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1 Introduction

For decades, R&D and innovation have been recognized by scholars and policy makers as major

drivers of country, industry and firm economic performance. Many of the early studies, follow-

ing the lead of Griliches (1979), have used an augmented production function with R&D capital

to estimate the returns to R&D at the firm level. More recently, many studies have relied on

innovation survey indicators and on the CDM framework to analyze simultaneously a knowledge

production function relating innovation output to R&D, and an augmented production function

linking productivity to innovation output (Crépon et al., 1998; Mairesse et al., 2005; Griffith et al.,

2006). Both the effects of R&D on innovation output and of innovation output on productivity

are usually found to be positive and significant in these studies. Most of them, however, are based

on cross-sectional data and cannot take into account the dynamic linkages between innovation and

economic performance nor unobserved firm heterogeneity. This is where the present study comes

into play.1 More specifically, using data from three waves of the Community Innovation Survey

(CIS) for France and the Netherlands, we examine whether there is evidence of persistence in firm

innovation and productivity and of bidirectional causality between them.

There are several reasons why one should introduce dynamics in the interrelationships between

R&D, innovation and productivity. Firstly, the time lag between a firm’s decision to invest in R&D,

the associated R&D outlays and the resulting innovation success may be substantial because of

‘time to build’, opportunity cost and uncertainty inherent to the innovation process (Majd and

Pindyck, 1987). For example, the studies of knowledge production function on firm panel data,

where patents proxy for knowledge, specify a relation of patents to distributed lags of R&D (Pakes

and Griliches, 1980; Hall et al., 1986). Secondly, scholars argue that a successfully innovative firm

is more likely than a non-innovating firm to experience innovation success in the future, in other

words, that ‘success breeds success’. Several papers have investigated the persistence of innovation

success, measured by the number of granted patents (Geroski et al., 1997), the introduction of

new or significantly improved products (Peters, 2009) or production methods (Flaig and Stadler,

1994), or the share in total sales accounted for by sales of these products (henceforth the share of

innovative sales) (Raymond et al., 2010). Thirdly, it is also argued that the economic performance

of a firm, especially of a repeatedly innovating firm, is likely to exhibit persistence. For instance,

Bailey et al. (1992), Bartelsman and Dhrymes (1998), and Fariñas and Ruano (2005) find strong

evidence of persistence of firm level productivity differentials using transition probabilities on the

quintiles or deciles of the distribution of these differentials over time, or using kernel techniques

1See also Parisi et al. (2006) and Huergo and Moreno (2011) for two different attempts to go in this direction.
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to estimate the conditional distribution of firm level productivity at period t given productivity

at period t− 1. Finally, because of information asymmetry, firms may be more willing to rely on

retained earnings rather than to seek external funding for their future innovations (Bhattacharya

and Ritter, 1983), implying a feedback effect from productivity to innovation.

To investigate these dynamic aspects, we study four nonlinear dynamic simultaneous equations

models that differ in the way that innovation enters the conditional mean of labor productivity:

through an observed binary indicator, an observed intensity variable or through the continuous

latent variables that correspond to the observed occurrence or intensity. We describe these models

in detail in Section 2.

We show in Section 3 how to derive the full information maximum likelihood estimator assum-

ing random effects that are correlated with sufficiently time-varying explanatory variables. More

specifically, we take care of the initial conditions problem due to the autoregressive structure of

the models and the presence of firm effects using Wooldridge’s (2005) ‘simple solutions’ approach,

and we handle multiple integration due to the correlations of firm effects and idiosyncratic errors

across equations using Gauss-Hermite quadrature sequentially along the lines of Raymond (2007,

chapter 6).

In Section 4, we explain the data on which we base our estimations and provide some descrip-

tive statistics. These data come from three waves of the Dutch and the French Manufacturing

Community Innovation Surveys (CIS) for 1994-1996, 1998-2000 and 2002-2004, supplemented by

a few firm accounting variables. We work with an unbalanced panel to have a larger sample and

thus to weaken possible survivorship biases and to obtain more accurate estimates.

In Section 5 we present our results. For both countries they reveal strong persistence in produc-

tivity but weaker persistence in innovation, and they indicate a unidirectional causality running

from innovation to labor productivity. Whereas past innovation matters to productivity, the most

productive enterprises are not more successful in introducing new or significantly improved prod-

ucts and do not attain larger shares of innovative sales than the least productive ones.

2 Model specifications

Our models consist of a knowledge production function and an augmented production function

relating respectively innovation output to R&D and other relevant innovation factors, and pro-

ductivity to innovation output and other relevant production factors. Four variables of innovation

output are considered in the analysis. The first is an observed binary variable taking the value one

if an enterprise is a product innovator, and zero otherwise. In the innovation survey, an enterprise
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is asked whether it has introduced at least one new or improved product on the market in the last

three years. A product innovator is an enterprise that has responded positively to this question.

The second variable is the observed share of innovative sales, or observed innovation intensity. This

variable is directly reported by the enterprise when filling out the questionnaire of the innovation

survey. The share of innovative sales is taken with respect to sales reported in the last year of the

three-year period. Finally we consider the two continuous latent innovation output variables that

underly respectively the propensity to introduce new or improved products on the market and the

potential share of innovative sales.

2.1 Knowledge production function (KPF)

Let y∗1it denote a latent variable underlying firm i’s (i = 1, ..., N) propensity to achieve product

innovations at period t (t = 0i, ..., Ti) given past observed occurrence of product innovations y1i,t−1,

past labor productivity y3i,t−1, past R&D and other firm- and market-specific characteristics x1it,

and unobserved firm heterogeneity α1i.
2 Formally

y∗1it = ϑ11y1i,t−1 + ϑ13y3i,t−1 + β′
1x1it + α1i + ε1it, (2.1)

where ϑ11 and ϑ13 capture the effect of past product innovation occurrence and past productivity

on the propensity to innovate, β′
1 captures the effects of past R&D and other explanatory variables

and ε1it denotes idiosyncratic errors encompassing other time-varying unobserved variables that

affect y∗1it. The observed dependent variable, y1it, corresponding to y∗1it is defined as

y1it = 1[y∗1it > 0], (2.2)

where 1[ ] denotes the indicator function taking the value one if the condition between squared

brackets is satisfied, and zero otherwise.

Let y∗2it denote the firm’s latent share of innovative sales, or potential innovation intensity,

given past observed innovation intensity y2i,t−1, past labor productivity y3i,t−1, past R&D and

other firm- and market-specific characteristics x2it, and firm-specific effects α2i. Formally

y∗2it = ϑ22y2i,t−1 + ϑ23y3i,t−1 + β′
2x2it + α2i + ε2it, (2.3)

where the coefficients ϑ22 and ϑ23 capture the effect of past observed share of innovative sales and

2By letting t vary from 0i to Ti, we allow firms to enter and exit the sample at different periods. 0i denotes the
first observation of firm i in the unbalanced panel data sample and Ti its last observation.
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past labor productivity on the potential innovation intensity, β′
2 captures the effect of past R&D

and other explanatory variables and ε2it denotes idiosyncratic errors. The observed counterpart

to y∗2it is defined as

y2it = 1[y∗1it > 0]y∗2it. (2.4)

In other words, the share of innovative sales of firm i is observed to be positive in period t if its

innovation propensity is sufficiently large in that period. If not, the share of innovative sales is set

equal to zero.

The product innovation indicator and the share of innovative sales variables are taken from

the innovation survey of the two countries. Since the share of innovative sales lies within the unit

interval, we use a logit transformation in the estimation in order to normalize it over the entire set

of real numbers.3

The set of other explanatory variables includes the log R&D per employee, the log market

share, and size, industry and time dummy variables.4 Due to the lengthy nature of research and

innovation activities, we use lagged R&D to explain innovation occurrence and innovation intensity.

Since we cannot construct a stock measure of R&D, we restrict ourselves to R&D expenditures

of continuous R&D performers. We include a lagged dummy variable for non-continuous R&D

performers to compensate for the fact that we use positive values of R&D only for continuous

R&D performers. Market share is used at the three digit industry level as a measure of relative

size that can reflect market power. It is lagged in order to avoid possible endogeneity concerns

(due in particular to measurement errors in firm sales which would affect both our market share

and productivity variables).5 We take employment as our measure of firm absolute size, and

since the relation between innovation and size may be nonlinear, we use four size class indicators:

small enterprises (# employees ≤ 50), medium-sized enterprises (50 < # employees ≤ 250), large

enterprises (250 < # employees ≤ 500) and very large enterprises (500 < # employees), the

fourth class being considered as the reference. We control for industry effects, according to the

OECD (2007) technology-based classification of high-tech, medium-high-tech, medium-low-tech,

and low-tech industries, using three dummy variables for the first three industry categories and

taking low-tech industries as the reference. Such industry-specific effects capture differences in

technological opportunities (it is easier to innovate in certain industries than in others) and in

3Zero values of the share of innovative sales are replaced by a positive value τ1 smaller than the minimum positive
observed value of that variable, and values one are replaced by a positive value τ2 higher than the second largest
observed value. These choices have a negligible effect on our estimates.

4In some specifications, we have also three indicators of the distance to the productivity frontier. We find,
however, that they are not statistically significant (see Appendix D).

5The market share of a firm is defined as the ratio of its sales over the total sales of the three digit industry it
belongs to. The latter is obtained by adding up the sales of all firms in our sample that belong to that industry
after multiplying them by the appropriate raising factor.
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intensity of competition (which is expected to be higher in high-tech than in low-tech industries).

Since our panel consists only of three periods and we need one for the lagged variables, we need

only include a time dummy variable for the period 1998-2000, with 2002-2004 being the reference.

This time dummy controls for macroeconomic shocks and for inflation.

2.2 Augmented production function (APF)

As in the great majority of studies, we assume a Cobb-Douglas APF that we write in terms of a log

linear productivity equation relating labor productivity to labor (i.e., we do not assume a constant

scale elasticity), physical capital per employee (proxied here by physical investment due to the

unavailability of a stock measure), and innovation output. We consider four specifications where

we explain productivity by latent innovation (i.e. the propensity to achieve product innovations or

potential innovation intensity) or by observed innovation (i.e. innovation occurrence or observed

innovation intensity). In all cases we also condition current labor productivity on its past values

and control for unobserved heterogeneity through firm effects. Thus, we can write

y3it = ϑ33y3i,t−1 + β′
3x3it + γjy

∗
jit + α3i + ε3it, (2.5a)

y3it = ϑ33y3i,t−1 + β′
3x3it + γjyjit + α3i + ε3it, (2.5b)

with j = 1 or 2 where innovation propensity (y∗1it) or potential innovation intensity (y∗2it) explains

labor productivity in equation (2.5a), and innovation occurrence (y1it) or observed innovation

intensity (y2it) explains labor productivity in equation (2.5b). The coefficient ϑ33 captures the

effect of past labor productivity on current labor productivity, β′
3 captures the effect of standard

input variables, i.e. employment and physical investment per employee, γj captures the effect of

innovation output on labor productivity, and α3i and ε3it denote time-invariant firm effects and

idiosyncratic errors. We also control for industry and time effects as in the KPF equations.

3 Full information maximum likelihood estimation (FIML)

We shall now explain how to derive the FIML estimator, that is how to take care of the initial

conditions problem due to the autoregressive structure of the models and the presence of firm

effects, how to write the likelihood function, and how to handle the multiple integration due to the

correlations of firm effects and idiosyncratic errors across equations.
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3.1 Initial conditions

The initial conditions problem stems from the fact that the first observed value of the lagged

dependent variables is correlated with the individual effects. Ignoring or inadequately accounting

for this correlation results in a bias of the effect of the lagged dependent variables. Several solutions

have been proposed in the econometric literature. We follow the one suggested by Wooldridge

(2005).

Wooldridge’s ‘simple solutions’ have been originally applied to autoregressive nonlinear single-

equation models with individual effects. We adapt the approach to a model with multiple equations.

In other words, we project in each equation the individual effects on the first observation of

the corresponding dependent variables and on the observed history of the explanatory variables.

Formally

α1i = b10 + b′11y1i0i + b′12x1i + a1i, (3.1)

α2i = b20 + b′21y2i0i + b′22x2i + a2i, (3.2)

α3i = b30 + b′31y3i0i + b′32x3i + a3i, (3.3)

where yki0i (k = 1, 2, 3) represents the initial values of the dependent variables, xki = (xki0i+1, ...,

xkiTi)
′ represents the history of (in principle all) the observations of the time-varying explanatory

variables, and ai = (a1i, a2i, a3i)
′ denotes the vector of projection errors assumed orthogonal to

yki0i , xki and εit = (ε1it, ε2it, ε3it)
′. The ancillary parameters bk0, bk1 and bk2 are to be estimated

alongside the parameters of interest.

Three important remarks are in order regarding equations (3.1)-(3.3). Firstly, if the coefficient

vectors βk contain intercepts, only the sums of those intercepts and bk0 are identified. Secondly,

if the explanatory variables are time-invariant or do not show sufficient within variation, then

the coefficients bk2 and βk cannot be separately identified. As a result, only the sufficiently

time-varying explanatory variables enter equations (3.1)-(3.3). Thirdly, in order to discriminate

between the effect of the lagged dependent variables and that of the initial values, given the

unbalancedness of the panel, we actually have to include in equations (3.1)-(3.3) two types of

initial values with different coefficients for firms present in all three waves and for those present

only in two waves. Following Wooldridge (2005) we make the following distributional assumptions:
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εit|yi,t−1,xit,αi

iid∼ Normal(0,Σε); ai|yi0i
,xi

iid∼ Normal(0,Σa) where Σε and Σa are given by

Σε =


1

ρε1ε2
σε2 σ2

ε2

ρε1ε3
σε3 ρε2ε3

σε2σε3 σ2
ε3

 , Σa =


σ2
a1

ρa1a2σa1σa2 σ2
a2

ρa1a3σa1σa3 ρa2a3σa2σa3 σ2
a3

 (3.4)

and are also to be estimated.

3.2 Likelihood

We now derive the likelihood functions. For simplicity, we provide the expressions explicitly only

for the specifications where y∗1it or y1it (respectively the latent propensity to achieve product

innovations and the observed indicator of innovation occurrence) enters the augmented production

function. Those with y∗2it or y2it are presented in Appendix B.

Model with latent innovation propensity

The model with latent innovation propensity as a predictor of labor productivity consists of

equations (2.1)-(2.4) and (2.5a) with j = 1 in equation (2.5a). These equations constitute the

structural form of the model. Since y∗1it is unobserved, we cannot, unlike in simultaneous equa-

tions models with observed explanatory variables, derive the likelihood function directly where the

dependent variable is included as a regressor. As a result, FIML estimates can be obtained only

through the likelihood function of the reduced form of the model. The reduced-form equations are

given by equations (2.1)-(2.4) and

y3it = ϑ33y3i,t−1+β′
3x3it+γ1

[
ϑ11y1i,t−1 + ϑ13y3i,t−1 + β′

1x1it

]
+γ1α1i + α3i︸ ︷︷ ︸

α3i

+ γ1ε1it + ε3it︸ ︷︷ ︸
ϵ3it

, (3.5)

where y∗1it has been replaced by its right-hand side expression of equation (2.1).6 The individual

effects and the idiosyncratic errors of the reduced form are given by αi = (α1i, α2i, α3i)
′ and

εit = (ε1it, ε2it, ε3it)
′, where α3i and ε3it are defined in equation (3.5). After replacing α1i, α2i

and α3i by their expressions (3.1) to (3.3) into equations (2.1), (2.3) and (3.5), we obtain the

projection errors of the reduced form as ai = (a1i, a2i, a3i)
′ with a3i = γ1a1i + a3i. Since the

structural form idiosyncratic errors and projection errors are both normally distributed, their

reduced-form counterparts are also normally distributed with means zero and covariance matrices

6In the econometric literature on simultaneous equations models, equation (3.5) is referred to as restricted reduced
form when written with all the parameters of the structural form and unrestricted reduced form when written with
the underlined parameters. In the latter case, γ1ϑ11 would constitute a new coefficient, say ϑ11. The restricted
reduced form is of interest in our analysis.
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Σε and Σa given by

Σε =


1

ρε1ε2
σε2 σ2

ε2

ρε1ε3
σε3 ρε2ε3

σε2σε3 σ2
ε3

 , Σa =


σ2
a1

ρa1a2σa1σa2 σ2
a2

ρa1a3σa1σa3 ρa2a3σa2σa3 σ2
a3

 , (3.6)

where the underlined components of Σε and Σa are nonlinear functions of their structural form

counterparts and are given by

σ2
ε3 = γ2

1 + σ2
ε3 + 2γ1ρε1ε3

σε3 , σ2
a3

= γ2
1σ

2
a1

+ σ2
a3

+ 2γ1ρa1a3σa1σa3 , (3.7a)

ρε1ε3
=

γ1 + ρε1ε3
σε3(

γ2
1 + σ2

ε3 + 2γ1ρε1ε3
σε3

) 1
2

, ρa1a3 =
γ1σa1 + ρa1a3σa3(

γ2
1σ

2
a1

+ σ2
a3

+ 2γ1ρa1a3
σa1

σa3

) 1
2

, (3.7b)

ρε2ε3
=

γ1ρε1ε2
+ ρε2ε3

σε3(
γ2
1 + σ2

ε3 + 2γ1ρε1ε3
σε3

) 1
2

, ρa2a3 =
γ1ρa1a2σa1 + ρa2a3σa3(

γ2
1σ

2
a1

+ σ2
a3

+ 2γ1ρa1a3σa1σa3

) 1
2

. (3.7c)

The individual likelihood function of the reduced form conditional on ai, denoted by l1i|ai
, is

given by

l1i|ai
=

Ti∏
t=0i+1

[∫ −(A1it+a1i)

−∞

∫ ∞

−∞
h3(ε1it, ε2it, y3it)dε1itdε2it

]1−y1it

(3.8)[∫ ∞

−(A1it+a1i)

h3(ε1it, y2it, y3it)dε1it

]y1it

,

where h3 denotes the density function of the trivariate normal distribution and A1it is defined as

A1it ≡ ϑ11y1i,t−1 + ϑ13y3i,t−1 + β′
1x1it + b10 + b′11y1i0i + b′12x1i. (3.9)

The first product in equation (3.8) represents the contribution of a non-product innovator to the

likelihood function and can be rewritten as h1(y3it)

∫ −(A1it+a1i)

−∞
h1(ε1it|y3it)dε1it.7 The second

product represents the contribution of a product innovator and is equal to h1(y2it |y3it )h1(y3it )∫ ∞

−(A1it+a1i)

h1(ε1it|y2it, y3it)dε1it. These single integrals are univariate cumulative distribution

functions (CDFs) of the normal distribution, and are shown to be respectively (see Kotz et al.,

7

∫ ∞

−∞
h3(ϵ1it, ϵ2it, y3it)dϵ2it = h2(ϵ1it, y3it) where h2 denotes the density of the bivariate normal distribution,

and h2(ϵ1it, y3it) = h1(y3it)h1(ϵ1it|y3it) where h1 denotes the density of the univariate normal distribution.
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2000)

Φ1

−A1it − a1i − ρε1ε3
σ−1
ε3 (y3it −A3it − γ1A1it − a3i)√
1− ρ2

ε1ε3

 , (3.10a)

Φ1

A1it + a1i + ρ12.3σ
−1
ε2 (y2it −A2it − a2i) + ρ13.2 σ−1

ε3 (y3it −A3it − γ1A1it − a3i)√
1−R2

1.23

, (3.10b)

where A1it is given in equation (3.9), A2it and A3it are given by

A2it ≡ ϑ22y2i,t−1 + ϑ23y3i,t−1 + β′
2x2it + b20 + b′21y2i0i + b′22x2i, (3.11a)

A3it ≡ ϑ33y3i,t−1 + β′
3x3it + b30 + b′31y3i0i + b′32x3i, (3.11b)

and ρ12.3 , ρ13.2 , and R2
1.23

are given by

ρ12.3 ≡
ρε1ε2−ρε1ε3 ρε2ε3

1−ρ2ε2ε3
, ρ13.2 ≡

ρε1ε3−ρε1ε2 ρε2ε3

1−ρ2ε2ε3
, R2

1.23
≡

ρ2ε1ε2+ρ2ε1ε3 − 2ρε1ε2 ρε1ε3 ρε2ε3

1−ρ2ε2ε3
.

(3.12)

The final expression of l1i|ai
is given by

l1i|ai
=

Ti∏
t=0i+1

1

σε3

ϕ1

(
y3it−A3it−γ1A1it−a3i

σε3

)Φ1

−A1it−a1i−ρε1ε3
σ−1
ε3 (y3it−A3it−γ1A1it−a3i)√
1− ρ2

ε1ε3

1−y1it

Φ1

A1it + a1i + ρ12.3σ
−1
ε2 (y2it −A2it − a2i) + ρ13.2 σ−1

ε3 (y3it −A3it − γ1A1it − a3i)√
1−R2

1.23

 (3.13)

1

σε2

√
1− ρ2

ε2ε3

ϕ1

y2it −A2it − a2i −
ρε2ε3

σε2

σε3
(y3it −A3it − γ1A1it − a3i)

σε2

√
1− ρ2

ε2ε3




y1it

.

Model with observed innovation incidence

The model with the observed innovation indicator as a predictor of labor productivity consists

of equations (2.1)-(2.4) and (2.5b) with j = 1 in equation (2.5b). Unlike in the previous model, we

insert directly the observed innovation indicator in the likelihood function.8

8As a matter of fact, adopting this approach is recommended in this case. Indeed, the indicator function that
relates the observed dependent variable, y1it, to the regressors, which would be used in the likelihood function of
the reduced form, is discontinuous and the maximization of the likelihood function of the reduced form is unfeasible.
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The individual likelihood function of the structural form of this model, conditional on ai and

denoted by l2i|ai
, has a similar expression to l1i|ai

. It is given by

l2i|ai
=

Ti∏
t=0i+1

1

σε3

ϕ1

(
y3it−A3it−γ1y1it−a3i

σε3

)Φ1

−A1it−a1i−ρε1ε3
σ−1
ε3 (y3it−A3it−γ1y1it−a3i)√
1− ρ2

ε1ε3

1−y1it

[
Φ1

(
A1it + a1i + ρ12.3σ

−1
ε2 (y2it −A2it − a2i) + ρ13.2 σ−1

ε3 (y3it −A3it − γ1y1it − a3i)√
1−R2

1.23

)
(3.14)

1

σε2

√
1− ρ2

ε2ε3

ϕ1

y2it −A2it − a2i −
ρε2ε3

σε2

σε3
(y3it −A3it − γ1y1it − a3i)

σε2

√
1− ρ2

ε2ε3

y1it

,

where ρ12.3 , ρ13.2 , and R2
1.23

are derived straightforwardly from equation (3.12) by replacing the

underlined correlations by their structural form counterparts, that is

ρ12.3 ≡ ρε1ε2−ρε1ε3 ρε2ε3
1−ρ2ε2ε3

, ρ13.2 ≡ ρε1ε3−ρε1ε2 ρε2ε3
1−ρ2ε2ε3

, R2
1.23

≡
ρ2ε1ε2+ρ2ε1ε3 − 2ρε1ε2 ρε1ε3 ρε2ε3

1−ρ2ε2ε3
.

(3.15)

3.3 Numerical evaluation

The next step consists in obtaining the unconditional counterparts to l1i|ai
and l2i|ai

, which are

obtained by integrating out respectively ai and ai with respect to their normal distribution. For-

mally,

l1 =

N∏
i=1

∫
a1i

∫
a2i

∫
a3i

l1i|ai
h3(a1i, a2i, a3i|...)da1ida2ida3i, (3.16)

and

l2 =
N∏
i=1

∫
a1i

∫
a2i

∫
a3i

l2i|ai
h3(a1i, a2i, a3i|...)da1ida2ida3i. (3.17)

Evidently, l1 and l2 cannot be derived analytically. Hence, we use Gauss-Hermite quadrature

sequentially, along the lines of Raymond (2007), to evaluate the triple integrals.9 The Gauss-

Hermite quadrature states that

∫ ∞

−∞
e−r2f(r)dr ≃

M∑
m=1

wmf(am), (3.18)

where wm and am are respectively the weights and abscissae of the quadrature with M being the

total number of integration points.10 Numerical tables with values of wm and am are formulated

in mathematical textbooks (Abramowitz and Stegun, 1964). The larger M , the more accurate the

9The use of this numerical method is well documented in the econometric literature in the context of panel data
single-equation models (see e.g. Butler and Moffitt, 1982; Rabe-Hesketh et al., 2005). However, its use in the context
of panel data models with multiple equations remains to date limited. A few exceptions are Raymond (2007, chapter
3) who studies the performance of the method in two types of dynamic sample selection models, and Raymond et al.
(2010) who apply the method to estimate the persistence of innovation incidence and innovation intensity.

10The abscissae of the quadrature, am , should not be confused with the projections errors a1i, a2i and a3i.
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approximation. Using the results of Appendix A, the unconditional likelihood, l1, is derived as

l1≃
N∏
i=1

∆π
−3
2

[
(1−ρ2a1a2

)(1−ρ2a1a3
)(1−ρ2a1a2

)
]−1

2

M3∑
m3=1

wm3

Ti∏
t=0i+1

1

σε3

ϕ1

(
y3it−A3it−γ1A1it−am3 [...]

σε3

)
M2∑

m2=1

wm2e

−2Λ23am2 am3√
Λ22 Λ33

Ti∏
t=0i+1

 1

σε2

√
1− ρ2

ε2ε3

ϕ1

y2it−A2it−am2 [...]−
ρε2ε3

σε2

σε3
(y3it−A3it−γ1A1it−am3 [...])

σε2

√
1− ρ2

ε2ε3



y1it

(3.19)

M1∑
m1=1

wm1e

−2am1√
Λ11

(
am2Λ12√

Λ22
+

am3Λ13√
Λ33

)
Ti∏

t=0i+1

Φ1

−A1it−am1 [...]−ρε1ε3
σ−1
ε3 (y3it−A3it−γ1A1it−am3 [...])√
1− ρ2

ε1ε3

1−y1it

Φ1

A1it + am1 [...] + ρ12.3σ
−1
ε2 (y2it−A2it−am2 [...]) + ρ13.2 σ−1

ε3 (y3it −A3it −γ1A1it− am3 [...])√
1−R2

1.23

y1it

,

where wmk
, amk

and Mk (k = 1, 2, 3) are respectively the weights, abscissae and total number of

points of the quadrature in each stage, amk
[...] =

amk
σak

√
2√

Λkk
, and the expressions of Λkl (k, l = 1, 2, 3;

Λkl = Λlk) and ∆ are given in Appendix A. The FIML estimates of the structural parameters of

the model where y∗1it enters the APF are obtained by maximizing ln l1 subject to the constraints

defined in equations (3.7a)-(3.7c).

The evaluation of l2 is done in a similar fashion and yields a similar expression except that the

underlined parameters are replaced by their non-underlined equivalents and that γ1A1it is replaced

by γ1y1it. The FIML estimates of the structural parameters of the model where y1it enters the

APF are obtained by maximizing ln l2 without additional constraints.

4 Data and descriptive statistics

The data used in the analysis stem from three waves of the Dutch and the French CIS pertaining

to the manufacturing sector, with the exception of the food industry, for the periods 1994-1996

(CIS 2), 1998-2000 (CIS 3) and 2002-2004 (CIS 4). The Dutch and French CIS data are merged

respectively with data from the Production Survey (PS) and the ‘Enquête Annuelle d’Entreprise’

(EAE) that provide information regarding employment, sales and investment.11 For each CIS,

the merged PS and EAE variables pertain to the last year of the three-year period. We consider

enterprises with at least ten employees and positive sales at the end of each period covered by

the innovation survey.12 Note that one of the particularities of the innovation survey is that, for

11Both Dutch surveys were carried out by the ‘Centraal Bureau voor de Statistiek’ (CBS) for the whole manu-
facturing sector and the two French surveys by the ‘Service des Statistiques Industrielles’ (SESSI) of the French
Ministry of Industry for the manufacturing sector excluding the food industry.

12We delete enterprises with a share of total R&D expenditures (intramural + extramural) in total sales greater
than 50% since they are likely to specialize in doing and trading R&D, hence should be classified in R&D services
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each period, product innovation occurrence relates to the introduction of a new product over a

three-year period, while the actual share of innovative sales pertains to the last year of the period.

As a result, when assessing persistence of innovation, the lag effect refers to two to four years when

the occurrence of innovation is considered and to four years when the share of innovative sales

is considered.13 In this paper we consider as innovators only those firms that have introduced a

product new to the firm, but not necessarily new to the market.

In the following Tables 1, 2 and 3, we show some simple descriptive statistics, mostly means,

to present our samples and main variables. Table 1 shows, for both countries, the patterns of

enterprises’ presence in the unbalanced panel after data cleaning. Because of the dynamic structure

of the model, an enterprise must be present in at least two consecutive waves of the merged data in

order to be included in the analysis. There are 1920 such enterprises in our sample for France and

1228 for The Netherlands. In both countries about one third of the total number of enterprises are

present in the three waves.

For each pattern, we report the mean and median employment head counts in the sample and in

the population where the head counts in the population are obtained by weighting head counts in

the sample using a raising factor obtained after correcting for non-response. Because of the lower

cut-off points in The Netherlands and possibly differences in the rates of non-responses in the two

countries, the differences in average firm size between the sample and the population are larger for

France than for The Netherlands. These differences are, however, smaller in the balanced panel,

which is to be expected since firms larger than the cut-off points are all included in the samples

and are also more likely to survive during the whole period 1994-2004. Using the unbalanced panel

allows us to obtain more precise estimates as more observations for broader types of enterprises

are used and also to control partly for survivorship biases as enterprises are allowed to enter and

exit the sample at any period. Overall French enterprises are significantly larger than the Dutch

ones both in the sample and in the population, in the balanced as well as in the unbalanced panel.

Table 2 gives the means of the non-transformed dependent and explanatory variables for the

unbalanced samples and for the subsamples of product innovators. Comparing first all enterprises

with product innovators, it appears that in both countries product innovators do not seem to

not in manufacturing.
13The CIS, PS and EAE data are collected at the enterprise level. A combination of a census and a stratified

random sampling is used for each wave of the CIS and the PS. A census is used for the population of Dutch
enterprises with at least 50 employees, and a stratified random sampling is used for enterprises with less than 50
employees, where the stratum variables are the enterprise economic activity and employment in head counts. The
same cut-off point of 50 employees is applied to each wave of the Dutch CIS and the PS. A similar scheme is used
for the French CIS but a cut-off point of 500 employees is used in CIS 2 and 3, and one of 250 employees in CIS 4.
The use of different cut-off points in the census/sampling scheme may result in differences across countries in the
average size of enterprises in our samples and may affect our estimates. If we had aligned the Dutch sampling with
the French sampling we would have lost too many observations for the Netherlands. In the EAE, all enterprises
with at least 20 employees are surveyed.
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Table 1: Employment in the sample and in the population for each pattern of the unbalanced panel data samples
of Dutch and French manufacturing enterprises: CIS 2, CIS 3, and CIS 4

Variable↓ France The Netherlands

Pattern→ 110 111 011 Total 110 111 011 Total

# enterprises 504 586 829 1920 506 411 311 1228

% in total 26 31 43 100 41 34 25 100

Employment, sample

Mean 558 1044 398 691 158 217 335 222

Median 160 663 197 336 75 112 108 96

Employment, population

Mean 215 726 200 334 111 172 197 155

Median 73 405 74 97 56 93 57 68

Pattern refers to the presence/absence of firms in the three successive waves.

be more productive on average. This is due to the existence among non-product innovators of

a few firms with very high values of sales per employee. When we take the logarithms of sales

per employee, as we do in our estimating equations, we downweigh outlier values and obtain

significantly higher productivities for product innovators in both countries. We also observe that

on average in both countries product innovators are larger in terms of employment and have a

larger market share.

Comparing now the two countries, we see that Dutch enterprises, either overall or for product

innovators only, have on average much higher physical investments per employee, larger market

shares but smaller sales per employee than their French counterparts. We also see that the Dutch

innovators have on average a significantly higher share of innovative sales but a significantly lower

mean R&D per employee than French innovators. It is finally interesting to note that in France the

majority of product innovators and non-innovators are very large in contrast to The Netherlands

where they are mostly medium-sized enterprises.

Table 2: Means of dependent and explanatory variables: Unbalanced panel data samples from Dutch and French
CIS 2, CIS 3 and CIS 4

Variable France The Netherlands

All enterprises Product. innov. All enterprises Product. innov.

Product innovator 0.59 - 0.58 -

Share of innov. sales - 0.22 - 0.30

Sales/employee† 220.53 215.04 184.85 180.70

R&D/employee‡ - 8.09 - 4.68

Investment/employee† 7.29 7.36 9.10 9.62

Employment

# employees 691.36 935.72 222.13 258.78

Size class 1 0.13 0.06 0.20 0.14

Size class 2 0.29 0.21 0.63 0.65

Size class 3 0.20 0.22 0.08 0.11

Size class 4 0.39 0.51 0.09 0.10

Market share (%) 1.52 1.86 1.66 2.01

# observations 4427 2618 2867 1670
†In 1000s of euros. ‡For continuous R&D performers, in 1000s of euros.

14



Table 3 gives the same statistics as Table 2 but separately for each period of our unbalanced

panel. For both countries, we observe a significant decrease in the proportion of product innovators

and in the mean share of innovative sales between 1994 and 2004. The marked increase of the share

of innovative sales between the last two periods for France is not large enough to offset the large

decrease that occurs between the first two periods. We also see, for both countries, a strong increase

in the mean nominal sales per employee and in the mean market share between 1994 and 2004,

while on average employment decreases for France and increases for The Netherlands. The growth

that we observe in the mean R&D and physical investment per employee between 1994 and 2004 is

relatively modest (and only statistically significant for The Netherlands). Although the differences

between the means of the main variables across countries are informative, it is important to keep in

mind that our estimates are not based on the differences of most of such means but on differences

within the two countries, four industry categories as well as within wave survey patterns, since we

estimate our models separately for France and The Netherlands and we control for firm effects and

also include industry and time dummies in all the model equations, as explained in Section 2.

Table 3: Means of dependent and explanatory variables for each CIS of the unbalanced panel data samples for
France and The Netherlands

Variable France The Netherlands

1994-1996 1998-2000 2002-2004 1994-1996 1998-2000 2002-2004

Product innovator 0.65 0.56 0.58 0.66 0.60 0.45

Share of innov. sales† 0.30 0.15 0.23 0.33 0.32 0.21

Sales/employee‡ 158.51 230.52 254.75 149.43 170.11 254.91

R&D/employee∗ 7.59 7.28 8.64 3.96 4.76 5.14

Investment/employee‡ 6.44 8.12 6.83 8.58 8.01 11.61

Employment

# employees 806.37 673.99 626.33 175.36 236.04 257.87

Size class 1 0.12 0.14 0.12 0.18 0.21 0.20

Size class 2 0.26 0.31 0.28 0.68 0.61 0.60

Size class 3 0.15 0.19 0.25 0.08 0.08 0.09

Size class 4 0.47 0.36 0.35 0.06 0.10 0.11

Market share (%) 1.38 1.45 1.73 1.30 1.75 1.97

# enterprises 1091 1920 1416 917 1228 722
†For product innovators. ‡In 1000s of euros. ∗For continuous R&D performers, in 1000s of euros.

5 Estimation results

We now turn to the results of the estimation of the models. We shall first quickly comment

on the general results before discussing particularly the estimated effects of innovation output

on productivity and the dynamic interrelations between innovation and productivity. Tables 4

and 5 present the estimation results for the model with latent innovation as a predictor of labor

productivity, and Tables 6 and 7 present the results for the model with observed innovation as a
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predictor of labor productivity.

Table 4: FIML estimates of the model with latent innovation propensity to explain productivity: Unbalanced panel
data samples from Dutch and French CIS 2, CIS 3 and CIS 4‡

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

France The Netherlands

Innovation occurrencet

Innovation occurrencet−1 0.181† (0.103) 0.051 (0.171)

Innovation occurrence0i , 3 waves 0.167 (0.111) 0.696∗∗ (0.189)

Innovation occurrence0i , 2 waves 0.339∗∗ (0.066) 0.721∗∗ (0.112)

(Sales/employee)t−1, in log 0.000 (0.017) 0.010 (0.025)

(R&D/employee)t−1, in log 0.025 (0.027) 0.173∗∗ (0.045)

(Dnon-continuous R&D)t−1 -0.534∗∗ (0.070) -0.587∗∗ (0.093)

Size class

D# employees≤50 -0.470∗∗ (0.130) -0.271 (0.170)

D50<# employees≤250 -0.335∗∗ (0.092) -0.049 (0.144)

D250<# employees≤500 -0.095 (0.077) 0.304† (0.182)

Market sharet−1, in log 0.074∗∗ (0.024) 0.077∗∗ (0.029)

Share of innovative salest, in logit

Share of innov. salest−1, in logit 0.110∗ (0.050) 0.043 (0.044)

Share of innov. sales0i , 3 waves 0.064 (0.046) 0.132∗∗ (0.040)

Share of innov. sales0i , 2 waves 0.185∗∗ (0.027) 0.174∗∗ (0.030)

(Sales/employee)t−1, in log 0.002 (0.034) 0.001 (0.029)

(R&D/employee)t−1, in log 0.105† (0.057) 0.258∗∗ (0.065)

(Dnon-continuous R&D)t−1 -1.093∗∗ (0.154) -0.697∗∗ (0.144)

Size class

D# employees≤50 -0.349 (0.311) 0.022 (0.276)

D50<# employees≤250 -0.361† (0.206) 0.065 (0.222)

D250<# employees≤500 0.118 (0.169) 0.156 (0.268)

Market sharet−1, in log 0.152∗∗ (0.055) 0.093∗ (0.047)

Labor productivityt: sales/employee, in log

(Sales/employee)t−1, in log 0.531∗∗ (0.056) 0.319∗∗ (0.066)

(Sales/employee)0i , 3 waves 0.336∗∗ (0.056) 0.282∗∗ (0.066)

(Sales/employee)0i , 2 waves 0.856∗∗ (0.012) 0.584∗∗ (0.024)

Latent innovation propensityt 0.074∗∗ (0.020) 0.121∗∗ (0.029)

(Investment/employee)t, in log 0.065∗∗ (0.006) 0.119∗∗ (0.012)

Employmentt, in log -0.027∗∗ (0.008) -0.082∗∗ (0.018)

Covariance matrix

Individual effects

σa1 0.259† (0.148) 0.470∗∗ (0.138)

σa2 0.745∗∗ (0.179) 0.680∗∗ (0.193)

σa3 0.096∗∗ (0.025) 0.160∗∗ (0.060)

ρa1a2 0.514∗∗ (0.152) 0.540∗∗ (0.145)

ρa1a3 -0.090 (0.408) -0.221 (0.336)

ρa2a3 0.158 (0.279) 0.064 (0.331)

Idiosyncratic errors

σε2 2.469∗∗ (0.076) 1.780∗∗ (0.096)

σε3 0.313∗∗ (0.009) 0.587∗∗ (0.019)

ρε1ε2
0.99, fixed after grid search 0.95, fixed after grid search

ρε1ε3
-0.206∗∗ (0.071) -0.237∗∗ (0.067)

ρε2ε3
-0.208∗∗ (0.070) -0.229∗∗ (0.061)

# observations 2505 1639

Log-likelihood -5048.917 -3920.898
‡Three dummies of category of industry, a time dummy and an intercept are included in each equation.

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 5: FIML estimates of the model with latent innovation intensity to explain productivity: Unbalanced panel
data samples from Dutch and French CIS 2, CIS 3 and CIS 4‡

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

France The Netherlands

Innovation occurrencet

Innovation occurrencet−1 0.151 (0.098) 0.027 (0.178)

Innovation occurrence0i , 3 waves 0.171† (0.102) 0.738∗∗ (0.194)

Innovation occurrence0i , 2 waves 0.343∗∗ (0.066) 0.719∗∗ (0.116)

(Sales/employee)t−1, in log 0.004 (0.018) 0.009 (0.026)

(R&D/employee)t−1, in log 0.023 (0.028) 0.173∗∗ (0.047)

(Dnon-continuous R&D)t−1 -0.546∗∗ (0.070) -0.607∗∗ (0.095)

Size class

D# employees≤50 -0.509∗∗ (0.126) -0.325† (0.175)

D50<# employees≤250 -0.353∗∗ (0.091) -0.101 (0.150)

D250<# employees≤500 -0.111 (0.077) 0.225 (0.187)

Market sharet−1, in log 0.069∗∗ (0.024) 0.072∗ (0.030)

Share of innovative salest, in logit

Share of innov. salest−1, in logit 0.138∗∗ (0.048) 0.055 (0.043)

Share of innov. sales0i , 3 waves 0.044 (0.043) 0.113∗∗ (0.040)

Share of innov. sales0i , 2 waves 0.191∗∗ (0.026) 0.169∗∗ (0.030)

(Sales/employee)t−1, in log 0.004 (0.033) -0.001 (0.029)

(R&D/employee)t−1, in log 0.100† (0.055) 0.261∗∗ (0.062)

(Dnon-continuous R&D)t−1 -1.018∗∗ (0.154) -0.691∗∗ (0.140)

Size class

D# employees≤50 -0.187 (0.296) 0.096 (0.271)

D50<# employees≤250 -0.366† (0.198) 0.169 (0.219)

D250<# employees≤500 0.103 (0.162) 0.323 (0.266)

Market sharet−1, in log 0.179∗∗ (0.052) 0.110∗ (0.046)

Labor productivityt: sales/employee, in log

(Sales/employee)t−1, in log 0.527∗∗ (0.056) 0.320∗∗ (0.066)

(Sales/employee)0i , 3 waves 0.337∗∗ (0.056) 0.282∗∗ (0.066)

(Sales/employee)0i , 2 waves 0.852∗∗ (0.012) 0.583∗∗ (0.024)

Latent share of innovative salest 0.043∗∗ (0.010) 0.084∗∗ (0.022)

(Investment/employee)t, in log 0.065∗∗ (0.006) 0.120∗∗ (0.012)

Employmentt, in log -0.025∗∗ (0.008) -0.070∗∗ (0.017)

Covariance matrix

Individual effects

σa1 0.322∗∗ (0.092) 0.492∗∗ (0.134)

σa2 0.673∗∗ (0.190) 0.642∗∗ (0.213)

σa3 0.095∗∗ (0.026) 0.158∗∗ (0.060)

ρa1a2 0.546∗∗ (0.128) 0.544∗∗ (0.146)

ρa1a3 -0.094 (0.315) -0.121 (0.350)

ρa2a3 -0.108 (0.302) -0.151 (0.362)

Idiosyncratic errors

σε2 2.481∗∗ (0.075) 1.791∗∗ (0.098)

σε3 0.320∗∗ (0.011) 0.596∗∗ (0.021)

ρε1ε2
0.99, fixed after grid search 0.95, fixed after grid search

ρε1ε3
-0.298∗∗ (0.077) -0.266∗∗ (0.074)

ρε2ε3
-0.301∗∗ (0.075) -0.288∗∗ (0.073)

# observations 2505 1639

Log-likelihood -5045.613 -3922.326
‡Three dummies of category of industry, a time dummy and an intercept are included in each equation.

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 6: FIML estimates of the model with observed innovation indicator to explain productivity: Unbalanced
panel data samples from Dutch and French CIS 2, CIS 3 and CIS 4‡

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

France The Netherlands

Innovation occurrencet

Innovation occurrencet−1 0.155 (0.117) 0.010 (0.182)

Innovation occurrence0i , 3 waves 0.174 (0.135) 0.767∗∗ (0.200)

Innovation occurrence0i , 2 waves 0.339∗∗ (0.070) 0.736∗∗ (0.116)

(Sales/employee)t−1, in log 0.003 (0.017) 0.009 (0.026)

(R&D/employee)t−1, in log 0.027 (0.030) 0.177∗∗ (0.047)

(Dnon-continuous R&D)t−1 -0.567∗∗ (0.071) -0.621∗∗ (0.096)

Size class

D# employees≤50 -0.577∗∗ (0.134) -0.323† (0.174)

D50<# employees≤250 -0.356∗∗ (0.102) -0.115 (0.148)

D250<# employees≤500 -0.102 (0.081) 0.198 (0.188)

Market sharet−1, in log 0.054∗ (0.024) 0.068∗ (0.030)

Share of innovative salest, in logit

Share of innov. salest−1, in logit 0.109∗ (0.049) 0.036 (0.044)

Share of innov. sales0i , 3 waves 0.061 (0.045) 0.141∗∗ (0.040)

Share of innov. sales0i , 2 waves 0.180∗∗ (0.028) 0.173∗∗ (0.030)

(Sales/employee)t−1, in log 0.005 (0.034) 0.001 (0.029)

(R&D/employee)t−1, in log 0.101† (0.058) 0.256∗∗ (0.065)

(Dnon-continuous R&D)t−1 -1.119∗∗ (0.159) -0.710∗∗ (0.145)

Size class

D# employees≤50 -0.502 (0.315) -0.022 (0.277)

D50<# employees≤250 -0.355† (0.210) 0.005 (0.223)

D250<# employees≤500 0.108 (0.171) 0.064 (0.269)

Market sharet−1, in log 0.131∗ (0.055) 0.081† (0.048)

Labor productivityt: sales/employee, in log

(Sales/employee)t−1, in log 0.532∗∗ (0.056) 0.330∗∗ (0.066)

(Sales/employee)0i , 3 waves 0.341∗∗ (0.056) 0.282∗∗ (0.066)

(Sales/employee)0i , 2 waves 0.861∗∗ (0.012) 0.594∗∗ (0.023)

Observed innovation indicatort 0.056 (0.042) 0.197∗∗ (0.059)

(Investment/employee)t, in log 0.065∗∗ (0.006) 0.121∗∗ (0.012)

Employmentt, in log -0.012 (0.007) -0.064∗∗ (0.016)

Covariance matrix

Individual effects

σa1 0.284 (0.177) 0.492∗∗ (0.143)

σa2 0.757∗∗ (0.150) 0.710∗∗ (0.185)

σa3 0.094∗∗ (0.025) 0.154∗∗ (0.058)

ρa1a2 0.535∗∗ (0.170) 0.527∗∗ (0.148)

ρa1a3 0.242 (0.362) 0.055 (0.365)

ρa2a3 0.271 (0.314) 0.224 (0.329)

Idiosyncratic errors

σε2 2.463∗∗ (0.083) 1.758∗∗ (0.096)

σε3 0.308∗∗ (0.008) 0.580∗∗ (0.018)

ρε1ε2
0.99, fixed after grid search 0.95, fixed after grid search

ρε1ε3
-0.071 (0.114) -0.223∗∗ (0.072)

ρε2ε3
-0.024 (0.043) -0.128∗ (0.052)

# observations 2505 1639

Log-likelihood -5054.238 -3925.706
‡Three dummies of category of industry, a time dummy and an intercept are included in each equation.

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 7: FIML estimates of the model with observed innovation intensity to explain productivity: Unbalanced
panel data samples from Dutch and French CIS 2, CIS 3 and CIS 4‡

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

France The Netherlands

Innovation occurrencet

Innovation occurrencet−1 0.245∗∗ (0.088) 0.014 (0.176)

Innovation occurrence0i , 3 waves 0.114 (0.092) 0.760∗∗ (0.194)

Innovation occurrence0i , 2 waves 0.343∗∗ (0.062) 0.735∗∗ (0.115)

(Sales/employee)t−1, in log 0.000 (0.016) 0.008 (0.026)

(R&D/employee)t−1, in log 0.020 (0.026) 0.177∗∗ (0.047)

(Dnon-continuous R&D)t−1 -0.433∗∗ (0.063) -0.608∗∗ (0.095)

Size class

D# employees≤50 -0.514∗∗ (0.115) -0.319† (0.173)

D50<# employees≤250 -0.354∗∗ (0.082) -0.102 (0.148)

D250<# employees≤500 -0.129† (0.069) 0.220 (0.187)

Market sharet−1, in log 0.069∗∗ (0.021) 0.071∗ (0.030)

Share of innovative salest, in logit

Share of innov. salest−1, in logit 0.139∗∗ (0.041) 0.044 (0.044)

Share of innov. sales0i , 3 waves 0.030 (0.036) 0.130∗∗ (0.040)

Share of innov. sales0i , 2 waves 0.177∗∗ (0.026) 0.172∗∗ (0.030)

(Sales/employee)t−1, in log 0.002 (0.031) -0.001 (0.029)

(R&D/employee)t−1, in log 0.076† (0.045) 0.262∗∗ (0.064)

(Dnon-continuous R&D)t−1 -0.708∗∗ (0.127) -0.690∗∗ (0.144)

Size class

D# employees≤50 -0.213 (0.258) 0.029 (0.275)

D50<# employees≤250 -0.389∗ (0.170) 0.070 (0.221)

D250<# employees≤500 0.001 (0.136) 0.178 (0.268)

Market sharet−1, in log 0.191∗∗ (0.044) 0.098∗ (0.047)

Labor productivityt: sales/employee, in log

(Sales/employee)t−1, in log 0.420∗∗ (0.054) 0.324∗∗ (0.067)

(Sales/employee)0i , 3 waves 0.427∗∗ (0.053) 0.285∗∗ (0.067)

(Sales/employee)0i , 2 waves 0.836∗∗ (0.012) 0.590∗∗ (0.023)

Observed share of innovative salest 0.107∗∗ (0.009) 0.045∗∗ (0.012)

(Investment/employee)t, in log 0.066∗∗ (0.006) 0.120∗∗ (0.012)

Employmentt, in log -0.037∗∗ (0.007) -0.071∗∗ (0.017)

Covariance matrix

Individual effects

σa1 0.154 (0.106) 0.494∗∗ (0.132)

σa2 0.511∗∗ (0.140) 0.649∗∗ (0.207)

σa3 0.133∗∗ (0.019) 0.157∗∗ (0.060)

ρa1a2 0.557∗∗ (0.124) 0.550∗∗ (0.139)

ρa1a3 0.011 (0.230) -0.002 (0.361)

ρa2a3 0.117 (0.195) 0.120 (0.382)

Idiosyncratic errors

σε2 2.459∗∗ (0.065) 1.795∗∗ (0.098)

σε3 0.357∗∗ (0.012) 0.586∗∗ (0.019)

ρε1ε2
0.99, fixed after grid search 0.95, fixed after grid search

ρε1ε3
-0.570∗∗ (0.042) -0.274∗∗ (0.076)

ρε2ε3
-0.691∗∗ (0.038) -0.259∗∗ (0.069)

# observations 2505 1639

Log-likelihood -5021.290 -3923.897
‡Three dummies of category of industry, a time dummy and an intercept are included in each equation.

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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5.1 The effects of size, market share, R&D, physical capital and the

error terms

It is first of all remarkable and comforting to notice that the results are quite consistent and robust

across models. Tables 4 to 7 show that larger French manufacturing firms are more likely to be

product innovators while no such evidence is found for Dutch manufacturing.14 Size does not seem

to play, however, a significant role in explaining differences in innovation intensities conditional on

being an innovator. For both countries, however, market share plays a positive and significant role

not only in the innovation occurrence but also in the share of innovative sales: a 10% increase in

market share increases the probability to innovate by 0.2% and the share of innovative sales by 1

to 2%.

In France and The Netherlands, enterprises that undertook R&D activities continuously during

the previous two to four years are more likely to be product innovators and attain a larger share of

innovative sales. Moreover, past R&D intensity increases both the innovation propensity (and the

probability of becoming a product innovator) and intensity of the average Dutch enterprise. The

estimates show that a 1% increase in R&D intensity corresponds four years later to an increase

in the probability of being a product innovator of about 5%, and to an increase in the share

of innovative sales (of product innovators) of about 0.2%.15 The estimates are lower for France

showing that a 1% increase in R&D intensity does not significantly affect the probability to innovate

four years later, although it corresponds to an increase in the share of innovative sales of about

0.1% (and significant at the 10% level). Overall our results are also consistent with a lagged impact

of R&D on innovation.16

We observe a negative and statistically significant correlation, at time t, in both countries

and in all specifications between the idiosyncratic error terms in the innovation and the labor

productivity equations. This could correspond to the fact that, in order to innovate, enterprises

may need to increase their personnel, which in the short run may lead to a decrease in labor

productivity because of adjustment costs and time to learn.17

Note that the estimated elasticities of productivity with respect to labor and physical capital

14Since the reference size category consists of firms with more than 500 employees, the negative signs for the other
categories indicate a positive size effect.

15The marginal effect of a regressor on the probability of the average firm to become a product innovator is
obtained in the usual way, (see Greene, 2011, page 689). Furthermore, because of the logit transformation of the
share of innovative sales, the R&D elasticity is obtained by multiplying the coefficient of R&D by 1− y2t where y2t
denotes the share of innovative sales in level (see Appendix C).

16To have a better appreciation of the time span between R&D investment and innovation success, we would of
course need a longer and yearly panel allowing us to estimate a distributed lag model, along the lines for example
of Pakes and Griliches (1980) and Hall et al. (1986) as regards R&D and patents.

17As for the correlation between the two innovation equations, ρϵ1ϵ2
, the log-likelihood values tended to be the

highest for values around 0.95 for The Netherlands and 1 for France, which lead us to fix these values in the
estimation.
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shown in Tables 4 to 7 are also all statistically significant and their orders of magnitude are not

unreasonable. In other words, we find decreasing elasticities of scale by slightly less than 5%

in French manufacturing and slightly more in Dutch manufacturing, and elasticities for physical

capital on the low side, especially for France, which could be expected since capital is proxied by

investment.

In order to capture enterprises’ unobserved ability to be innovative and productive we account

for individual effects in each equation of the model. Likelihood ratio (LR) tests suggest that they

have indeed to be taken into account as the specifications assuming their absence in the model are

rejected at the 1% significance level.18

5.2 The effects of innovation output on labor productivity

Table 8 compares the four sets of estimated elasticities and semi-elasticities of labor productivity

with respect to innovation from Tables 4 to 7, and presents tests on their equality across the two

countries and on whether the models with latent and observed innovation output as a predictor of

labor productivity are equally close to the ‘true’ unknown model. All these elasticities are positive

and highly statistically significant except in the case of the observed innovation indicator for France.

We can make more precisely the following remarks. Firstly, these estimates appear statistically

different across countries only in the specification with observed innovation. A product innovator

has on average a 20% higher labor productivity than a non-innovator in Dutch manufacturing and a

6% higher labor productivity in French manufacturing. By contrast, in French manufacturing a 1%

increase in the share of innovative sales raises labor productivity on average by 0.12%, compared

to 0.05% in Dutch manufacturing. Labor productivity is more responsive to increases in product

innovation in French than in Dutch manufacturing enterprises.

Secondly, using Vuong’s (1989) LR test for non-nested hypotheses, we conclude that the models,

with respectively latent and observed innovation output as a predictor of labor productivity, are

equally close to the ‘true’ unknown model. This result contrasts with that of Duguet (2006) who

used a similar test by Davidson and MacKinnon (1981) to conclude that observed innovation is a

better predictor of TFP growth than latent innovation. A likely reason for the difference may be

that the two-step estimation procedure used by Duguet (2006) ignores the correlation between the

errors in the innovation and productivity equations.

As stressed in Mairesse et al. (2005), the important point is that the estimates of innovation

output in the productivity equation are significant only when the endogeneity of innovation is

taken into account, and this is also what appears here. When innovation is treated as exogenous

18To save space, the results of the LR tests are not reported but can be obtained upon request.
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in the productivity equation, the semi-elasticity of labor productivity with respect to becoming an

innovator drops from 20% to 4% and becomes statistically insignificant in Dutch manufacturing,

and the elasticity of labor productivity with respect to the observed share of innovative sales

decreases from 0.12% to 0.01% in French manufacturing (results not tabulated but available upon

request). In our paper, the endogeneity of the innovation output regressor in the labor productivity

equation operates in both types of models largely through the covariance matrices of the individual

effects on the one hand and the idiosyncratic errors on the other hand. The correlations between

innovation output and labor productivity, ρε1ε3
and ρε2ε3

, are in general statistically significant.

The null hypothesis of exogeneity of the innovation output regressor in the labor productivity

equation is clearly rejected at any conventional significance level using a Wald or an LR test.

Table 8: Elasticities and semi-elasticities of labor productivity with respect to innovation†

I) Measures of innovation outpu France The Netherlands Test of equality

Slope (Std. Err.) Slope (Std. Err.) |z| p-value

Latent innovation to explain labor productivity

1) Latent innovation propensity 0.074∗∗ (0.020) 0.121∗∗ (0.029) 1.316 0.188

2) Latent share of innov. sales 0.049∗∗ (0.011) 0.099∗∗ (0.026) 1.800 0.072

Observed innovation to explain labor productivity

1) Observed innovation indicator 0.056 (0.042) 0.197∗∗ (0.059) 1.956∗ 0.050

2) Observed share of innov. sales 0.122∗∗ (0.010) 0.054∗∗ (0.014) 3.993∗∗ 0.000

II) Vuong’s LR test France The Netherlands

|z| p-value |z| p-value

Latent 1) vs observed 1) 1.252 0.211 1.391 0.164

Latent 2) vs observed 2) 0.838 0.402 0.323 0.746
†I) The z-statistic is computed as the ratio of the difference of the elasticities across countries, assuming inde-

pendence between them, over the standard error of that difference. II) The non-nested null hypothesis of the

test is H0: both models are as close to the ‘true’ model. The resulting z-statistic is computed as z=[ln l1−ln l2

− ln obs(k1−k2)/2]/[obs×var(ln l1i−ln l2i)]
1
2 , where obs is the number of observations, kj (j=1,2) the number of

parameters and var() is the sample variance of the difference in the pointwise log-likelihoods of both models.

Significance levels : ∗ : 5% ∗∗ : 1%.

5.3 The dynamics of innovation and productivity

Persistence in innovation

In order to assess true persistence, as defined in the econometric literature on panel data, it

is important to take care of individual effects and initial conditions (Hsiao, 2003). In our case,

given that our panels are unbalanced with two or three consecutive observations by firm, we

have an additional difficulty disentangling the effect of the lagged dependent variable and of the

initial conditions. Indeed the initial values of the dependent variable on which we must project

the individual effects corresponds to a two-period lag for enterprises that are present in all three

periods but only to a one period lag for those that are present in two adjacent periods. For the
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latter, the lagged dependent variable is the same as the initial value and therefore the associated

coefficient picks up the sum of the two effects. Without imposing this constraint, we notice that,

as expected, the coefficient of the initial value for the 2-wave unbalanced panel is practically equal

to the sum of the initial value for the 3-wave balanced panel and the one period lagged effect.

As can be seen in Tables 4 to 7, our results show no evidence of true persistence in product

innovation in Dutch manufacturing neither for the occurrence indicator nor the intensity variable.

In other words, once individual effects and the occurrence and the intensity of innovation at

the initial period are controlled for, achieving successful innovations in Dutch manufacturing and

generating innovative sales are no longer time dependent. In contrast, our estimates for French

manufacturing (at least in the innovation intensity) support the ‘success breeds success’ idea. This

evidence remains, however, weak as the one-period lagged innovation is less influential than the

fixed effects as projected on innovations in the initial period.

Persistence in productivity

For both countries we find very strong evidence of true persistence of labor productivity. Even

after controlling for individual effects and initial productivity, one period lagged productivity con-

ditions current productivity. Although fairly robust given the limitations of our panel data, our

differing results for persistence in innovation and productivity could be due to errors of specifica-

tion in our models, such as large random errors in the innovation measures or important missing

factors in the productivity equation, for example skills, management practices and organizational

characteristics.19

Causality

In both countries, there is clear evidence of a unidirectional causality running from innovation

to labor productivity during the period under study. In other words, four-year lagged R&D has a

positive and significant effect on current innovation output, which itself is positively and signifi-

cantly affected by past innovation output, mostly through innovation output in the initial period,

and has a positive and significant effect on labor productivity. The lagged feedback effect of labor

productivity on innovation is not economically nor statistically significant. This result suggests

that the most productive enterprises at period t − 1 do not necessarily invest more in R&D at

period t.20 Such finding of unidirectional causality seems to be new in the empirical literature. It

is robust across the four specifications and for the two countries.

19Since we rely on a revenue measure of productivity because of unavailable output price information at the firm
level, the persistence in productivity can also reflect persistence in firm market power.

20Estimation results from regressions explaining R&D at period t by productivity at period t− 1 are not reported
but can be obtained upon request.
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Furthermore, as can be seen from the estimates documented in Appendix D, enterprises that

were four years earlier closer to the technological frontier, defined in terms of labor productivity,

are not more successful in achieving innovations and do not attain a larger share of innovative sales.

This confirms the absence of a feedback effect of labor productivity on innovation. Indeed, in the

presence of such a feedback effect, the distance to the frontier dummies should capture indirect

effects of labor productivity, and hardly any of them is significant.

6 Conclusion

We have in this study examined whether French and Dutch manufacturing firms display persistence

in innovation and productivity, whether innovation Granger causes productivity or whether the

reverse holds, whether the dynamics in the R&D-innovation-productivity relationship differs be-

tween French and Dutch manufacturing firms, and finally whether models with observed or latent,

qualitative or quantitative, innovation indicators yield different estimation results. To do so, we

have used unbalanced panels of French and Dutch manufacturing firms resulting from three waves

of the respective Community Innovation Surveys. With few exceptions, the results we obtain are

not very different for the two countries and are robust to various specifications of the innovation-

productivity relationship. As in many related studies based on cross-sectional firm data, we find

that R&D activities undertaken continuously during the previous two to four years, and the inten-

sity of such activities, affect significantly the occurrence and the intensity of product innovations.

We find weak, if any, evidence of persistence in product innovation, but strong evidence of persis-

tence in labor productivity levels. Both the occurrence and the intensity of product innovation play

an important role in enhancing firm labor productivity. Past productivity does not, however, affect

product innovation significantly. Thus, our results provide evidence of a unidirectional causality

running from innovation to productivity, without a feedback effect, and of a strong persistence

in productivity but not in innovation. Our results are robust to different ways of modeling and

estimating and hold for both countries.

In order to assess the generality of the result, it would be interesting to estimate the same

model on more country data and longer periods, which will become possible with additional waves

of innovation surveys in many countries. With the decision, at least in the European Union, to hold

innovation surveys every two years, it would be worthwhile in the future to re-estimate this model

with shorter lags (two years instead of four) and see whether the conclusions regarding the dynamics

of innovation still hold. Productivity could also be due to process innovation. The introduction of

process (and possibly other forms of) innovation would require one or more additional equations,
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a challenging but not impossible task.
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Appendix A Three-stage Gauss-Hermite quadrature

The trivariate normal density function of the structural form projection errors, a1i, a2i and a3i,

denoted by h3(a1i, a2i, a3i|...), is written as

h3(a1i, a2i, a3i|...) = Γe
−1
2

(
Λ11

a2
1i

σ2
a1

+2Λ12
a1i
σa1
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a1i
σa1
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2i

σ2
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σ2
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(A.1)

where

Γ = (σa1σa2σa3)
−1

(2π)
−3
2 (∆)

−1
2 , (A.2)

and the expressions of ∆ and Λkl (k, l = 1, 2, 3; Λkl = Λlk) are given by

∆ = 1− ρ2a1a2
− ρ2a1a3

− ρ2a2a3
+ 2ρa1a2ρa1a3ρa2a3 ,

Λ11 =
1− ρ2a2a3

∆
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1− ρ2a1a3

∆
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, (A.3)

Λ33 =
1− ρ2a1a2

∆
, Λ13 =

ρa1a2ρa2a3−ρa1a3

∆
.

The trivariate density expression of the reduced-form projection errors is written straightforwardly

by replacing a3i, σa3 , ρa1a3 and ρa2a3 by their underlined counterparts, hence the expressions of ∆

and Λkl (Λkl = Λlk).

Let us rewrite l1 (eq. (3.16)) as

l1 =
N∏
i=1

∫
a3i

G1(a3i|...)
Ti∏

t=0i+1

1

σε3

ϕ1

(
y3it −A3it − γ1A1it − a3i

σε3

)
H1(a3i|...)da3i, (A.4)

where G1(a3i|...) and H1(a3i|...) are functions of the sole projection error a3i. G1(a3i|...) is derived

from the trivariate density of the reduced-form projection errors and is equal to e
−1
2

(
Λ33 a2

3i σ−2
a3

)

with Λkl obtained from equation (A.3), and H1(a3i|...) is given by

H1(a3i|...) =
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(A.5)

G2(a2i, a3i|...) is also derived from the trivariate density of the reduced-form projection errors. It
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is equal to e
−1
2 (Λ22a

2
2iσ
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a3 , and H2(a2i, a3i|...) is written as
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with G3(a1i, a2i, a3i|...) equal to e
−1
2 (Λ11a
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1iσ
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)−Λ12a1iσ

−1
a1
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−1
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−Λ13a1iσ
−1
a1

a3iσ
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a3 . The three-stage

quadrature approach consists in approximating the single integral in equation (A.6) using the

formula of equation (3.18) after making an appropriate variable change. Then, H2(a2i, a3i|...) is

replaced by the resulting approximated expression into equation (A.5). A second approximation

is carried out for the single integral of equation (A.5) using the same formula. We then plug the

resulting expression of H1(a3i|...) into equation (A.4) and apply again the quadrature formula,

hence the final expression of l1 (see equation (3.19)).

The performance of the Gauss-Hermite quadrature is worth mentioning. It is known to be

inaccurate if the panel size, Ti, or intraclass correlation, also known as equicorrelation, is large.21

For instance, Rabe-Hesketh et al. (2005) show that, in the context of a random-effect probit,

the quadrature yields biased estimates when Ti = 10 with an equicorrelation of 0.9, or for any

equicorrelation greater than or equal to 0.45 when Ti = 100 (see also Lee, 2000). However,

Raymond (2007, chapter 3) shows that the quadrature works very well in the context of dynamic

sample selection models with a panel of small size (Ti = 4) and equicorrelation between 0.3 and

0.5, the latter range being that of the equicorrelation when these models are estimated on the

Dutch innovation survey data. Thus, we expect the quadrature to produce accurate estimates.22

Evidently, we would need to carry out Monte Carlo analyses that use our nonlinear dynamic

simultaneous equations models as a benchmark in order to assess the extent of the accuracy of the

quadrature in these models. This is beyond the scope of our analysis and is left for future research.

Appendix B Models with y∗2it or y2it as a predictor of labor

productivity

Model with latent share of innovative sales

21In the context of panel data, the intraclass correlation is a special form of serial correlation. It is defined as
σ2
aj

σ2
aj

+σ2
ϵj

(j = 1, 2, 3).

22The equicorrelation is about 0.1 when the dynamic sample selection models are estimated on the French inno-
vation survey data. Thus, the poor performance of the Gauss-Hermite quadrature is even less of an issue.
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The model with latent share of innovative sales as a predictor of labor productivity consists

of equations (2.1)-(2.4) and (2.5a) with j = 2 in equation (2.5a). These equations constitute the

structural form of the model. The reduced-form equations are given by equations (2.1)-(2.4) and

y3it = ϑ33y3i,t−1 + β′
3x3it + γ2

[
ϑ22y2i,t−1 + ϑ23y3i,t−1 + β′

2x2it

]
+ γ2α2i + α3i︸ ︷︷ ︸

α3i

+ γ2ε2it + ε3it︸ ︷︷ ︸
ϵ3it

, (B.1)

where y∗2it has been replaced by its right-hand side expression of equation (2.3). The relations

between the underlined components of Σε and Σa and the structural counterparts become
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The likelihood function of this model is similar to l1 except that γ1A1it is replaced by γ2A2it where

A2it is defined in equation (3.11a). The FIML estimates of the structural parameters are obtained

by maximizing the log-likelihood subject to the constraints (B.2a)-(B.2c) in lieu of (3.7a)-(3.7c).

Model with observed share of innovative sales

The model with observed share of innovative sales as a predictor of labor productivity consists

of equations (2.1)-(2.4) and (2.5b) with j = 2 in equation (2.5b). The likelihood function of this

model is similar to l1 except that the underlined parameters are replaced by their non-underlined

equivalents and that γ1A1it is replaced by γ2y2it. The FIML estimates of the structural parameters

of this model are obtained by maximizing the log-likelihood with no additional constraints.

Appendix C Elasticity of labor productivity with respect to

the share of innovative sales

Let the productivity equation be written as

ln(y3t) = γ2 logit(y2t) + ...+ ε3t, (C.1)

where y3t denotes productivity, y2t denotes the share of innovative sales and logit(y2t) = ln
(

y2t

1−y2t

)
.23

The elasticity of productivity with respect to the share of innovative sales, denoted by Ely3t,y2t , is

23For simplicity in the notation, we discard the firm subscript i, the other regressors and the individual effects.
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by definition ∂ ln(y3t)/∂ ln(y2t) and is derived as

Ely3t,y2t =
∂ ln(y3t)

∂ logit(y2t)

∂ logit(y2t)

∂ ln(y2t)
= γ2

∂ logit(y2t)

∂ ln(y2t)
.

By making the variable change v2t = ln(y2t) and writing

logit(y2t) = v2t − ln [1− ev2t ] , (C.2)

we can derive ∂ logit(y2t)/∂ ln(y2t) as

∂ logit(y2t)

∂ ln(y2t)
=

∂ logit(y2t)

∂v2t
=

1

1− ev2t
=

1

1− y2t
. (C.3)

The elasticity of productivity with respect to the share of innovative sales is then written as

Ely3t,y2t =
γ2

1− y2t
(C.4)

and is to be evaluated at values of interest (e.g. sample mean) of the share of innovative sales (in

level). When the latent share of innovative sales enters the productivity equation, we evaluate this

elasticity at predicted values of interest of the latent share of innovative sales.

Since Ely3t,y2t is a linear function of γ2, the standard error of the estimated elasticity is straight-

forwardly obtained as

S.E.(Êly3t,y2t) =
S.E.(γ̂2)

1− y2t
. (C.5)

Appendix D FIML estimates with y∗1it in the labor produc-

tivity equation and distance to frontier regres-

sors

The notion of technological frontier is mostly used in the macroeconomic literature on growth

convergence. Among various testable hypotheses one is that innovation becomes more important

as an economy approaches the world technology frontier (see e.g. Acemoglu et al., 2003, 2006). We

can identify in each 3-digit industry the enterprise with the largest productivity and then define

for each enterprise a technology gap variable as the difference between the largest productivity

within each 3-digit industry and the productivity of the enterprise belonging to that industry.

Then, looking at the distribution (within each industry) of the technology gap variable, we define
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Table 9: FIML estimates of the model with latent innovation propensity to explain productivity and with distance
to frontier regressors: Unbalanced panel from Dutch and French CIS 2, CIS 3 and CIS 4‡

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

France The Netherlands

Innovation occurrencet

Innovation occurrencet−1 0.182† (0.109) 0.063 (0.165)

Innovation occurrence0i , 3 waves 0.176 (0.112) 0.710∗∗ (0.186)

Innovation occurrence0i , 2 waves 0.352∗∗ (0.062) 0.693∗∗ (0.097)

Distance to frontier

(DQ2
)t−1 0.050 (0.079) 0.045 (0.108)

(DQ3
)t−1 0.040 (0.082) 0.063 (0.108)

(DQ4
)t−1 0.089 (0.090) 0.126 (0.116)

(R&D/employee)t−1, in log 0.029 (0.028) 0.177∗∗ (0.045)

(Dnon-continuous R&D)t−1 -0.519∗∗ (0.072) -0.588∗∗ (0.093)

Size class

D# employees≤50 -0.447∗∗ (0.130) -0.261 (0.169)

D50<# employees≤250 -0.337∗∗ (0.090) -0.034 (0.143)

D250<# employees≤500 -0.099 (0.076) 0.328† (0.182)

Market sharet−1, in log 0.085∗∗ (0.027) 0.090∗∗ (0.030)

Share of innovative salest, in logit

Share of innov. salest−1, in logit 0.116∗ (0.049) 0.046 (0.043)

Share of innov. sales0i , 3 waves 0.057 (0.046) 0.130∗∗ (0.040)

Share of innov. sales0i , 2 waves 0.185∗∗ (0.026) 0.171∗∗ (0.027)

Distance to frontier

(DQ2
)t−1 0.376∗ (0.176) 0.006 (0.175)

(DQ3
)t−1 0.112 (0.182) 0.019 (0.176)

(DQ4
)t−1 0.200 (0.202) -0.124 (0.190)

(R&D/employee)t−1, in log 0.111† (0.058) 0.256∗∗ (0.065)

(Dnon-continuous R&D)t−1 -1.065∗∗ (0.157) -0.695∗∗ (0.143)

Size class

D# employees≤50 -0.274 (0.309) 0.036 (0.275)

D50<# employees≤250 -0.340† (0.198) 0.068 (0.222)

D250<# employees≤500 0.127 (0.166) 0.146 (0.269)

Market sharet−1, in log 0.171∗∗ (0.060) 0.085† (0.050)

Labor productivityt: sales/employee, in log

(Sales/employee)t−1, in log 0.531∗∗ (0.056) 0.324∗∗ (0.066)

(Sales/employee)0i , 3 waves 0.337∗∗ (0.056) 0.280∗∗ (0.066)

(Sales/employee)0i , 2 waves 0.857∗∗ (0.012) 0.587∗∗ (0.024)

Latent innovation propensityt 0.080∗∗ (0.021) 0.124∗∗ (0.029)

(Investment/employee)t, in log 0.065∗∗ (0.006) 0.119∗∗ (0.012)

Employmentt, in log -0.029∗∗ (0.009) -0.083∗∗ (0.018)

# observations 2505 1639

Log-likelihood -5045.059 -3918.637
‡Three dummies of category of industry, a time dummy and an intercept are included in each equation.

To save space, the covariance matrix of the individual effects and the error terms are not reported.

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

three dummy variables DQ2
, DQ3

and DQ4
which take the value one if the technology gap lies

respectively between the first (>) and second quartile (≤), the second (>) and the third quartile

(≤), and above (>) the third quartile. The dummy variable DQ1
, which takes the value one if the

technology gap lies below or at the first quartile, is used as the reference. Firms for which DQ1

is equal to one are the closest to the technological frontier. If the above-mentioned hypothesis is

satisfied, we expect the effects of DQ2
, DQ3

and DQ4
to be negative and statistically significant.
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We consider the lagged values of the dummy variables in the estimation for the same reason as for

the market share regressor. Furthermore, these dummy variables capture not only the distance to

technological frontier but also a type of (indirect) feedback effect of productivity on innovation. As

a result, in order to avoid multicollinearity problems, whenever these dummy variables are included

in the estimation, the above-mentioned feedback effect of productivity is ignored, i.e. we assume

ϑ13 = ϑ23 = 0.

Since the results with the distance to frontier regressors are very similar across model specifi-

cations, we report them only for the model with the innovation propensity as a predictor of labor

productivity (see Table 9). In other words, we still observe a unidirectional causality running from

innovation to productivity with the lagged distance to frontier dummies being insignificant. The

remaining estimation results can be obtained upon request.
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