker can influence the occurence of the
“states” through unobserved strategies.15 Strategy choices are guided by the utility
of consequences, as per the “Generalised Moral Expectation” Theorem 6.1 in Drèze
(1987). In the terminology and notation of the present paper, that theorem reads:16

“Under the maintained assumptions, when R = F , there exist a closed convex set
P of probabilities on S, and a utility u on C , such that, for all G

V (G) = Max
p∈P

∑
s

psu(hG(s)); (GME)

P is unique and u is unique up to the same linear transformation as V .”
The maintained assumptions include: (i) the N − M assumptions leading to a value

function V on games and a utility function u on (mixed) consequences; (ii) a weaken-
ing of our monotonicity assumption, explained below: and (iii) a specific assumption
(CGO), also explained below.

The gist of GwMH concerns “reversal of order”. Let the two games G := r and
G ′ := r ′ imply different optimal strategies, entailing respectively the unique proba-
bilities p and p′, p �= p′. Under the lottery � = (r, r ′; t), a random device will select
either r or r ′; if r , the decision maker selects p; if r ′, she selects p′. The value of � is
thus:

V (�) = t Max
p∈P

∑
s

psu(hr (s)) + (1 − t) Max
p′∈P

∑
s

p′
su(hr (s)).

But there also exists a game r ′′ defined by

hr ′′(s) = thr (s) + (1 − t)hr ′(s),

V (r ′′) = Max
p′′∈P

∑
s

p′′
s [tu(hr (s)) + (1 − t)u(hr ′(s))] < V (�)

15 For instance, commuting by train rather than car reduces the probability of accidental death for a sub-
scriber of life insurance.
16 Note that the result (GME) is used in numerous applications (e.g. to insurance with moral hazard, health
economics or safety expenditures)—generically without concern for the underlying axiomatic justification...
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where the last inequality follows from p �= p′. In contrast, the monotonicity Assump-
tion 3, imposes V (r ′′) = V (�), that is “reversal of order”. It rules out strict pref-
erence for the “immediate lottery” ρ over the corresponding “delayed lottery” r ′′.17

That is, it rules out a positive “value of information” about the outcome of the lot-
tery. It is thus not a reasonable assumption for GwMH. Accordingly, Drèze (1987)
replaces Assumption 3 by the combination of “non-negative value of information”—
i.e. V (�) ≥ V (r ′′)—and “conditional preferences are well-defined”—the “sure thing
principle”.

Now, there are also situations where two games r and r ′ are such that p = p′:
the two games r and r ′ have a common optimal strategy. Drèze (1987) labels such
games “equipotent”. As a transparent example, let r be “constant”, i.e. such that
u(hr (s)) = u(hr (s′)) for all s, s′ in S; then V (r) is independent of p, and r is equi-
potent with every other game. Such a game is labeled “omnipotent” in Drèze (1987).
The assumption CGO states that every constant game is omnipotent.

Of course, there may exist omnipotent games that are not constant. The diversity
of consequence profiles among omnipotent games is related to the dimensionality of
the set P of attainable probabilities, as per the following lemma (7.2 in Drèze 1987):

“If P contains S − k + 1, and at most S − k + 1 (S ≥ k ≥ 1) linearly independent
elements, then the expected utility vectors associated with omnipotent games form a
k-dimensional subset of �S .”

This last result is formally comparable to Corollaries 1 and 3 above. The rele-
vance of the dimension of P in GwMH is at variance with its relevance in GaN.
In the latter case, the extent of identification of subjective probabilities decreases
with the dimension of P . In the former case, that dimension becomes relevant to
handle the more general case of “state-dependent preferences” (treated in Sect. 8
of Drèze 1987); namely the case where consequences cannot be defined without
reference to the state that obtains (think again about life insurance, medical insur-
ance or safety expenditures). State-dependent preferences can be represented by
state-dependent utilities us(c), each defined up to a state-specific linear transforma-
tion. The extent of identification of the respective origins and units of scale of the
state-dependent utilities (which matter to decisions) increases with the dimension of
P . It stands to reason that the loss of utility associated with an event like death cannot
be elicited from insurance decisions—only from decisions affecting the probability
of death, through the choice of alternative p’s in P . The existence of such alterna-
tives (the dimension of P) is thus essential for the identification of state-dependent
utilities.

Note finally that neither the model in Dubra et al. (2004) nor the model in Sects. 2
and 3 above, is applicable under state-dependent preferences. Indeed, restricting acts
to “lotteries” implies state independent preferences. And so does Assumption 2 (or 2*
or 2’).

17 “Immediate”: drawn before observing the state; “delayed”: drawn after observing the state.
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5 Concluding remarks

5.1

In GaN, one can apply the N − M axioms to preferences over four nested sets, namely
�(r∗ ∪ C),�(M ∪ C), �(R ∪ C) and �(F) ≡ �(F ∪ C)—thereby obtaining four
nested sets of subjective probabilities, P4, P3, P2 and the singleton { p̃}. There exist
special situations where P4 = P3 = P2 = {p}. In general, the set inclusions are
proper: P4 ⊃ P3 ⊃ P2 ⊃ { p̃}.

The standard analysis, based on �(F), brings out the logic of subjective-expected-
utility analysis in the most demanding case: when P3 = { p̃}, precise assessment of
probabilities is needed to solve the decision problem. Yet, typical decision situations
are less demanding. The sets P4 and P3 then define the extent to which probabilities
need be specified in order to sustain an optimal decision. One measure of that extent
is offered by Corollary 3, which relates the dimension of the set of relevant probabil-
ities to the dimension of the decision problem (both measured by numbers of linearly
independent elements). But “dimension” is only one aspect of “identification”.

By way of illustration, let S = {s, t} and R = {r, r ′, r ′′} where the three acts r, r ′, r ′′
entail the respective utility vectors

( 4
3 , 1

2

)
, (1, 1),

( 1
2 , 4

3

)
in states (s, t). Then r � r ′

iff ps ≥ 3
5 and r ′ � r ′′ iff ps ≥ 2

5 . The information about ps needed to choose an opti-
mal act amounts to locating ps relative to the interval

[ 2
5 , 3

5

]
. This is less demanding

than point estimation.
In the same illustration, let M = {r ′} = {(1, 1)}. Then, P3 = ( 2

5 , 3
5

)
. Assume

further (Assumption 2’) that r ∼ ( 11
12 , 11

12

)
. Then P2 = { p̃} = { 1

2

}
.

Letting instead M = {r}, and r ∼ ( 9
8 , 9

8

)
, then P3 = P2 = { p̃} = 3

4 .

5.2

In GoS, there are only three nested sets over which preferences are meaningfully
defined, namely �(r∗ ∪ C), �(M ∪ C) and �(R ∪ C); the corresponding nested sets
of subjective probabilities are P4, P3 ⊆ P4 and P2 ⊆ P3. But only P4 and P3 reflect
observable preferences.

The nature of preferences among pure or mixed strategies in GoS is discussed
at some length in ASR. A significant further comment is related to Proposition 1.
Consider the simple two-person, zero-sum game of “matching pennies”, where r ∈
{1, 2}, s ∈ {1, 2}, and hr (s) = 1 for r = s, hr (s) = −1 for r �= s. What ultimately
matters to each player in this game is that the opponent not be able to “guess” what he
himself will play. That is, each player wants his opponent to assign equal probabilities
to both of his own strategies. A simple way of achieving that goal is to adopt the mixed
strategy

( 1
2 , 1

2

)
. The clear decision by a player to play according to that mixed strategy

might be construed as a violation of Proposition 1, because the pure strategies “heads”
or “tail” appear discarded in favor of the mixed strategy.

The proper interpretation of Proposition 1 is different. It is simply claimed that a
player adopting the mixed strategy

( 1
2 , 1

2

)
thereby reveals indifference between even-
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tually playing “head” or “tail”. Such indifference is consistent with the assignment of
equal probabilities to the opponent playing “head” or “tail”, and difficult to reconcile
with any other assignment. Proposition 1 claims neither more nor less.

In every game situation, a full analysis of the game is needed to form reasonable
expectations about the choice(s) of an opponent. We argue here that, under reason-
able assumptions, these expectations admit a subjective probability representation,
sustaining the retained strategy(ies) as maximising expected utility. The role of game
theory in guiding expectations in GoS is then seen as logically equivalent to that of
(Bayesian) statistics in GaN.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.
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