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Abstract

This paper considers the problem of testing a finite number of moment inequalities. We
propose a two-step approach. In the first step, a confidence region for the moments is con-
structed. In the second step, this set is used to provide information about which moments
are “negative.” A Bonferonni-type correction is used to account for the fact that with some
probability the moments may not lie in the confidence region. It is shown that the test controls
size uniformly over a large class of distributions for the observed data. An important feature of
the proposal is that it remains computationally feasible, even when the number of moments is
very large. The finite-sample properties of the procedure are examined via a simulation study,
which demonstrates, among other things, that the proposal remains competitive with existing

procedures while being computationally more attractive.
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1 Introduction

Let W;,i =1,...,n, be an i.i.d. sequence of random variables with distribution P € P on R¥ and

consider the problem of testing
Hy: P ePgversus H : Pe Py, (1)

where

PQ:{PEP:]EP[W/Z‘] SO} (2)
and P; = P\ Py. Here, the inequality in (2) is intended to be interpreted component-wise and
P is a “large” class of possible distributions for the observed data. Indeed, we will only impose
below a mild (standardized) uniform integrability requirement on P. Our goal is to construct tests
On = On(W1, ..., Wy,) of (1) that satisfy

limsup sup Ep[¢,] < a (3)

n—oo PePy

for some pre-specified value of o € (0, 1). Note that much of the literature considers the equivalent

problem where the < in (2) is replaced by >.

In the interest of constructing tests of (1) that not only satisfy (3), but also have good power
properties, it may be desirable to incorporate information about which components of Ep[W;]
are “negative.” Examples of tests that incorporate such information implicitly using subsam-
pling include Romano and Shaikh (2008) and Andrews and Guggenberger (2009), whereas ex-
amples of tests that incorporate such information more explicitly include the “generalized mo-
ment selection” procedures put forward by Andrews and Soares (2010), Canay (2010), and Bugni
(2011). Andrews and Barwick (2012a) propose a refinement of “generalized moment selection”
termed “recommended moment selection” in which the impact of certain tuning parameters on the
finite-sample behavior of the testing procedure are accounted for in the asymptotic framework.
Andrews and Barwick (2012a, Section 3) discuss four reasons why such an approach is preferable.
Therefore, our theoretical and numerical comparisons will be mainly restricted to the method of
Andrews and Barwick (2012a); extensive comparisons with previous methods are already available

in that paper.

Our two-step solution to this problem is similar in spirit to the recommended moment selection
approach. In the first step, we construct a confidence region for Ep[W;] at some “small” significance
level 8 € (0,). In the second step, we then use this set to provide information about which
components of Ep[W;] are “negative” when constructing tests of (1). Importantly, similar to the
approach of Andrews and Barwick (2012a), we account in our asymptotic framework for the fact
that with some probability Ep[WW;] may not lie in the confidence region using a Bonferonni-type

correction. See Remark 3.3 for further discussion.



Our testing procedure and those just cited are related to Hansen (2005), who uses a similar two-
stage approach for the same problem, but does not account for the fact that with some probability
Ep[W;] may not lie in the confidence region. He instead assumes that § tends to zero as n tends
to infinity and only establishes that his test satisfies

limsup Ep[¢,] < a for each P € Py (4)

n—o0

instead of the stronger requirement (3). The importance of the distinction between tests that
satisfy (3) rather than the weaker requirement (4) has been emphasized in much of the recent
literature on inference in partially identified models. See, for example, Imbens and Manski (2004),
Romano and Shaikh (2008), and Andrews and Guggenberger (2010). Another important feature
of our approach stems from our choice of confidence region for Ep[W;]. Through an appropriate
choice of confidence region for Ep[W;], our approach remains computationally feasible, even when
k is large. In particular, unlike Hansen (2005), we are able to avoid having to optimize over the
confidence region numerically. See Remark 2.2 for further discussion. As described in Remarks
2.3 and 3.4, similar computational problems are also present in the approach put forward by
Andrews and Barwick (2012a). Among other things, they must restrict attention to situations
in which k£ < 10, which precludes many economic applications, including entry models, as in
Ciliberto and Tamer (2009), where k = 2™*! when there are m firms, or dynamic models of

imperfect competition, as in Bajari et al. (2007), where k may even be as large as 500.

Other related literature includes Loh (1985), who also uses a similar two-stage approach in the
context of some parametric hypothesis testing problems, but, like Hansen (2005), does not account
for the fact that with some probability the nuisance parameter may not lie in the confidence
region. It is also related to Berger and Boos (1994) and Silvapulle (1996), who improve upon
Loh (1985) by introducing a Bonferonni-type correction like ours. This idea has been used by
Stock and Staiger (1997) to construct a confidence region for the parameters of a linear regression
with possibly “weak” instrumental variables. It has also been used in a nonparametric context by
Romano and Wolf (2000) to construct a confidence interval for a univariate mean that has finite-
sample validity and is “efficient” in a precise sense. Finally, this idea is introduced in a general
setting by McCloskey (2012). As mentioned previously, an important contribution here is that our

proposal can be carried out in a way that is computationally feasible, even when k is large.

The remainder of the paper is organized as follows. In Section 2, we first consider the testing
problem in the simplified setting where P = {N(u, %) : u € R¥} for a known covariance matrix .
Here, it is possible to illustrate the main idea behind our construction more clearly and also to
obtain some exact results. In particular, we establish an upper bound on the power function of
any level-a test of (1) by deriving the most powerful test against any fixed alternative. This

result confirms the bound established by simulation in Andrews and Barwick (2012b, Section 7.3).



We then return to the more general, nonparametric setting in Section 3. We apply our main
results to the problem of constructing confidence regions in partially identified models defined by
a finite number of moment inequalities in Section 4. Section 5 sheds some light on the behavior of
our procedures in finite samples via a simulation study, including an extensive comparison of our
procedure with the one proposed recently by Andrews and Barwick (2012a). Proofs of all results
can be found in the Appendix.

2 The Gaussian Problem

In this section, we assume that W = (Wy,...,W3)' ~ P € P = {N(u,%) : u € R¥} for a known
covariance matrix . In this setting, we may equivalently describe the problem of testing (1) as
the problem of testing

Hy:peQyversus Hy : p € Qy (5)

where

Qo=A{p: p; <0forl1<i<k} (6)

and Q; = RF \ Qo. Here, it is possible to obtain some exact results, so we focus on tests ¢, =
On(W1, ..., Wy) of (5) that satisfy

sup Ep[o,] < « (7)
HEQo

for some pre-specified value of o € (0,1) rather than (3). In Section 2.1 below, we first establish
an upper bound on the power function of any test of (5) that satisfies (7) by deriving the most
powerful test against any fixed alternative. We then describe our two-step procedure for testing
(5) in Section 2.2.

Before proceeding, note that by sufficiency we may assume without loss of generality that n = 1.
Hence, the data consists of a single random variable W distributed according to the multivariate
Gaussian distribution with unknown mean vector u € R* and known covariance matrix 3. For
1 < j <k, we will denote by W; the jth component of W and by pu; the jth component of p.
Note further that, because ¥ is assumed known, we may assume without loss of generality that
its diagonal consists of ones; otherwise, we can simply replace W; by W; divided by its standard

deviation.

2.1 Power Envelope

In this subsection only, we assume further that > is invertible.



Below we calculate the most powerful (MP) test of u € Qg satisfying (7) against a fixed alterna-
tive i = a, where a € 1. The power of such a test, as a function of a, provides an upper bound on
the power function of any test of (5) satisfying (7) and is therefore referred to as the power envelope
function. In Andrews and Barwick (2012a,b), numerical evidence is given to justify their conjecture
of how to calculate the MP test of u € Q satisfying (7) against p = a and hence how to calculate
the power envelope function. Theorem 2.1 below verifies the claim made by Andrews and Barwick

(2012a). Note that the power of the MP test of u € )y satisfying (7) against u = a depends on a

through its “distance” from Qq in terms of the Mahanolobis metric d(z,y) = v/(z — y)’S1(z — y),

ie.,

inf v/{(—a)S (u—a)} . (®)

HEQ0
Theorem 2.1. Let W be multivariate normal with unknown mean vector pu and known covariance
matriz 3. For testing u € o against the fized alternative p = a, where a € €1, the MP test
satisfying (7) rejects for large values of T = W'S™1 (i — a), where
fi=argmin(p —a)’S 7 (pn—a) .
HEQQ

In fact, the distribution which puts mass one at the point [ is least favorable, and the critical value

at level o can be determined so that
Pi{T >ci_a}=a .
Under p = [i,

E(T) = @S '(i—a)
Var(T) = (p—a)S ' (g—a),

SO

Cloa =S i —a)+ 210V (i —a)S (i —a)

where z1_o 1S the 1 — a quantile of the standard normal distribution. Moreover, the power of this

test is given by

1-® (210 = V(A- 0= (@ -a))

where ®(-) denotes the standard normal c.d.f.

Since the most powerful tests vary as a function of the vector a, it follows that there is no
uniformly most powerful test. Furthermore, as argued in Lehmann (1952), the only unbiased test
is the trivial test whose power function is constant and equal to «. Invariance considerations do
not appear to lead to any useful simplification of the problem either. See also Andrews (2012) for

some negative results concerning similarity.



Remark 2.1. Note that 7 = W'Y ~!(ji—a) in Theorem 2.1 is a linear combination D1<j<k ¢ W of
the W1,...,Wj. Even if all components of a are strictly positive, some c; may be strictly negative.
Furthermore, even if all components of a are strictly positive, depending on ¥, & may not equal
zero. One might therefore suspect that the test described in Theorem 2.1 does not satisfy (7).
However, the proof of the theorem shows that if i has any components that are strictly negative,
then the corresponding coefficient of W; in T" must be zero; components of i that are zero have

corresponding coefficient of W; in T' that are positive. m

2.2 A Two-Step Procedure

There are, of course, many ways in which to construct a test of (5) that controls size at level . For
instance, given any test statistic 7' = T'(W71, ..., W) that is nondecreasing in each of its arguments,
we may consider a test that rejects Hy for large values of T'. Note that, for any given fixed critical
value ¢, P,{T(W1,...,Wy) > ¢} is a nondecreasing function of p. Therefore, if ¢ = ¢;_, is chosen
to satisfy

Po{T(Wh,..., W) > ci—a} < a,

then the test that rejects Hy when T' > ¢1_, is a level « test. A reasonable choice of test statistic T’

is the likelihood ratio statistic, which is given by

T = inf {(W— S (W = p)} . (9)
pello

By analogy with (8) and Theorem 2.1, rejecting for large values of the “distance” of W to € is
intuitively appealing. It is easy to see that such a test statistic 7" is nondecreasing in each of its

arguments.

Another choice of monotone test statistic is the maximal order statistic max(W1, ..., Wy). For
this choice of test statistic, ¢;_, may be determined as the 1 — a quantile of the distribution of
max(Wy,...,Wg) when (Wq,..., Wy)" is multivariate normal with mean 0 and covariance matrix
Y. Unfortunately, as k increases, so does the critical value, which can make it difficult to have
any reasonable power against alternatives. The main idea of our procedure, as well as that of
Andrews and Barwick (2012a), is to essentially remove from consideration those p; that are “neg-
ative.” If we can eliminate such p; from consideration, then we may use a smaller critical value

with the hopes of increased power against alternatives.

Using this reasoning as a motivation, we may use a confidence region to help determine which p;
are “negative.” To this end, let M (1 — 3) denote an upper confidence rectangle for all the p;

simultaneously at level 1 — 3. Specifically, let

MU=F) = {peR: max (= Wy) < K71 - )} (10

— {peRF:u <W,+ K '(1-8) forall 1 <j<k},



where K ~1(1 — B) is the 1 — 8 quantile of the distribution

K(z) = Pu{ max (uj — W) <z} .

Note that K(-) depends only on on the dimension k and the underlying covariance matrix ¥. In
particular, it does not depend on the p;, so it can be computed under the assumption that all

p; = 0. By construction, we have for any p € R* that
PipeM(1-p)t=1-8.

The idea is that with probability at least 1 — 8 we may assume that under the null hypothesis,
w in fact will lie in Q¢ N M (1 — B) rather than just Q. Instead of computing the critical value
under p = 0, the largest value of y in Qy, we may therefore compute the critical value under fi, the
“largest” value of p in the (data-dependent) set Qo N M (1 — ). It is straightforward to determine

it explicitly. In particular, i has jth component equal to
fij = min(W; + K~1(1 - 5),0) . (11)

But, to account for the fact that g may not lie in M (1 — ) with probability at most 3, we reject
Hy when T'(Wy,...,Wy) exceeds the 1 — a 4+ 8 quantile of the distribution of 7" under fi rather
than the 1 — a quantile of the distribution of T" under fi. The following theorem establishes that
this test of (5) satisfies (7).

Theorem 2.2. Let T(Wy,..., W) denote any test statistic that is nondecreasing in each of its
arguments. For i € R¥ and v € (0,1), define

b(y,u) =inf{x e R: P,{T(W,... , W) <z} >~} .
Fiz 0 < B < a. The test of (5) that rejects Hy if T > b(1 — o+ B, 1) satisfies (7).

Remark 2.2. As emphasized above, an attractive feature of our procedure is that the “largest”
value of p in Q¢ N M (1 — ) may be determined explicitly. This follows from our particular choice
of initial confidence region for u. If, for example, we had instead chosen M (1 — ) to be the usual
confidence ellipsoid, then there may not even be a “largest” value of p in Q¢ N M (1 — ), and one

would have to compute

sup b(l1—a+p,u) .
HEQNM (1-1)

This problem persists even if the initial confidence region is chosen by inverting tests based on the
likelihood ratio statistic (9) despite the resulting confidence region being monotone decreasing in

the sense that if = lies in the region, then so does y whenever y; < z; forall 1 < j <k. m



Remark 2.3. In the context of the Gaussian model considered in this section, it is instructive
for comparison purposes to consider a parametric counterpart to the nonparametric method of
Andrews and Barwick (2012a). To describe their approach, fix x < 0. Let fi be the k-dimensional
vector whose jth component equals zero if W; > x and —oo otherwise (or, for practical purposes,
some very large negative number). Define

ﬁ:inf{n>0: sup PH{T>b(1—04,,&)+17}§04} . (12)
HEQ

The proposed test of (5) then rejects Hy if T > b(1 — «, 1) + 7). Note that the computation of
7 as defined in (12) is complicated by the fact that there is no explicit solution to the supre-
mum in (12). One must therefore resort to approximating the supremum in (12) in some fash-
ion. Andrews and Barwick (2012a) propose to approximate sup,,cq, P {7 > b(1 — «a, i) + 1} with
sup ,cq, Pu{T > b(1 — a, i) + n}, where Qo = {—00,0}*. Andrews and Barwick (2012a) provide
an extensive simulation study, but no proof, in favor of this approximation. Even so, the problem
remains computationally demanding and, as a result, the authors only consider situations in which
k < 10 and o = .05. In contrast, our two-step procedure is simple to implement even when k is
large, as it does not require optimization over 2y, and has proven size control for any value of «
(thereby allowing, among other things, one to compute a p-value as the smallest value of « for
which the null hypothesis is rejected). In the nonparametric setting considered below, where the
underlying covariance matrix is also unknown, further approximations are required to implement

the method of Andrews and Barwick (2012a). See Remark 3.4 for related discussion. m

Remark 2.4. Let ¢, be the test as described in Theorem 2.2. Similar to the approach of
Andrews and Barwick (2012a), one can determine § to maximize (weighted) average power. In
the parametric context considered in this section, one can achieve this exactly modulo simulation
error. To describe how, let u1,..., ug be alternative values in €21, and let wy, . .., wq be nonnegative

weights that add up to one. Then, 8 can be chosen to maximize

d

> wiB (fa,8) -

i=1
This can be accomplished by standard simulation from N(u;,X) and discretizing S between 0
and a. The drawback here is the specification of the p; and w;. In our simulations, we found that

a reasonable choice is simply 8 = «/10. =

3 The Nonparametric Multi-sided Testing Problem

In this section, we study the nonparametric version of the testing problem previously considered

in Section 2. To this end, let W;,i = 1,...,n, be an i.i.d. sequence of random vectors with



distribution P € P on R* and consider the problem of testing (1). Unlike the previous section, the
unknown family of distributions P will be a nonparametric class of distributions defined by a mild

(standardized) uniform integrability condition, as described in the main results below.

Before proceeding, we introduce some notation that will be useful in describing our proposed con-
struction. Below, P, denotes the empirical distribution of the W;,i = 1,...,n. The notation w(P)
denotes the mean of P and the notation ;(P) denotes the mean of the jth component of P. Let
W, = u(P,) and W, = pu;(P,). The notation ¥(P) denotes the covariance matrix of P and the
notation 0]2-(P) denotes the variance of the jth component of P. The notation Q(P) denotes the

correlation matrix of P. Let Q,, = Q(P,) and sz’n = 0]2(]5”) Finally, let S7 = diag(S7,,, .. ., Sl%,n)'

As in the preceding section, our methodology incorporates information about which components
of u(P) are “negative” by first constructing a (nonparametric) upper confidence rectangle for p at

nominal level 1 — 3, where 3 € (0, «). Our bootstrap confidence region for this purpose is given by

Mn(l—ﬂ):{ueRk: max MSKnl(l—ﬁ,Pn)} 7 (13)
1<j<k jn

where

K, (z,P) = P{ max V(5 (P) = Wyn) < x} .
1<j<k Sjn

Next, we require a test satistic 7T;, such that large values of T;, provide evidence against Hy. For

simplicity, below we consider three different test statistics of the form
T,=T (S,;l\/ﬁv‘vn, Qn)

for some function T : R¥ x (R¥)?2 — R that is continuous in both arguments and weakly increasing
in each component of its first argument, though, as in Andrews and Barwick (2012a), other test
statistics may be considered as well. In particular, we will consider
v
TMe% = max ViWin (14)
1<j<k  Sjn

TN = inf Z,(t)Q 1 Z,(t) (15)
teRk:t<0

where _ _
_ \/H(Wln —t) \/ﬁ(Wkn —t)
Zyt)y=|—%—+,...,——
Sl,n Sk,n

and the inequality in the infimum is interpreted component-wise. Following Andrews and Barwick
(2012a), we will also consider an “adjusted” version of T, 9 in which €, is replaced with

Q,, = max{e — det(2,),0} - I, + Q,, ,

for some fixed € > 0, with I denoting the k-dimensional identity matrix, i.e.,

Tavad — inf oz, () Z(t) (16)
" teRk:t<0 "



Andrews and Barwick (2012a) propose this modification to accommodate situations in which Q(P)

may be singular.

We also require a critical value with which to compare T},. For z € R and A € R¥, let

Jn(z,\, P) = P {T(S,;l(\/ﬁ(ij — 1 (P)) + S V/nA, Qn) < 1:} .

Note that
P{T, < x} = Jp(z,u(P), P) . (17)

Importantly, for any = and P, J,(z, A, P) is nonincreasing in each component of \. It is natural to
replace P in the righthand-side of (17) with pn, but this approximation to the distribution of T,
fails when P is on the “boundary” of the null hypothesis; for example, see Andrews (2000). On the
other hand, if ;(P) were known exactly, then one could plug-in this value for p(P) and replace the
final P in the right-hand side of (17) with B,. Obviously, w(P) is not known exactly, but, as before,
we may use the confidence region for p(P) defined in (13) to limit the possible values for p(P).

This idea leads us to consider the critical value defined by

n(l—a+p) = sup Jl1—a+8,\P,), (18)

AEM, (1—B)NRE
where R_ = (—00,0]. The addition of § to the quantile is necessary to account for the possibility
that pu(P) may not lie in M,(1 — ). It may be removed by allowing 5 to tend to zero with
the sample size. However, the spirit of this paper, as well as Andrews and Barwick (2012a), is
to account for the selection of moments in order to achieve better finite-sample performance. See

Remark 3.3 below for further discussion.

The calculation of é,(-) in (18) is straightforward because .J; (1 —a+ 8, A, P,) is nondecreasing
in each component of . It follows that the supremum in (18) is attained when A = A* has jth

component equal to the minimum of zero and the upper confidence bound for the y;, i.e.,

_ WK71(1 -3, P,
)\;zmin{Wj,n—i-S]’ n 5 ),O}.

NG
Then,
n(l—a+8)=J'0—a+ 8,7\ P,) .

Since 3 € (0, o), we define our test so that it fails to reject the null hypothesis not only whenever
T,, is less than or equal to the critical value defined above, but also whenever M,(1 — 3) C R*.

Formally, our test is therefore given by

bn = dnle, B) = 1= 1{{M, (1= ) CRE}U{T, < &u(l—a+H)}} (19)

10



where 1{-} denotes the indicator function. The following theorem shows that this test controls the
probability of a Type I error uniformly over P in the sense that (3) holds, as long as P satisfies a

mild (standardized) uniform integrability condition.

Theorem 3.1. Let W;,i = 1,...,n, be an i.i.d. sequence of random vectors with distribution P € P

on R¥. Suppose P is such that, for all 1 < j < k,

(Wﬁ{‘w‘ >/\}] —0. (20)

lim sup Ep

A—00 pep oj(P) o;(P)

Then, the test ¢, of (1) defined by (19) with T,, given by (14) or (16) satisfies (3).
Remark 3.1. If, in addition to satisfying the requirements of Theorem 3.1, P is required to satisfy

inf det(Q(P
jnf det(2(P)) >0,

then the conclusion of Theorem 3.1 holds when T, is given by (15). m

Remark 3.2. A sufficient condition for P to satisfy (20), for all 1 < j <k, is that

()| <=

for some § > 0 and all 1 < j < k. This type of stronger condition has been used, for ex-
ample, by Andrews and Guggenberger (2009), Andrews and Soares (2010), Canay (2010), and
Andrews and Barwick (2012a). m

sup Ep
PeP

Remark 3.3. For § = 3, tending to zero, it follows from our analysis that the test ¢} (/3,), where

Gn(8) =1- 1{{Mu(1 - ) CRE} U{To < tul1 - )} }

satisfies

limsup sup Ep[65(6,)] < a

n—oo PeP
under the assumptions of Theorem 3.1. To see this, suppose that the assumptions of Theorem 3.1
hold. Let ¢, = ¢n(c, 5) be defined as in (19). Fix any ¢ > 0. By monotonicity, we have for all
large enough n that M, (1 — 5,) C M, (1 — €). Hence, for all such n, we have that ¢ (5,) < ¢ (¢).
Moreover, ¢, (o + €,€) = ¢ (€). It therefore follows from Theorem 3.1 that
limsup sup Ep [qﬁZ(ﬁn)] < limsup sup Ep [(Z)n(a + ¢, e)} <a-+te.

n—oo  PePy n—oo  PePy

Since the choice of € > 0 was arbitrary, the desired result follows. The test ¢ (3,) defined in this
way is similar to the “generalized moment selection” procedures of Andrews and Soares (2010),
Canay (2010), and Bugni (2011). On the other hand, the test ¢,, defined by (19), which accounts
for the impact of the choice of 8 on the finite-sample behavior of the testing procedure, is more

similar to the procedure of Andrews and Barwick (2012a). m

11



Remark 3.4. For the hypothesis testing problem considered in this section, Andrews and Barwick
(2012a) consider an alternative testing procedure that they term “recommended moment selection.”
In order to describe a version of their method based on the bootstrap, fix k < 0. Let Xn be the

k-dimensional vector whose jth component equals zero if

W
ViWin > K
Sjn
and —oo otherwise (or, for practical purposes, some very large negative number). Define
An=if<{n>0: sup Ju(J; (1 —a, A, P)+n,\P)>ab . (21)
AERF:A<0

The proposed test is then given by
On(@) = H{Tp, > J, N1 — a, Any Po) + 0}

where T, is given by T or Tﬁllr’ad; see (15) and (16). As explained in Remark 2.3, determination
of 7, defined in (21) is computationally prohibitive, even in a parametric setting. This remains true
in the present nonparametric setting, so the authors resort to an approximation to the supremum
in (21) analogous to the one described in Remark 2.3. As before, the authors provide an extensive
simulation study, but no proof, in favor of this approximation and restrict attention to situations
in which £ < 10 and a = .05. The authors also provide simulation-based evidence to support a
further approximation to 7, that only depends on k£ and the smallest off-diagonal element of Q.
A data-dependent way of choosing x similar to the way of choosing 5 described in Remark 2.4 is

described as well. m

4 Confidence Regions for Partially Identified Models

In this section, we consider the related problem of constructing a confidence region for identifiable
parameters that is uniformly consistent in level. Concretely, let X;,7 = 1,...,n, be an i.i.d.
sequence of random variables with distribution P € P on some general sample space S, where P is
again a nonparametric class of distributions defined by a mild (standardized) uniform integrability
requirement on P. We consider the class of partially identified models in which the identified set,
©o(P), is given by

Oy(P) = {0 € © : Eplg(X.,0)] <0}, (22)

where © is some parameter space (usually some subset of Euclidean space) and g : S x © — RF.

Here, for each 6, g(+, 0) is a vector of k real-valued functions, and the inequality in (22) is intended to

be interpreted component-wise. We wish to construct random sets C,, = C, (X1, ..., X,) satisfying
liminf inf inf P{leC,}>1—-a (23)
n—o0o0 PeP 0cOq(P)
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for some pre-specified a € (0,1). As in Romano and Shaikh (2008), we refer to such sets as
confidence regions for identifiable parameters that are uniformly consistent in level to distinguish

them from confidence regions satisfying the weaker coverage requirement
lirginf P{#cC,}>1—a, foreach PP and 6 € Oy(P) (24)
n o0

and some pre-specified « € (0, 1). In contrast, we refer to sets satisfying (24) as confidence regions
for identifiable parameters that are pointwise consistent in level. The importance of the distinction
between confidence regions satisfying (23) and the weaker requirement (24) has been emphasized
in much of the recent literature on inference in partially identified models. See, for example,
Imbens and Manski (2004), Romano and Shaikh (2008) and Andrews and Guggenberger (2010).
Note that in this paper we will not consider the construction of confidence regions for the identified

set itself. See Romano and Shaikh (2010) for further discussion of such confidence regions.

As in Romano and Shaikh (2008), our construction will be based upon the duality between
constructing confidence regions and hypothesis testing. Specifically, we will consider tests of the

null hypotheses
Hyp: Ep[g(X;,0)] <0 (25)

for each 6 € © that control the usual probability of a Type I error at level a.. To this end, let ¢,,(0)
be the test of (25) defined by (19) with W; = g(X;,0). Consider

Co=1{0€0:¢,(0) =0} . (26)

The following theorem shows that C,, satisfies (23). In the statement of theorem, we will make
use of the following additional notation. Denote by 1;(6, P) and 032(9, P) the mean and variance,

respectively, of ¢;(X;,0) under P.

Theorem 4.1. Let X;,i = 1,...,n, be an i.i.d. sequence of random wvariables with distribution

P € P. Suppose P is such that, for all 1 < j <k,

(gj<Xi;i)(;]A;;(9, P))2 1 {

lim sup sup Ep
A—00 PP 90 (P)

g'(Xi7‘9> —u-(@,P)
o Er) ‘“}]:0‘

Then, Cy, defined by (26) with T, given by (14) or (16) satisfies (23).

5 Simulation Study

In this section, Andrews and Barwick (2012a) will be abbreviated by AB.

The goal of this section is to study the finite-sample performance of our two-step procedure.

For the reasons mentioned in the introduction, the comparison with other procedures is reserved
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to the newly recommended procedure of AB. In their notation, the preferred procedure is the
“recommended moment selection” (RMS) test based on (5’2,90(1)) with data-dependent tuning

parameters k and 7] and it is termed “qlr, ad/¢t-Test/kAuto”.

We compare finite-sample performance both in terms of maximum null rejection probability
(MNRP) and average power for a nominal level of o = 0.05. The design of the simulation study
is equal to the one used by AB for their Table III; the reader is referred to AB for the general
details. We point out, however, that we reverse the signs of the mean vectors used by AB, since in

our framework the inequality signs are reversed in the null and alternative hypotheses compared
to AB.

To showcase the value, in terms of power properties, of incorporating information about which
components of Ep[IV;] are “negative”, we also include a one-step procedure which ignores such
information. This one-step procedure can be described most compactly as the analog of our two-
step procedure using 8 = 0, thereby forsaking altogether the first step of “moment selection”. Such
an approach is expected to have higher power when all non-positive moments are equal to zero (or
at least very close to zero) but is expected to have reduced power when some non-positive moments
are far away from zero. Note that this test also controls the probability of a Type I error uniformly

over P in the sense of Theorem 3.1.

As expected, AB find that a bootstrap version of their test has better finite-sample size prop-
erties than a version based on asymptotic (normal) critical values. Therefore, we only implement
bootstrap versions, both for the qlr, ad/t-Test/kAuto test and our two-step and one-step proce-
dures. All bootstraps use B = 499 resamples; this is also the case for the first step of our two-step

procedure in the calculation of a bootstrap confidence region for p.

The two-step procedure uses S = 0.005 for the construction of the confidence region in the first
step. Using larger values of 8 leads to somewhat reduced average power in general. Lower values
of 8 do not make a noticeable difference in terms of average power, but require a (much) larger

number of bootstrap resamples in the first step.

Remark 5.1. Unlike Andrews and Barwick (2012b), we do not consider any singular covariance
matrices €. Therefore, the qlr, ad/t-Test /kAuto test as well as our two-step and one-step procedures
use, for simplicity and reduced computational burden, the “unadjusted” quasi-likelihood ratio test
statistic (15) rather than the “adjusted” version (16). For the scenarios that we consider, this does

not make any difference. m
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5.1 Maximum Null Rejection Probabilities

Empirical MNRP’s for the qlr, ad/t-Test/xAuto test and our two-step procedure are computed
as the maximum rejection probability over all u vectors that are composed only of zero and —oo
entries, containing at least one zero entry. So for dimension k, there are a total of 2¥ — 1 null vectors

to consider. Empirical MNRP’s for the one-step procedure are computed at the origin, i.e., under
w=1(0,...,0)".
For each scenario, we use 10,000 repetitions to compute empirical MNRP’s.

The results are presented in the upper half of Table 1 and can be summarized as follows; here, we
use the term AB-Rec to denote the recommended procedure of AB, that is, the qlr, ad/¢-Test/xAuto
test:

e All procedures achieve a satisfactory finite-sample performance.

e The empirical MNRP of the AB-Rec procedure is generally somewhat higher compared to
the two-step and one-step procedures.

e Not surprisingly, the empirical MNRP’s are somewhat higher when the distribution of the

elements is heavy-tailed (i.e., t3 versus N(0,1) and x3).

Remark 5.2. We are not able to compute empirical MNRP’s for the qlr, ad/t-Test/kAuto test
and our two-step procedure when k = 10 for the following reason. Since the empirical MNRP is

210 — 1 = 1,023 empirical null rejection probabilities (NRP’s),

computed as the maximum over
each of those 1,023 empirical NRP’s has to be computed with a high degree of accuracy or there
will be a noticeable upward bias in the resulting empirical MNRP. Therefore, we deem it necessary
to use at least 5,000 repetitions to compute an individual empirical NRP. Doing this 1,023 times,
simultaneously for the qlr, ad/t-Test/xkAuto test and our two-step procedure, would take on the
order of one month for a given scenario.' In this context, the term scenario refers to a particular
combination of correlation matrix {2 and error distribution; there are a total of nine scenarios to

evaluate.

Empirical MNRP’s for the qlr, ad/¢-Test/kAuto test based on 1,000 repetitions only can be
found in Table IIT of AB. Arguably, all these numbers would tend to decrease somewhat if 5,000

repetitions were used instead.

We also computed empirical NRP’s for various scenarios and various randomly chosen null

vectors p (with only zero and —oo entries) based on 5,000 repetitions. In all cases considered,

"We run C++ code on a 2 x 2.4 GHz-Quad-Core Intel Xeon Workstation. The quadratic programming software
needed to compute the qlr and qlr, ad test statistic comes from the NAG C Library. AB report that computing
the qlr, ad test statistic 100,000 times takes 2.6, 2.9, and 4.7 seconds when k = 2,4, and 10, respectively, in their

computing environment. We find that it takes us 1.1, 1.5, and 3.6 seconds, respectively.
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the empirical NRP of the two-step procedure never exceeded the NRP of the qlr, ad/¢-Test/xAuto
test. m

5.2 Average Powers

FEmpirical average powers are computed over a set of m different alternative p vectors, with m =7
when k£ = 2, m = 24 when k = 4, and m = 40 when £ = 10. Note here that even for a
fixed k, the specific set of y vectors depends on the correlation matrix Q € {Qneg, Q2zero, QPos}s;
see Andrews and Barwick (2012b, Subsection 7.2) for the details.

For each scenario, we use 10,000 repetitions to compute empirical average powers when k = 2

and k£ = 4 and 5,000 repetitions to compute empirical average powers when k = 10.

Unlike AB, we first report “raw” empirical average powers instead of size-corrected empirical
average powers. If anything, this slightly favors the recommended procedure of AB, since our two-

step and one-step procedures were seen to have (somewhat) lower empirical MNRP’s in general.

The results are presented in the lower half of Table 1 and can be summarized as follows:

e For every scenario, the AB-Rec procedure has the highest empirical average power and the
one-step procedure has the lowest empirical average power. However, this does not mean
that the AB-Rec is uniformly more powerful than the other two procedures. For individual
alternative p vectors, even the one-step procedure can have higher empirical power than the
AB-Rec procedure (even though this does not happen often). For example, this happens
when all non-positive moments are equal to zero; when there are no negative moments,
trying to incorporate information about which moments are “negative” is counterproductive,
as expected.

e The differences in empirical average power decrease as we move from {2y to z¢r, and then
to Qpys (for a given k and a given distribution of the elements).

e The two-step procedure generally picks up most of the difference in empirical average power
between the one-step procedure and the AB-Rec procedure. This is the case in particular
when it is needed the most, namely when the difference in empirical average power between

the one-step procedure and the AB-Rec procedure is the largest (i.e., for Qneg).

As mentioned before, reporting “raw” empirical average powers slightly favors the recommended
procedure of AB. Therefore, we also compute “size-corrected” average powers for the two-step
procedure. But this is only possible when k = 2, 4; see Remark 5.2. The way we do this is as follows:
for a given combination of k € {2,4}, Q € {Qneg, Uzero, 2pos }, and Dist € {N(0,1),t3, X3}, we vary
the nominal level « for the two-step procedure, keeping 5 = 0.005 fixed, until the resulting MNRP
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matches that of the AB-Rec procedure with a@ = 0.05. Denote the corresponding nominal level «
for the two-step procedure by agc; for the 18 different combinations of (k, 2, Dist) considered, we
find that age € [0.051,0.055]. We then use agc to compute the “size-corrected” average empirical

power for the given combination of (k, (2, Dist).

The results are presented in Table 2. The “fair” comparison is the one between AB-Rec and
Two-Stepgc. It can be seen that the difference is always smaller than for the “unfair” comparison

between AB-Rec and Two-Step.

Remark 5.3. We realize that this way of computing “size-corrected” empirical average powers
is not the only one. Another way would be to find two fized critical values, one for AB-Rec and
one for Two-Step, such that both resulting empirical MNRP’s are equal to o = 0.05 and to then
use these fixed critical values in the computation of the empirical average powers. Both ways are
“fair” in the sense of comparing the relative performance of the two procedures. We feel, however,
that the former way is a bit more realistic, since the critical values are always data-dependent (i.e.,
changing with each repetition of simulated data) rather than fixed; this better reflects that nature

of bootstrap critical values.

Arguably, the most elegant way to compute “size-corrected” empirical average powers would be
to vary the nominal levels « for both the AB-Rec procedure and the two-step procedure until the
resulting MNRP’s are equal to 0.05 for each method, and to then use the two resulting nominal
levels in the computation of the respective empirical average powers. Unfortunately, this is not

possible, since the AB-Rec procedure is only available for the nominal level o = 0.05. m
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A  Appendix

The proofs from Section 2 are in Appendix A.1. In Appendix A.2, we establish a series of results
that will be used in the proof of Theorem 3.1 in Appendix A.3. The proof of Theorem 4.1 is then
provided in Appendix A .4.

A.1 Proofs from Section 2

PROOF OF THEOREM 2.1. For 1 < j <k, let e; be the jth unit basis vector having a 1 in the jth

coordinate. To determine fi for the given a, we must minimize

over u € €g. Note that

First of all, we claim that the minimizing fi cannot have all of its components strictly negative.
This follows because, if it did, the line joining the claimed solution and a itself would intersect the
boundary of Qy at a point with a smaller value of f(u). Therefore, the solution i must have at

least one zero entry.

Suppose that p is the solution and that ji; = 0 for j € J, where J is some nonempty subset of
{1,...,k}. Let fs(n) = f(p) viewed as a function of p; with j ¢ J and with p; = 0 for j € J.
Then, the solution to the components fi; with j ¢ J (if there are any) must be obtained by setting

partial derivatives equal to zero, leading to the solution of the equations
(n—a)Sle;=0Vj¢J

with p; fixed at 0 for j € J. Now, the MP test for testing % against a rejects for large values
of W¥7Y(a — 4), which is a linear combination of Wy, ..., Wg. The coefficient multiplying W; is

692_1(6L —u). But for j ¢ J, this coefficient is zero by the gradient calculation above.

Next we claim that for j € J, the coefficient of W; is nonnegative. Fix j € J. Consider f(u)
as a function of u; alone with the other components fixed at the claimed solution for . If the

derivative with respect to p; at 0 were positive, i.e.,
(i —a)X7te; >0,

then the value of ;1; could decrease and result in a smaller minimizing value for f(u). Therefore, it
must be the case that
(a—p)S7e; >0
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the left-hand side is precisely the coefficient of W;.

Thus, the solution i has the property that, for testing i against a, the MP test rejects for large
Zl<j<k ¢jWj such that fi; = 0 implies ¢; > 0 and fi; < 0 implies ¢; = 0. This property allows us
to prove that i is least favorable. Indeed, if the critical value ¢ is determined so that the test is

level o under fi, then for p € g,

PN{Z ciWi > c} < PO{ZCjo > c} .

jeJ jedJ
The least favorable property now follows by Theorem 3.8.1 of Lehmann and Romano (2005).
The remainder of the proof is obvious. m

PROOF OF THEOREM 2.2 First note that b(7, 1) is nondecreasing in p since T} is nondecreasing in
its arguments. Fix any p with p; < 0. Let E be the event that u € M (1 — §). Then, the Type I

error satisfies
P,{reject Ho} < P,{E°} + P,{E N {reject Hy}} = B+ P,{E N {reject Hy}} .

But when the event E occurs and Hj is rejected — so that Ty > b(1 — a + 3, 1) — then the event
Ty > b(1 — a + B, ) must occur, since b(1 — o + 3, ) is nondecreasing in p and p < fi when

FE occurs. Hence, the Type I error is bounded above by

B+PATa>b(1-a+8p)}<f+(l-a+f)=a.m

A.2 Auxiliary Results

Lemma A.1. Suppose i, is a sequence in R¥ such that pu, — p with p € @Ij = (R_ U {—oc0})*.
For 7 € RF and T a positive definite k x k real matriz, define

fn(T,F) = inf HT_tHF >
teRF t<—py,
where ||z||p = (:cT:c)% for = € R*. (Below, we may simply write ||z|| for ||z||r,.) Suppose

(T, Tp) = (7, 1), where T is positive definite. Then, fn(1n,Tn) = f(7,T), where

f(r,T)= _inf |7 —t||r .
teRk:t<—p

ProoF: We first argue that f,(7,,1s) — fn(7,I') — 0. To see this, first note, by strict convexity
and continuity of ||T %(T —t)|| as a function of t € R¥, that there exists ¢} < —pu, such that

1 1 )
inf I'z(7 —¢t)||=  min rz(r =8|l =|IT2(r = t")|| .
i TR =0l = min 03 =)l = [P~ )
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Next, since 0 < —puy,, note that

02 (r — )] < [|T27] . (27)
Finally, observe that

falrn Do) = fulr D) = it (im0l - it (0 (0]
= min (TR0l = _min (e =0
< (e — )l — T3 7 — )]
< i — ) - sl
— D3 (0 — 7+ T2 (7 — ) — T3 (r — &)
= HF%(Tn T) + F2F*§F§(7_t*)_r%(7_t*)”
< |2 (ra - T)H+HF2F b Lol (r — 1)
< [T (r — 1)l + ITAT% = Ll T3 7]
— 0,

where the first equality follows from the definition of the relevant norms, the second equality follows
from strict convexity and continuity, the first inequality follows from the definition of ¢; and the
fact that t; < —pu,, the second inequality follows from the reverse triangle inequality, the third and
fourth equalities follow by inspection, the third inequality follows form the triangle inequality and
the definition of the operator norm, the fourth inequality follows from (27), and the convergence

to zero follows from the assumed convergence of 7, and IT,.

Next, we argue that f,,(7,I') — f(7,T"). For this purpose, it is useful to assume, without loss of
generality, that p, = (M,(ll), m(lz)) and g = (uM, u?), where all components of u(!) are finite and
all components of ;2 are infinite. Define (! to be a vector of ones with the same length as p(!);

define ¢(?) similarly. First note for 0 < ¢, — 0 sufficiently slowly and n sufficiently large that

v

inf || —¢||r inf |7 —t||r
tERFE<—pun teRkt<—(p(1), ul? )) (ent(),002)

= inf |7 = (€nt™, 002y — ¢ .
teRFt<— (M), 1)
But, by identifying 7, in the preceding paragraph with 7 — (€,.(),0.(?)) here, we see that the final
expression equals

inf |7 —t||r + o(1) . (28)
teRFt<—(pW) 1)

The same argument with ¢ < 0 establishes that inf,cgr ., |7 — t|[r in fact equals (28). To

complete the argument, we argue that

inf |7 —t|lr = inf ||7—t||r . (29)
teRkt<—(u) 1P tERF:t<—p
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To establish this fact, given any subsequence ny, consider a further subsequence ny, such that M%

is strictly increasing. By the monotone convergence theorem, we see that

inf |7 —t|[r — inf ||7—¢||p .
teERk:t<—

teRFt<— (D i) )

Hence, (29) holds. m

Lemma A.2. Let W;,i = 1,...,n, be an i.i.d. sequence of random wvariables with distribution
P € P on R*, where P satisfies (20). Then, M, (1 — B) defined by (13) satisfies

liminf inf P{u(P)e M,(1-8)}>1-4. (30)

n—oo PcP

PRrOOF: Follows immediately from Theorem 3.7 in Romano and Shaikh (2012). m

Lemma A.3. Consider a sequence {P, € P : n > 1} where P is a set of distributions on RF
satisfying (20). Let Wy, i =1,...,n, be an i.i.d. sequence of random variables with distribution P,.

Suppose

for all1 < j <k. Then,
P {M,(1-B)CRF} 1.

PROOF: Note that we may write M, (1 — () as the set of all 4 € R¥ such that

_0i(P) [ VAKX — i (Pa)) | pi(Pa) | Kp'(1— B, P)
SN B oP) T oy(Pa)

Sin

for all 1 < j < k. From Lemma 11.4.1 of Lehmann and Romano (2005), we see that

\/E(Wj,n - f‘j(Pn))
aj(Pn)

=0Op,(1) .

By assumption,

\/ﬁﬂj(Pn) o
oj(Pn) - ‘

From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sin P,
— 3 1.
;(Fn)

Finally, note that
K, '(1=8,B) = Op,(1)

because, using the Bonferroni inequality, it is asymptotically bounded above by ®~!(1— 3/k), from

which the desired result follows. m
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Lemma A.4. Let P’ be the set of all distributions on R* and let P be a set of distributions on RF
satisfying (20). For (P,Q) € P’ x P, define

_ L O) — 1 _ oi(P) _ _
(@ Py =max{ s { [71ri0,@) = i\ Pl esp-0aa b |45 < 1) @) - a1}
where )

X — pi(P) X — pi(P)
r;(\, P) =Ep <H> 1{‘” >Nl (31)
’ aj(P) j(P)
and the norm ||-|| is the component-wise mazimum of the absolute value of all elements. Let {Q, €
P’ :n>1} and {P, € P :n > 1} be such that p(P,,Qn) — 0 and for some ) #1 C {1,...k},
)\'n
;/]ﬁ(Pi;) — —0; forall j € I and some 6; >0
and JiA
NAjn .
~ = —o0 foralljélI.
0 (Pp)
Then, for T, given by (14) or (16), we have
lim sup sup }Jn(x, Any Br) — (2, Ay Qn)‘ =0. (32)
n—o0  geRk
PRrROOF: Consider first the case where T, is given by (14). Note that
Vidjn _ 0 (Pn) VnAjn
Sjn Sjn 05(Fn)
From Lemma 4.8 in Romano and Shaikh (2012), we see that
Sin P
—— %1
0;(Pn)
Hence,
)\.
\/Z”’” By 5, foralljel (33)
Jn
and \
M&—oo forall j ¢ 1. (34)
J,n
It follows that
Wi — wi( P, Xin Wi — wi(P, Xin
max \/ﬁ( J MJ( )) 4 \/ﬁ 75 = max \/ﬁ( J 'u]( )) 4 \/ﬁ J5 +0Pn(1) (35)
1<5<k Sj,n Sjyn jel Sj,n Sjyn
Next, we argue that
W'n — Hi\dn j,n W'ﬂ — Hi\l¥n j,n
max VI (Win — 11;(Qn)) i VA, — max VI (Wjn — 115(Qn)) n VA, +og, (1) .
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For this purpose, it suffices to show that the convergences in (33) and (34) also hold with P, replaced
by @,. To see this, first note that by arguing as in the proof of Lemma 4.11 in Romano and Shaikh
(2012) we have that

lim limsupr;(\,Qn) =0 .

A—=00  n—00

The convergence p(FPy,,Q,) — 0 implies further that

i (Fn)
Uj(Qn)

=1 foralll<j<k.

Since
\/ﬁ)‘]}n _ Uj(Qn) Uj(Pn) \/ﬁ)‘jﬂl
Sjn Sin 05(Qn) 0j(Pn)
the desired conclusion follows. Finally, (32) now follows from (35) and (36) and by arguing as in

the proof of Lemma 4.11 in Romano and Shaikh (2012).

Now consider the case where T, is given by (16). Note that

TQIr,ad — lnf Z t /Q D2 P S_2Z t 7
" teERF:t<—/nD~1(Pp)An n() n ( ”) n n()

where

Z (x/ﬁ(VVLn —m(Pn))
O'l(Pn)
D*(P,) = diag(o5(Pn),...,00(P)) -

Now suppose by way of contradiction that (32) fails. It follows that there exists a subsequence ny,

along which the lefthand side of (32) converges to a non-zero constant and

Q(Pn,) — O (37)
Wl ng ,Ul(Pnk)) V_Vk: ng — ,Ufk(Pnk))), d *
: gy — — Z ~ N(0,Q%) under P,, . 38
< Jl(Pnk) Jk(PTLk) ( ) g ( )

Since
D*(Py,)S02 = Iy

we have further that

P _
Qn, D?*(Py,)S;,? = max{e — det(2*),0}I;, + Q* = Q. (39)

Note that along such a subsequence we also have that

Nin
VikAjme —5; forall j € I and some 8; > 0 (40)
Uj(Pnk)
and A
M—>—c>o forall j & 1. (41)

gy (Pnk)
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Hence, by Lemma A.1 and the extended continuous mapping theorem (van der Vaart and Wellner,
1996; Theorem 1.11.1), we have that
Tr?}f’ad 4 inf (Z —t)Q 1 (Z —t) under P, .
teRF:t<—6

Moreover, by Lemma 3 on p. 260 of Chow and Teicher (1978), we have that

sup [Py, {Tg}f’ad <z}—P{ inf (Z-t)QNZ-t)<z} =0

z€R teRF:t<—4
since the distribution of inf,cgr,c_s(Z —t)'Q71(Z —t) is continuous everywhere except possibly at
zero and

P T <0} 5 P{Z< -6y =P{ inf (Z-t)Q Y Z-t)<0}.
teRF:it<—§

Next, note that by arguing as above it follows from the assumed convergence p(P,, , Qn,) — 0 that
(37)—(41) all hold when P,, is replaced by @, . Hence, by the triangle inequality, we see that along

ng, the lefthand-side of (32) must converge to zero, from which the desired result follows. m

Lemma A.5. Consider a sequence {P, € P : n > 1} where P is a set of distributions on RF
satisfying (20). Let Wy, =1,...,n, be an i.i.d. sequence of random variables with distribution P,.

Suppose that for some O £ 1 C {1,...k},
Vi (P)

W—>—5j for all j € I and some §; > 0

and

— —oo forallj¢ 1.

Then,
PAT, > J, (L—a+ B, u(P),P)} —»a—5.

PROOF: Let P’ and p(P, Q) be defined as in Lemma A.4. Trivially,
P{P,eP}—1.
From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sin 1
o (Pn)

From Lemma 4.9 in Romano and Shaikh (2012), we see that

Py
—=0.

25
19Pn) — (P 0.
It follows from Lemma 4.12 in Romano and Shaikh (2012) that
p(Bn, B) B30
The desired result now follows by applying Lemma A.4 with A\, = u(P,) and Theorem 2.4 in

Romano and Shaikh (2012). m
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A.3 Proof of Theorem 3.1

Suppose by way of contradiction that (3) fails. It follows that there exists a subsequence n; and

1 > « such that
Ep,, [fn] = (42)

There are two cases to consider.

First, consider the case where there exists a further subseqence (which, by an abuse of notation,

we continue to denote by nj) such that

\/ﬁkﬂj (Pnk )

S TR 00

;(Pny)
for all 1 < j < k. Then, by Lemma A.3, we see that

Py {M, (1-B)CR"} 1.

Hence,
Epnk [¢nk] — 0 9
contradicting (42).

Second, consider the case where there exists a further subsegence (which, by an abuse of notation,

we continue to denote by ng) and @ # I C {1,...k} such that

\/ﬁk:uj (Pﬂk)

W — —0; for all j € I and some 6; >0

and

\/ﬂ/‘j (Pnk )

+—— " 5 —o00 foralljé&lrl.
0 (Pny,) ¢

Next, note that

< Pop{ T > T (L= ok B, 1(Pry ) P )} + Py {(Poy) & Mo (1 5)}
Then, by Lemmas A.2 and A.5, we have that
limsupEp, [¢n,] <o,
k—oo

contradicting (42). m

A.4 Proof of Theorem 4.1

Follows immediately from Theorem 3.1 by identifying the distribution of g(X;, ) under P € P and
f € Op(P) in the present context with the distribution of W; under P in Theorem 3.1. m
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Table 1: Empirical maximum null rejection probabilities (MNRP’s), upper half, and empirical

average powers, lower half, of the AB-recommended procedure, the two-step procedure, and the

one-step procedure. The nominal level is @« = 5% and the sample size is n = 100. Empirical

MNRP’s are based on 10,000 repetitions; empirical average powers are based on 10,000 repetitions

when k = 2,4 and on 5,000 repetitions when k£ = 10.

k=29 k=14 k=10
Test Dist HO/Hl QNeg QZero QPos QNeg QZero QPos QNeg QZero QPos
AB-Rec  N(0,1)  Hy 53 51 4.9 53 50 5.1 NA NA NA
Two-Step N(0,1)  Hy 50 4.8 45 5.1 49 5.0 NA NA NA
One-Step N(0,1)  Hp 5.2 51 4.9 49 50 5.1 4.7 4.9 5.0
AB-Rec t3 Hy 6.2 6.2 5.9 57 59 5.7 NA NA NA
Two-Step t3 Hy 56 57 5.6 53 57 54 NA NA NA
One-Step t3 Hy 5.2 6.1 5.7 47 53 5.7 4.3 4.7 5.2
AB-Rec X3 H, 52 49 5.1 53 4.8 49 NA NA NA
Two-Step X3 Hy 48 44 48 5.1 4.7 4.8 NA NA NA
One-Step X3 Hy 46 49 5.1 49 50 5.0 4.4 4.6 5.3
AB-Rec  N(0,1) H; 64.1 68.1 714 59.1 66.6 77.5 54.7 63.6 78.9
Two-Step N( H, 62.0 65.1 664 56.1 60.6 744 51.0 54.8 75.6
One-Step N(0,1) H; 52.7 61.1 64.2 41.3 504 726 23.9 326 68.4
AB-Rec t3 H, 68.1 724 75.2 63.9 715 T79.5 58.9 68.2  80.4
Two-Step ts H; 66.0 69.1 71.0 61.1 66.1 76.6 54.9 589 774
One-Step ts H, 61.7 66.2 68.8 46.7 572 749 276 377 715
AB-Rec X3 H, 69.3 764 T7.9 63.1 745 824 57.8  69.8 82.6
Two-Step X3 H, 67.6 73.7 743 61.0 70.8 80.1 55.5  63.7  80.7
One-Step X3 H; 63.7 70.1 T71.7 46.9 59.5 779 26.1 372 735
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Table 2: Empirical average powers of the AB-recommended procedure and the two-step procedure
and empirical ‘size-corrected’ average powers of the two-step procedure. The nominal level is
a = 5% and the sample size is n = 100. Empirical (size-corrected) average powers are based on

10,000 repetitions.

k=2 k=4
Test Dist HO/HI Q]Veg QZero QPos QNeg QZe?"o QPos
AB-Rec N(0,1) o 64.1 68.1 714 99.1 666 775
Two-Stepsc  N(0, Hy 63.3 66.3 6738 56.7 621 75.2

Two-Step N(0,1) H; 62.0 65.1 664 96.1 60.6 744

AB-Rec t3 H; 681 724 752 639 715 795
Two-Stepsc 3 H; 675 702 724 617 67.0 773
Two-Step t3 H; 660 69.1 710 61.1 66.1 76.6
AB-Rec X3 H;, 693 764 779 631 745 824
Two-Stepsc X3 H; 690 748 756  61.8 718 80.6
Two-Step X3 H; 676 737 743  61.0 708 80.1
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