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Abstract 
 
Wars of conquest and wars of independence are characterized by an asymmetric payoff 
structure: one party gets aggregate production if it wins, and its own production if it loses, 
while the other party gets only its own production if it wins, and nothing if it loses. We study 
a model of war with such an asymmetric payoff structure, and private information about 
military technologies. We characterize continuous equilibrium strategies and find that the 
party that gets aggregate production when winning fights aggressively only if its military 
technology is relatively good, while the other party fights quite aggressively even if its 
military technology is relatively poor. From an ex ante perspective, this other party is 
therefore more likely to win the war unless its expected military technology is considerably 
worse. Our model may thus explain why defending countries and secessionist groups often 
win against much larger opponents. 
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1 Introduction

The most popular models of wars and conflicts focus on the allocation of resources to

warfare and production in symmetric conflicts in which the winner gets aggregate produc-

tion.1 These standard models are helpful to understand strategic behavior in civil wars for

state control, or wars between similarly sized neighboring countries. However they cannot

inform us about strategic behavior in wars and conflicts in which the involved parties face

fundamentally different incentives due to an asymmetry in the payoff structure.

Wars of conquests and wars of independence are both characterized by an asymmetry in

the payoff structure: one party gets aggregate production if it wins, and its own production

if it loses, while the other party gets only its own production if it wins, and nothing if it

loses. Wars of conquest are fought between an attacking and a defending country. These

wars are asymmetric in that the countries only fight for the defending country’s production

or resources. Wars of conquest were common during the European colonization. The

Spanish conquest of the Aztec empire is a prominent example. Both the Spaniards and

the Aztecs knew perfectly well that they were only fighting over the Aztecs’ production

and resources, and not any Spanish production or resources. More recently, it was clear to

the Vietnamese communists fighting the U.S. army, and the Afghan mujahideen fighting

the Soviets that they could at most win production or resources of their own territory,

and no production or resources from the United States or the Soviet Union, respectively.

Meanwhile the U.S. army and the Soviets knew that they would not lose any domestic

production in case of defeat.

Wars of independence are civil wars fought between a central government and a se-

cessionist group that wants some particular region to become independent. Wars of in-

dependence are common and have recently been fought by secessionist groups in, e.g.,

1These standard symmetric models are discussed below and in more detail in Garfinkel and Skaperdas
(2007, section 3.2). See also Garfinkel and Skaperdas (2007), and Blattman and Miguel (2010) for reviews
of the literature on wars and conflicts; and Konrad (2009) for a review of the literature on contests more
generally.
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Aceh, Chechnya, Eritrea, Kosovo, Northern Sri Lanka, South Sudan, and Timor Leste. In

all these conflicts, it was foreseeable from the onset that if the central government wins,

it can control total production and resources; but if the secessionist group wins, it only

gets production and resources of the newly independent region, while the defeated central

government still gets production and resources from the rest of the country.

To the best of our knowledge, there exists no theory of wars that takes the asymmetry

inherent in wars of conquest and wars of independence into account. In this paper, we

present a model of wars of conquest and independence that does so. In this model, there

are two players. Player 1 represents the attacking country in a war of conquest, or the

central government in a war of independence. Player 2 represents the defending country

in a war of conquest, or the secessionist group in a war of independence.2 Players are

characterized by their resource endowments and their military technologies. Resource

endowments are common knowledge, and we focus on the empirically more relevant case

in which player 1 has no less resources than player 2. The players’ military technologies

consist of two components: The publicly observable expected military technology, which

may differ across players, and a privately observed component that captures deviations

from the expected military technology. Each player can choose how to allocate their

resources to production and warfare. The resource allocation and the military technology

determine military power and domestic production. The country with the higher military

power wins the war for sure. The main innovation of our model is the asymmetric payoff

structure, which captures the essence of wars of conquest and independence: If player 1

wins, he can consume aggregate production. If player 2 wins, each player can consume

their own production. Hence, player 1 gets at worst his own production, while player 2

gets at best her own production.

We characterize an equilibrium in which the players’ military power is continuous

and strictly monotonic with respect to the privately observed component of their mili-

2We adopt the convention that player 1 is a “he” and player 2 a “she”.
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tary technology. Player 1 allocates few resources to warfare if his military technology,

in particular its privately observed component, is poor. The reason is that it does not

pay for him to forgo own production if his winning chances are small anyway. But if the

privately observed component of his military technology is high, he fights aggressively,

because his expected returns to warfare are then relatively high compared to his returns

to own production. Player 2 fights quite aggressively and desperately even if the privately

observed component of her military technology is relatively low, because allocating very

few resources to warfare would most likely lead to a defeat and, consequently, a payoff of

zero. Moreover, player 2 also fights more aggressively than player 1 if they both have the

same expected and the same actual military technology. The reason is that the expected

marginal costs of increasing military spending are higher for player 1, who gets his own

production for sure, than for player 2, who gets her own production only if she wins. We

therefore find that player 2 is from an ex ante perspective more likely to win the war than

player 1 unless her expected military technology is considerably worse. These results hold

independently of how much more resources player 1 has than player 2.

This equilibrium behavior is consistent with the aggressive and desperate fighting of the

Vietnamese communists, the Afghan mujahideen, and many secessionist groups, as well

as with their surprisingly frequent victories against much larger opponents. Our model

suggests that such aggressive fighting, and victories of small defending countries and small

secessionist groups against larger opponents are no coincidence, but the result of the very

different incentives faced by the conflicting parties in wars of conquest and independence.

The standard models of symmetric conflicts and wars go back to Haavelmo (1954) and

have been popularized by Garfinkel (1990), Grossman (1991), Hirshleifer (1991, 2001), and

Skaperdas (1992). They are typically based on the assumptions that a war takes place for

exogenous reasons, that each party can choose how to allocate its resources to production

and warfare, that the outcome of the war is probabilistic and determined by a contest

success function, and that the winner can consume aggregate production. Hodler and
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Yektaş (2012) also focus on symmetric conflicts and wars, but drop the assumption that

the outcome of the war is probabilistic. Instead they assume that the parties’ resource en-

dowments are private information, and that the party with the higher military power wins

for sure. We follow their approach of letting the outcome of war be uncertain not because

of luck on the battlefield, but because parties lack information about their opponent. We

deviate by assuming that parties are imperfectly informed about their opponent’s military

technology rather than its resource endowment. This assumption may be more realistic

as countries routinely keep their opponents’ guessing about their military technology.3

Private information about military technologies could also represent uncertainty about

how dedicated and motivated the opponent’s people are to fight for their group or their

country, respectively.4 The more important deviation from both the standard models and

Hodler and Yektaş (2012) is our focus on asymmetric wars of conquest and independence

rather than symmetric wars in which both parties get aggregate production when winning.

Our paper is complementary to contributions that focus on other asymmetries between

attacking and defending parties. Building on the standard models discussed above, Gross-

man and Kim (1995, 1996), and Bester and Konrad (2004) study models of conflict in

which both parties can attack or defend, and in which defending parties have a techno-

logical advantage modeled by asymmetric contest success functions. Shubik and Weber

(1981), Clark and Konrad (2007), and Powell (2007a,b) study models in which a defending

party is vulnerable at several points, and needs to defend all these points successfully to

win the battle, while the attacker wins if he can surmount the defender at one of these

points.5

3Fearon (1995) argues that countries have a strategic incentive to misrepresent their private information
about relative power, and that this misrepresentation of private information can cause warfare. Meirowitz
and Sartori (2008) present a model in which countries strategically create uncertainty about their own
military capacity even though this uncertainty can lead to warfare.

4For example, many observers were surprised that the Iraqis were reluctant to fight when the U.S. army
and its allies invaded Iraq to overthrow Saddam Hussein, and also that the U.S. army and its allies
encountered fierce resistance in later years (Hodler and Yektaş, 2012).

5See Kovenock and Roberson (2012) for a review of models of conflicts with multiple battlefields.

5



Our model also relates to all-pay auctions with incomplete information, which go back

to Amann and Leininger (1996), and Krishna and Morgan (1997). If our player 2 wins,

payoffs are very similar as in all-pay auctions, as the winner’s and the loser’s payoff both

decrease in their own bid. But if player 1 wins, payoffs are very different than in all-pay

auctions. Then the winner’s payoff decreases in his own and the loser’s bid, while the

loser’s payoff is zero independently of her bid.

In addition, our model also relates to Farmer and Pecorino (1999) and, in particular,

Baye et al. (2005) who study symmetric litigation contests under different legal systems.

We can reinterpret our model as an asymmetric litigation contest under the American rule,

which asks the parties to pay their own legal outlays. In this interpretation of our model,

the party that presents the stronger case wins the litigation contest, with the strength of

the case depending on the expenses for attorneys and the privately known quality of the

respective arguments. The asymmetry in our model may represent a litigation environment

in which one party (player 2) is currently in possession of the disputed asset, but has no

other resources available, while the other, larger party (player 1) has plenty of resources.

If the party who only possesses the disputed asset wins, she can keep what is left of the

asset after paying her legal outlays. If the larger party wins, he gets what is left of the

disputed assets, and the loser gets bankrupt. Our model predicts that the party who only

possesses the disputed asset makes high legal outlays even if her argument is of low quality,

while the larger party makes high outlays only if his argument is of high quality.

The remainder of the paper is organized as follows: Section 2 introduces the model.

Section 3 derives and discusses the equilibrium. Section 4 concludes. The appendix

contains all proofs.
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2 The Model

There are two players, labeled 1 and 2. These players are at war for exogenous reasons.

When thinking about wars of conquest, player 1 represents the attacking country, and

player 2 the defending country. When thinking about wars of independence, player 1

represents the central government, and player 2 the secessionist group.

Player i = 1, 2 is characterized by the expected military technology τi ∈ R+ and

the resource endowment ri, which are both common knowledge. For later use, we define

τ ≡ τ1
τ2

, which measures the relative expected military technology of player 1. Further we

set r2 = 1, which is without loss of generality, and assume r1 ≥ 1. This latter assumption

is consistent with typical wars of conquests in which attacking countries are no smaller

than defending countries, and typical wars of independence in which secessionist regions

are no larger than the rest of the country. It thereby helps us to focus on the potentially

paradoxical observation that small defending countries and secessionist regions often win

against much larger opponents. From a technical perspective, this assumption will ensure

that player 1’s resource constraint is not binding.

Each player’s actual military technology αi is private information, and independently

and identically drawn from the uniform distribution on [0, 2τi]. Equivalently, we can

think of the actual military technology as being given by 2τiλi, where λi ≡ αi

2τi
, with λi

drawn from the uniform distribution on [0, 1]. While τi measures the expected technical

sophistication of player i’s army, the privately observed component λi captures deviations

from these expectations and the troops’ dedication and motivation to fight hard. Thereby

we can interpret λi > 1/2 as positive deviations, and λi < 1/2 as negative deviations.

The players simultaneously decide how to allocate their resources to production and

warfare. Given resource endowment ri, player i chooses to allocate bi ∈ [0, ri] to warfare,

and ri−bi to production. Player i’s military power is then αibi = 2τiλibi, and its production

ri − bi. The player with the higher military power wins the war. If player 1 wins, he gets
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aggregate production. If player 2 wins, each player can keep its own production. Therefore,

the players’ ex-post payoffs are6

ũ1(b1, b2) = r1 − b1 +

 1− b2 if τλ1b1 > λ2b2

0 if τλ1b1 ≤ λ2b2

(1)

ũ2(b1, b2) =

 1− b2 if τλ1b1 ≤ λ2b2

0 if τλ1b1 > λ2b2.
(2)

In this game, pure strategies are of the form bi = βi(λi): [0, 1] → [0, ri]. We define

f1(λ1) ≡ τλ1β1(λ1) and f2(λ2) ≡ λ2β2(λ2). Subsequently, we call β1(λ1) and β2(λ2) the

players’ real bidding strategies, and f1(λ1) and f2(λ2) their effective bidding strategies.

Observe that the player with the higher effective bid always has the higher military power

(i.e., f1(λ1) > f2(λ2) if and only if 2τ1λ1β1(λ1) > 2τ2λ2β2(λ2)). Hence, the player with

the higher effective bid always wins the war.

The appropriate solution concept is Bayesian Nash equilibrium, and we look for an

equilibrium in which the effective bidding strategies are strictly monotonic, continuous

and twice differentiable. We focus on effective bidding strategies as there may exist no

equilibrium with monotonic real bidding strategies.

3 Equilibrium analysis

In this section, we first discuss the trade-offs that the players face. We then prove the

existence of an equilibrium, and describe the equilibrium real and effective bidding strate-

gies. Finally, we compare the players’ equilibrium effective bidding strategies, which yields

insights into the likely outcome of the war from an ex-ante perspective.

As the effective bidding strategies are strictly monotonic, the inverse functions exist.

6The tie-breaking assumption is without loss of generality as ties are zero-probability events.
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We denote them by φ1 = f−11 and φ2 = f−12 . Given the opponent’s real bidding strategies,

we can write the players’ ex-post payoffs as

ũ1(b1, β2(λ2)) = r1 − b1 +

 1− f2(λ2)
λ2

if λ2 < φ2(τλ1b1)

0 if λ2 ≥ φ2(τλ1b1)

ũ2(β1(λ1), b2) =

 1− b2 if λ1 ≤ φ1(λ2b2)

0 if λ1 > φ1(λ2b2).

Then the interim expected payoffs take the form

u1(λ1, b1) = r1 − b1 +

∫ φ2(τλ1b1)

0

(
1− f2(λ2)

λ2

)
dλ2

u2(λ2, b2) = (1− b2)φ1(λ2b2).

Taking the partial derivatives with respect to the players’ bids leads to

∂u1(λ1, b1)

∂b1
= −1 +

(
1− τλ1b1

φ2(τλ1b1)

)
τλ1φ

′
2(τλ1b1) (3)

∂u2(λ2, b2)

∂b2
= −φ1(λ2b2) + (1− b2)λ2φ′1(λ2b2). (4)

The first terms on the right-hand sides of equations (3) and (4) represent the expected

marginal costs of increasing the bids, i.e., military spending, and the second terms the

expected marginal benefits from doing so.

Equation (3) and Figure 1 illustrate the trade-off that player 1 faces: Consider a

type of player 1, say λ1, that bids b1 and thinks about bidding b1 + db1, such that his

effective bid increases from τλ1b1 to τλ1(b1 + db1). He incurs marginal costs equal to the

forgone consumption of one marginal unit of production, as he gets his own production

independently of the outcome of war. The benefit from increasing the bid by db1 occurs if

this increase turns him into a winner in which case he gains the amount that player 2 has
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kept for production, i.e., 1 − τλ1b1
φ2(τλ1b1)

. This event occurs with probability τλ1φ
′
2(τλ1b1),

and generates the expected marginal benefit shown in equation (3).

Equation (4) and Figure 2 similarly illustrate the trade-off that player 2 faces: Consider

a type of player 2, say λ2, that bids b2 and thinks about bidding b2 + db2, such that her

effective bid would increase from λ2b2 to λ2(b2 + db2). Player 2 incurs the costs of forgone

consumption of one marginal unit of production only if she is already a winner, which is the

case with probability φ1(λ2b2). A higher bid implies a benefit equal to her own production

1 − b2 if it turns her into a winner. This event occurs with probability λ2φ
′
2(λ2b2), and

generates the expected marginal benefit shown in equation (4).

We now derive the equilibrium strategies. We thereby rely on two insights. First, the

equilibrium strategies β1(λ1) and β2(λ2) must solve the first-order conditions ∂u1(λ1,b1)
∂b1

= 0

and ∂u2(λ2,b2)
∂b2

= 0, with the partial derivatives given in equations (3) and (4), if the players’

resource constraints are not binding for any λi ∈ [0, 1].

The second insight is that the equilibrium effective bidding strategies must coincide at

the bottom and the top:

Lemma 1 In any equilibrium with strictly monotonic effective bidding strategies, it holds

that f1(0) = f2(0) = 0, that f1(.) and f2(.) are strictly increasing, and that f1(1) = f2(1) =

x̄(τ), where x̄(τ) < 1 for any τ .

Players with a zero military technology obviously have zero military power and, therefore,

effective bids of zero. As a consequence, strictly monotonic strategies must be strictly

increasing. Moreover, no player ever bids more than necessary to win with probability

one because the winner’s payoff decreases in the resources he or she allocates to warfare.

Effective bids thus coincide if λ1 = λ2 = 0, and if λ1 = λ2 = 1. The last result in Lemma

1 follows from the observation that player 2 never allocates all resources to warfare. By

doing so, she would get a payoff of zero with certainty, while her expected payoff is strictly

positive for any slightly lower bid.
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Based on these two insights, we can prove the existence of an equilibrium and charac-

terize the equilibrium bidding strategies:

Proposition 1 There exists a Bayesian Nash equilibrium in strictly monotonic effective

bidding strategies. In this equilibrium, player 1’s effective bidding strategy is

f1(λ1) = (τλ1)
−1eτ

−1

∫ ∞
(τλ1)−1

e−t

t2
dt, (5)

and player 2’s effective bidding strategy is implicitly determined by

f ′′2 (λ2) =
f2(λ2)

λ2(λ2 − f2(λ2))
f ′2(λ2), (6)

and the boundary conditions f2(1) = x̄(τ) and f ′2(1) = τ (1− f2(1)).

Proposition 1 shows that the equilibrium effective biding strategies f1(λ1) and f2(λ2)

depend only on the relative expected military technology τ , but neither on the levels

of τ1 and τ2, nor on player 1’s resource endowment r1. The same must hold true for the

equilibrium real biding strategies β1(λ1) and β2(λ2). The players’ equilibrium play depends

only on their relative, but not their absolute expected military technology because they

only care about having the higher military power than their opponent, but not about

their military power as such. Their equilibrium play is independent of player 1’s resource

endowment r1 because r1 affects neither the probability that player 1 wins the war (at

least in the absence of a binding resource constraint), nor the prize he gets when winning.7

Proposition 1 further gives closed-form solutions for player 1’s equilibrium bidding

strategies f1(λ1) and β1(λ1) = f1(λ1)
τλ1

. Closed-form solutions for player 2’s equilibrium

bidding strategies f2(λ2) and β2(λ2) = f2(λ2)
λ2

do not exist, but can easily be derived

numerically. Figure 3 shows the players’ equilibrium bidding strategies for all λi ∈ [0, 1]

7Technically, the equilibrium play is independent of r1 because player 1’s interim expected payoff is
linear in r1.
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and various values of the relative expected military technology τ . Note that the figures

on the left-hand side show the real bidding strategies, and those on the right-hand side

the effective bidding strategies; and that thick lines indicate player 1’s strategies, and thin

lines player 2’s strategies.

We know from Lemma 1 that the players’ effective bidding strategies are strictly in-

creasing. We next look at their real bidding strategies:

Proposition 2 There exists a threshold γ such that player 1’s equilibrium real bidding

strategy β1(λ1) is strictly increasing in λ1 if τ < γ, and hump-shaped with a single peak at

γ
τ

if τ ≥ γ. Player 2’s equilibrium real bidding strategy β2(λ2) is strictly increasing in λ2.

Proposition 2 implies that player 1’s equilibrium real bidding strategy crucially depends

on the relative expected military technology τ , and how it compares to the threshold level

γ, which is approximately equal to 1.64 (see proof of Proposition 1).

To understand player 1’s equilibrium behavior, observe that allocating very few re-

sources to warfare is not too unattractive for him. Sure, he is then likely to lose, but

it allows him to produce more, and after all he can keep his own production even when

losing. He therefore allocates close to zero resources to warfare if his military technology

is poor. This choice explains why we see low real and effective bids in Figure 3 whenever

the relative expected military technology τ and the privately observed component λ1 are

low. However, as τ or λ1 increases, the option of warfare becomes more interesting for

player 1, and he therefore allocates more resources to warfare, at least, up to some extent.

Once τλ1 gets sufficiently high, it makes no longer sense for him to increase his military

power much, as he is already likely to win. Therefore, he starts reducing his real bid

β1(λ1) as soon as τλ1 exceeds the threshold level γ, i.e., as soon as λ1 exceeds γ
τ
. (Note

that γ
τ
≈ 0.82 if τ = 2, as in the bottom figures of Figure 3.)

For player 2, unlike for player 1, an active engagement in warfare is crucial, as she

ends up with zero payoff in case of defeat. Therefore, she needs to fight aggressively
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(and desperately) by allocating a considerable share of her resources to warfare even if

her military technology is quite poor, i.e., even if λ2 is quite low and τ quite high. This

necessity explains the relatively high β2(λ2) for any λ2 and τ , as can be seen in Figure

3. Her equilibrium real bidding strategy β2(λ2) is strictly increasing in λ2, even though it

is already relatively high at low λ2, because a rise in λ2 increases the expected marginal

benefit of allocating more resources to warfare, without affecting marginal costs.

We next compare the two players’ effective bidding strategies, as the player with the

higher effective bid wins the war.

Proposition 3 Given τ ≤ 1, it holds that f1(λ) < f2(λ) for all λ ∈ (0, 1). Given τ > 1,

it holds that f1(λ) < f2(λ) for all λ ∈ (0, ψ(τ)), and f1(λ) > f2(λ) for all λ ∈ (ψ(τ), 1),

where ψ(τ) satisfies ψ(τ) ∈ (0, 1) for any τ > 1, and decreases in τ .

We have argued above that if the privately observed component of the military technology

is low, it is attractive for player 1, but not for player 2 to allocate very few resources

to warfare. The result that player 2 always chooses the higher effective bid, i.e., the

higher military power, at low λ is the direct consequence of this difference in the players’

incentives. This difference is also one of the reasons why player 1 chooses the lower real

bid than player 2 for all λ ∈ (0, 1) if his excepted military technology is relatively poor,

i.e., if τ < 1. Another reason is that the expected marginal costs of increasing military

spending are higher for player 1, who gets his own production for sure, than for player 2,

who gets her own production only if she wins. It is this latter reason that also explains

why player 1 chooses the lower effective bid for all λ ∈ (0, 1) even if τ = 1, i.e., even if the

two players have the same expected military technology. Player 1 only chooses the higher

effective bid if both his expected and his actual military technology are good, i.e., if λ is

relatively high and τ > 1.

The comparison of the equilibrium effective bidding strategies in Proposition 3 informs

us about the likely outcome of the war from an ex-ante perspective. It suggests that player
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2 is more likely to win the war if her expected military technology is better or equally

good as player 1’s expected military technology, i.e., if τ ≤ 1. Player 2 is even the likely

winner if her expected military technology is slightly worse. Player 1 is more likely to win

from an ex-ante perspective only if his expected military technology is considerably better

than player 2’s.

Conclusions

We have presented a model of wars that takes seriously the asymmetric payoff struc-

ture that characterizes wars of conquests and wars of independence. We have shown

that defending countries and secessionist groups tend to have stronger incentives to fight

aggressively than attacking countries and central governments, and that this difference

is most pronounced if actual military technologies are poor relative to what had been

expected. From an ex-ante perspective, defending countries and secessionist groups are

therefore more likely to win the war unless their expected military technology is consider-

ably worse than their opponents’. It is remarkable that these results hold independently of

how much larger the resource endowment of the attacking country and the central govern-

ment is. They may thus explain why relatively small defending countries and secessionist

groups often fight aggressively and desperately, and why they often win against much

larger opponents.
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Appendix: Proofs

Proofs are currently quite detailed, but could be shortened.

Proof of Lemma 1: It directly follows from the definitions of f1(λ1) and f2(λ2) that

f1(0) = f2(0) = 0. Given that fi(0) = 0, that fi(λi) ≥ 0 for any λi, and that fi(.) is

strictly monotonic, it follows that fi(.) must be strictly increasing for i = 1, 2. We prove

f1(1) = f2(1) by contradiction. Suppose f1(1) > f2(1). For λ1 = 1, player 1 is then better

off by deviating and playing b1 = f2(1)
τ

, because he still wins with probability one, but

gets a higher payoff if he wins. Hence, f1(1) > f2(1) cannot hold in equilibrium. The

proof that f2(1) > f1(1) cannot hold in equilibrium is analogous. Finally, we prove that

f2(1) < 1 for any τ . Since f2(1) = β2(1) and β2(1) ∈ [0, 1], we only need to prove that

β2(1) 6= 1. We do so by contradiction. Suppose β2(1) = 1. For λ2 = 1, player 2 gets an

expected payoff of zero. She is thus better off by deviating and playing any β2(1) < 1 that

still leads to a strictly positive winning probability. �

Proof of Proposition 1: We proceed in two steps: First, we show that the equilibrium

effective bidding strategies given in Proposition 1 solve the system of differential equa-

tions given by the two first-order conditions, and satisfy the boundary conditions given in

Lemma 1. Doing so ensures that these strategies are mutually best responses. Second, we

show that the equilibrium effective bidding strategies given in Proposition 1 are indeed

strictly increasing (as required by Lemma 1), and satisfy the players’ resource constraints.

We start by evaluating equation (3) at b1 = β1(λ1) and equation (4) at b2 = β2(λ2)

and setting these equations equal to zero to obtain the first-order conditions

−1 +

(
1− f1(λ1)

φ2(f1(λ1))

)
τλ1φ

′
2(f1(λ1)) = 0 (7)

−φ1(f2(λ2)) +

(
1− f2(λ2)

λ2

)
λ2φ

′
1(f2(λ2)) = 0. (8)
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We will now transform the system of differential equations given by these first-order con-

ditions in a way that it yields the inverses of the effective bidding strategies, namely

φ1 = f−11 and φ2 = f−12 , as solution. We therefore rename f1(λ1) = y and f2(λ2) = z, and

rearrange first-order conditions (7) and (8) to obtain

τφ1(y) (φ2(y)− y)
φ′2(y)

φ2(y)
= 1

(φ2(z)− z)
φ′1(z)

φ1(z)
= 1.

Lemma 1 implies that φ1 and φ2 are defined over the same interval [0, x̄(τ)] for any given

τ , which allows to write the system of differential equations as

τφ1(x) (φ2(x)− x)
φ′2(x)

φ2(x)
= 1 (9)

(φ2(x)− x)
φ′1(x)

φ1(x)
= 1, (10)

where x ∈ [0, x̄(τ)]. The boundary conditions given in Lemma 1 can similarly be written

as φ1(0) = φ2(0) = 0 and φ1(x̄(τ)) = φ2(x̄(τ)) = 1. We evaluate the system of differential

equations (9) and (10) at x = x̄(τ) to obtain

τφ′2(x̄(τ)) = φ′1(x̄(τ)) =
1

1− x̄(τ)
. (11)

Since x̄(τ) < 1, as shown in Lemma 1, equation (11) implies τφ′2(x̄(τ)) = φ′1(x̄(τ)) > 1,

or, equivalently, f ′1(1) < 1 and f ′2(1) < τ .

We now derive player 1’s strategy. Using equation (10), φ2(x) can be written in terms

of φ1(x) as

φ2(x) =
φ1(x)

φ′1(x)
+ x. (12)
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Differentiating equation (12) yields

φ′2(x) = 2− φ1(x)φ′′1(x)

(φ′1(x))2
. (13)

Substituting equations (12) and (13) into equation (9), and rearranging terms leads to

(
2τφ2

1(x)− φ1(x)
)

(φ′1(x))
2

= x (φ′1(x))
3

+ τφ3
1(x)φ′′1(x), (14)

which yields φ1 as solution. Without loss of generality, we rename φ1(x) = λ1 and x =

f1(λ1) to have a differential equation that yields the effective bid function f1 as solution.

Keeping in mind that φ′1(x) = 1
f ′1(λ1)

and φ′′1(x) = − f ′′1 (λ1)

(f ′1(λ1))
3 , we can rewrite equation (14)

as

τλ31f
′′
1 (λ1) +

(
2τλ21 − λ1

)
f ′1(λ1) = f1(λ1).

The solution to this differential equation, together with the boundary conditions f1(0) = 0

and f ′1(1) = 1 − f1(1), which follow from Lemma 1 and equation (11), is player 1’s

equilibrium effective bidding strategy f1(λ1) given in equation (5) in Proposition 1.

We now turn to player 2’s equilibrium strategy. Using equation (9), we can write φ1(x)

in terms of φ2(x) as

φ1(x) =
φ2(x)

τφ′2(x) (φ2(x)− x)
. (15)

Differentiating equation (15) and rearranging terms yields

φ′1(x) =
−x (φ′2(x))2 − (φ2(x))2 φ′′2(x) + xφ2(x)φ′′2(x) + φ2(x)φ′2(x)

τ (φ′2(x) (φ2(x)− x))2
. (16)

Substituting equations (15) and (16) into equation (10) and rearranging terms leads to

xφ2(x)φ′′2(x) = x (φ′2(x))
2

+ (φ2(x))2 φ′′2(x).
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Without loss of generality, we rename φ2(x) = λ2 and x = f2(λ2) to get a differential

equation that yields the effective bid function f2(λ2) as solution. Again keeping in mind

that φ′2(x) = 1
f ′2(λ2)

and φ′′2(x) = − f ′′2 (λ2)

(f ′2(λ2))
3 , we get

−λ2f2(λ2)
f ′′2 (λ2)

(f ′2(λ2))
3 = f2(λ2)

(
1

f ′2(λ2)

)2

− λ22
f ′′2 (λ2)

(f ′2(λ2))
3 ,

which can be simplified to equation (6) given in Proposition 1. The corresponding bound-

ary conditions given in Proposition 1 follow from Lemma 1 and equation (11).

We next show that the equilibrium effective bidding strategies derived above are strictly

increasing, and satisfy the players’ resource constraints. We first look at player 1’s strategy.

Given f1(λ1) we can compute its first derivative as

f ′1(λ1) = eτ
−1

τ(τλ1)
−2
(∫ ∞

(τλ1)−1

e−t

t
dt

)
(17)

Since all terms are positive when τ > 0 and λ1 > 0, it follows that f1(λ1) is strictly

increasing.

Player 1’s resource constraint requires β1(λ1) ≤ r1 for each λ1 and τ . It follows directly

from equation (5) and β1(λ1) = f1(λ1)
τλ1

that

β1(λ1) = (τλ1)
−2eτ

−1

∫ ∞
(τλ)−1

e−t

t2
dt

Differentiate β1(λ1) with respect to λ1 to obtain

β′1(λ1) = τeτ
−1

(τλ1)
−3
∫ ∞
(τλ1)−1

(t− 1)e−t

t2
dt (18)

Note that
∫∞
(τλ1)−1

(t−1)e−t

t2
dt is positive whenever τλ1 ≤ γ, where γ ≈ 1.63919, and negative

otherwise. Consequently, β1(λ1) is strictly increasing in λ1 whenever τ < γ. Otherwise,

β1(λ1) is increasing for λ1 ≤ γ
τ

and decreasing for λ1 ≥ γ
τ
, and has a single peak at λ1 = γ

τ
.
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Therefore, for each τ , the highest possible bid that player 1 may make is

b̄1(τ) ≡ max
λ1

β1(λ1) =

 β1 (1) if τ < γ

β1
(
γ
τ

)
if τ ≥ γ

=

 eτ
−1
(
τ−2

∫∞
τ−1

e−t

t2
dt
)

if τ < γ

eτ
−1
(
γ−2

∫∞
γ−1

e−t

t2
dt
)

if τ ≥ γ

Note that b̄1(τ) is decreasing in τ with limτ→0 b̄1(τ) = 1. Since r1 ≥ 1, it thus follows that

player 1’s resource constraint is not binding.

We now turn to player 2’s strategy. Using equation (5), we can derive

d

dλ1
(λ1f

′
1(λ1)) = eτ

−1

τ−1
(
λ−21

∫ ∞
(τλ1)−1

e−t

t2
dt+

(
λ−21 − λ−11

)
e−(τλ1)

−1

)
,

where eτ
−1
τ−1 and λ−21

∫∞
(τλ1)−1

e−t

t2
dt are both positive. Moreover,

(
λ−21 − λ−11

)
e−(τλ1)

−1

must also be positive, as it equals zero for λ1 = 0 and λ1 = 1, and is hump shaped with

a single peak at some λ1 ∈ (0, 1). Hence, λ1f
′
1(λ1) is strictly increasing in λ1. It then

follows from the definition φ1 ≡ f−11 that φ1(x)
φ′1(x)

is strictly increasing in x. Then, it also

follows from equation (12) that φ2(x) is strictly increasing in x. Hence, f2(λ2) is strictly

increasing in λ2. Since φ1(x), φ2(x) and φ′2(x) are all positive, equation (15) implies

φ2(x) > x. It follows that f2(λ2) < λ2 and, consequently, β2(λ2) < 1. Hence player 2’s

resource constraint holds for all λ2. �

Proof of Proposition 2: The first statement directly follows from the proof of Propo-

sition 1 (see equation (18) and the discussion thereafter). It remains to prove that β2(λ2)

is strictly increasing. Remember that β2(λ2) = f2(λ2)
λ2

. Differentiating it once yields

β′2(λ2) =
f ′2(λ2)λ2 − f2(λ2)

(λ2)2
.

Then, since λ2 > 0, it holds that β′2(λ2) > 0 if and only if f ′2(λ2)λ2 > f2(λ2), or, equiva-

lently, if and only if
f ′2(λ2)

f2(λ2)
> 1

λ2
. Changing the variables using x = f2(λ2) (and therefore
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φ2(x) = λ2), we obtain φ2(x)
x

> φ′2(x). Substituting equations (12) and (13) into this last

inequality and rearranging terms, we get

φ1(x)φ′1(x) + xφ1(x)φ′′1(x)

x (φ′1(x))2
> 1. (19)

Changing the variables using λ1 = φ1(x) (and therefore x = f1(λ1)), using φ′1(x) = 1
f ′1(λ1)

and φ′′1(x) = − f ′′1 (λ1)

(f ′1(λ1))
3 , and rearranging terms, we can rewrite inequality (19) as

λ1 (f ′1(λ1))
2
> f1(λ1)f

′
1(λ1) + λ1f1(λ1)f

′′
1 (λ1). (20)

The first derivative of equation (5) is given by equation (17), and the second derivative is

f ′′1 (λ1) = eτ
−1
τ 2(τλ1)

−4 ∫∞
(τλ1)−1

(
(1− 2(τλ1))

e−t

t
− e−t

t2

)
dt. Substituting equation (5) and

these derivatives into inequality (20), and rearranging terms yields

∫∞
a

e−t

t
dt∫∞

a
e−t

t2
dt
>

∫∞
a

(
(a− 1) e

−t

t
− a e−t

t2

)
dt∫∞

a
e−t

t
dt

, (21)

where a = (τλ1)
−1 ∈ [0,∞). Hence, β′2(λ2) > 0 if and only if inequality (21) holds.

We now prove that inequality (21) holds for all a ∈ [0,∞). Suppose first that 0 ≤ a ≤ 1.

Then the numerator on the right-hand side of inequality (21) is negative, while the other

three terms are all positive. Hence, inequality (21) must hold. Suppose now that a > 1.

It holds that (∫∞
a

e−t

t
dt∫∞

a
e−t

t2
dt

)′
>

∫∞a
(

(a− 1) e
−t

t
− a e−t

t2

)
dt∫∞

a
e−t

t
dt

′

for all a > 1, because the left-hand side is strictly decreasing with lima→∞

(∫∞
a

e−t

t
dt∫∞

a
e−t

t2
dt

)′
= 1,

while the right-hand side is strictly increasing with lima→∞

(∫∞
a

(
(a−1) e

−t

t
−a e−t

t2

)
dt∫∞

a
e−t

t
dt

)′
= 1.

This inequality and the result that inequality (21) holds for a = 1 imply that inequality

(21) must also hold for any a > 1. Therefore, β2(λ2) is strictly increasing. �
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Proof of Proposition 3: We first derive a useful result, and then prove the statements

in Proposition 3 separately for the cases τ < 1, τ = 1 and τ > 1. So, note initially that

differential equations (9) and (10) imply

τ
φ′2(x)

φ2(x)
=

φ′1(x)

(φ1(x))2
. (22)

Evaluating this equation at x = x̄(τ) yields τφ′2 (x̄(τ)) = φ′1 (x̄(τ)) or, equivalently,

f ′2(1) = τf ′1(1). (23)

Suppose first that τ < 1. Equation (23) then implies f ′2(1) < f ′1(1). Then, since

f1(1) = f2(1), it must hold for very small ε > 0 that f2(λ) > f1(λ) for all λ ∈ (1− ε, 1).

It remains to show that f2(λ) > f1(λ) when λ ∈ (0, 1− ε]. Let x̃ be in the interval

(0, x̄(τ)). Then, by equation (22), φ2(x̃) = φ1(x̃) implies τφ1(x̃)φ′2(x̃) = φ′1(x̃). Since

φ1(x̃) ≤ 1, it follows that φ′2(x̃) > φ′1(x̃) whenever τ ≤ 1. Equivalently, when λ̃ ∈ (0, 1),

then f2

(
λ̃
)

= f1

(
λ̃
)

implies f ′2

(
λ̃
)
< f ′1

(
λ̃
)

. Thus, f2 and f1 can intersect at most once.

Now suppose, by contradiction, that there is a λ̃ ∈ (0, 1 − ε] such that f2

(
λ̃
)

= f1

(
λ̃
)

.

Then, for small enough δ > 0 it must hold that f2

(
λ̃+ δ

)
< f1

(
λ̃+ δ

)
. But since both

f2 and f1 are continuous and since f2(λ) > f1(λ) for λ ∈ (1−ε, 1), f1 and f2 must intersect

more than once, which is a contradiction, thereby implying that f2 and f1 do not intersect

for λ ∈ (0, 1). Since f2 and f1 do not intersect when λ ∈ (0, 1), and since f2(λ) > f1(λ)

for λ ∈ (1− ε, 1), it must hold that f2(λ) > f1(λ) for all λ ∈ (0, 1).

Suppose second that τ = 1. We again prove that, for very small ε > 0, f2(λ) > f1(λ)

for all λ ∈ (1− ε, 1). Having done so, the above argument will directly imply that f2(λ) >

f1(λ) for all λ ∈ (0, 1). By equation (23), for very small ε̂ > 0, φ2 (x̄− ε̂) ' φ1 (x̄− ε̂) < 1.

Hence, φ2 (x̄− ε̂) > [φ1 (x̄− ε̂)]2. This inequality and equation (22) imply φ′2 (x̄− ε̂) >

φ′1 (x̄− ε̂). Equivalently, for very small ε > 0, f ′2 (1− ε) < f ′1 (1− ε). This inequality and
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equation (23) imply f2(λ) > f1(λ) for all λ ∈ (1− ε, 1), so that the above argument allows

us to conclude that f2(λ) > f1(λ) for all λ ∈ (0, 1).

Suppose finally that τ > 1. Equation (23) and τ > 1 imply f ′2(1) > f ′1(1). Then, it

must hold for very small ε > 0 that f2(λ) < f1(λ) for all λ ∈ (1− ε, 1). Now suppose, by

contradiction, that f2

(
λ̃
)

= f1

(
λ̃
)

for some λ̃ > 1
τ
. Then, by equation (22), it holds that

τ λ̃ =
f ′2(λ̃)
f ′1(λ̃)

> 1. But as f2(λ) < f1(λ) for λ ∈ (1 − ε, 1), the two curves have to intersect

once more at some λ′ > λ̃. But by equation (22), it also holds that τλ′ =
f ′2(λ

′)

f ′1(λ
′)
> 1.

Hence, there is a contradiction as f1 and f2 are both continuous. Thus, f2(λ) < f1(λ) for

λ ∈ ( 1
τ
, 1). Moreover, if the two curves intersect at some λ̃, then we must have λ̃ ≤ 1

τ

and
f ′2(λ̃)
f ′1(λ̃)

= τ λ̃, which implies
f ′2(λ̃)
f ′1(λ̃)

≤ 1. Since the intersection point λ̃ could potentially

depend on τ , we denote it by ψ(τ). Then f1 (ψ(τ)) = f2 (ψ(τ)) = x (τ), or, equivalently,

φ1(x(τ)) = φ2(x(τ)) = ψ(τ). Equation (12) implies that it holds at the intersection point

ψ(τ) that

φ′1(x(τ)) =
φ1(x(τ))

φ1(x(τ))− x(τ)

or, equivalently,

f ′1(ψ(τ)) =
ψ(τ)− f1(ψ(τ))

ψ(τ)
.

Plugging in the functional forms f1 and f ′1 from equations (5) and (17), we obtain

eτ
−1

τ(τψ(τ))−2
∫ ∞
(τψ(τ))−1

e−t

t
dt =

ψ(τ)− (τψ(τ))−1eτ
−1 ∫∞

(τψ(τ))−1
e−t

t2
dt

ψ(τ)
,

which can be simplified to

τ−1 =
lnψ(τ)

1− (ψ(τ))−1
. (24)

The left-hand side of equation (24) decreases in τ and satisfies τ−1 ∈ (0, 1). The right-hand

side is continuous and strictly increasing in ψ with limψ→0
lnψ

1−ψ−1 = 0 and limψ→1
lnψ

1−ψ−1 = 1,

and satisfies ψ < lnψ
1−ψ−1 for all ψ ∈ (0, 1). It follows from these properties that there exists

a unique ψ(τ) that solves equation (24); that ψ(τ) ≤ τ−1; and that ψ(τ) is decreasing
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in τ . Since it holds that at
f ′2(ψ(τ))

f ′1(ψ(τ))
≤ 1 at the unique intersection point ψ(τ), that

f1(0) = f2(0) = 0, and that f2(λ) < f1(λ) for λ ∈ (τ−1, 1), we conclude that f1(λ) < f2(λ)

for all λ ∈ (0, ψ(τ)), and f1(λ) > f2(λ) for all λ ∈ (ψ(τ), 1). �
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Figures

Figure 1: Player 1’s trade-off

Figure 2: Player 2’s trade-off
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(a) Real bids for τ = 0.5 (b) Effective bids for τ = 0.5

(c) Real bids for τ = 1 (d) Effective bids for τ = 1

(e) Real bids for τ = 2 (f) Effective bids for τ = 2

Figure 3: Real and effective bids for different relative expected military technologies τ
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