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Abstract

This paper revisits the methodology of Stein (1975, 1986) for estimating a covariance

matrix in the setting where the number of variables can be of the same magnitude as the

sample size. Stein proposed to keep the eigenvectors of the sample covariance matrix but

to shrink the eigenvalues. By minimizing an unbiased estimator of risk, Stein derived an

‘optimal’ shrinkage transformation. Unfortunately, the resulting estimator has two pitfalls:

the shrinkage transformation can change the ordering of the eigenvalues and even make

some of them negative. Stein suggested an ad hoc isotonizing algorithm that post-processes

the transformed eigenvalues and thereby fixes these problems. We offer an alternative

solution by minimizing the limiting expression of the unbiased estimator of risk under

large-dimensional asymptotics, rather than the finite-sample expression. Compared to the

isotonized version of Stein’s estimator, our solution is theoretically more elegant and also

delivers improved performance, as evidenced by Monte Carlo simulations.
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random matrix theory, rotation equivariance, Stein’s loss.
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1 Introduction

The estimation of a covariance matrix is one of the most fundamental problems in multivariate

statistics. It has countless applications in econometrics, biostatistics, finance, signal processing,

psychometrics, and many other fields. One recurrent problem is that the traditional estimator

(that is, the sample covariance matrix) is ill-conditioned and performs poorly when the number

of variables is not small compared to the sample size. Given the natural eagerness of applied

researchers to look for patterns among as many variables as possible, and their practical ability

to do so thanks to the ever-growing processing power of modern computers, theoreticians are

under pressure to deliver estimation techniques that work well in large dimensions.

A famous proposal for improving over the sample covariance matrix in such cases is due

to Stein (1975, 1986). He considers the class of rotation-equivariant estimators that keep the

eigenvectors of the sample covariance matrix while shrinking its eigenvalues. This means that

the small sample eigenvalues are pushed up and the large ones pulled down, thereby reducing

(or shrinking) the overall spread of the set of eigenvalues. Stein’s estimator is based on the

scale-invariant loss function dating back to James and Stein (1961), and commonly referred to

as Stein’s loss.

Stein’s shrinkage estimator broke new ground and fathered a large literature on rotation-

equivariant shrinkage estimation of a covariance matrix. For example, see the works of

Haff (1980), Lin and Perlman (1985), Dey and Srinivasan (1985), Daniels and Kaas (2001),

Ledoit and Wolf (2004, 2012), Chen et al. (2009), Won et al. (2012), and the references therein.

Although to this day Stein’s estimator has proven hard to surpass empirically, careful

reading of the original article reveals a certain number of theoretical limitations.

1. The estimator proposed by Stein (1975, 1986) does not minimize the loss function, nor

the expected loss (called the risk function), but an unbiased estimator of the risk. This is

problematic because the primary objects of interest are the loss and the risk themselves.

A priori there could exist many unbiased estimators of risk, minimizing them could lead

to different estimators, and these estimators may or many not minimize the primary

objects of interest: loss and/or risk.

2. The formula derived by Stein generates covariance matrix estimators that may not be

positive semi-definite. To solve this problem, he recommends post-processing the esti-

mator through an isotonizing algorithm. However, this is an ad hoc fix whose impact

is not understood theoretically. In addition, the formula generates covariance matrix

estimators that do not necessarily preserve the ordering of the eigenvalues of the sample

covariance matrix. Once again, this problem forces the statistician to resort to the ad

hoc isotonizing algorithm.

3. In order to derive his formula, Stein ‘ignores’ a term which involves the derivatives of the

shrinkage function. No justification, apart from tractability, is given for this omission.

4. Finally, a more obvious limitation is that Stein’s estimator requires normality, an assump-

tion often violated by real data.
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One important reason why Stein’s estimator is highly regarded in spite of these four the-

oretical limitations is that several Monte Carlo simulations, such as the ones reported by

Lin and Perlman (1985), have shown that it performs remarkably well in practice, as long as

it is accompanied by the ad hoc isotonization algorithm.

Our paper develops a shrinkage estimator of the covariance matrix in the spirit of Stein

(1975, 1986), with two significant improvements: first, it avoids the theoretical problems listed

above; and second, it performs better in practice, as evidenced by extensive Monte-Carlo simula-

tions. We respect Stein’s framework by adopting Stein’s loss as the metric by which estimators

are evaluated, and by restricting ourselves to the class of rotation-equivariant estimators that

have the same eigenvectors as the sample covariance matrix, like Stein does.

Our key innovation is to carry this framework from finite samples into the realm of large-

dimensional asymptotics, where the number of variables and the sample size go to infinity

together, with their ratio (called the concentration) converging to a finite, nonzero limit. Such

an approach enables us to harness mathematical results from what is commonly known as

Random Matrix Theory (RMT). It should be noted that Stein (1986) himself acknowledged

the usefulness of RMT. He used it for illustration purposes only, which opens up the question

of whether RMT could contribute more than that, and deliver a Stein-type estimator of the

covariance matrix. Important new results in RMT enable us to answer positively.

We show that, under certain assumptions that are standard in the RMT literature, Stein’s

loss (properly normalized) converges almost surely to a nonrandom limit, which we characterize

explicitly. We embed the eigenvalues of the covariance matrix estimator into a shrinkage func-

tion, and we introduce the notion of a limiting shrinkage function. The basic idea is that, even

though the eigenvalues of the sample covariance matrix are random, the way they should be

asymptotically transformed is nonrandom, and is governed by some limiting shrinkage function.

We derive a necessary and sufficient condition for the limiting shrinkage function to minimize

the large-dimensional asymptotic limit of Stein’s loss. Finally, we construct a covariance ma-

trix estimator that satisfies this condition, and thus is asymptotically optimal under Stein’s

loss in the class of rotation-equivariant estimators. Large-dimensional asymptotics enable us

to:

1. show that Stein’s loss function, the risk function, and Stein’s unbiased estimator of risk

are all asymptotically equivalent;

2. bypass the need for the isotonizing algorithm;

3. justify that the term involving the derivatives of the shrinkage function (which was ig-

nored by Stein) vanishes indeed;

4. and relax the normality assumption.

These theoretical advantages translate into significantly improved practical performance over

Stein’s estimator, as we demonstrate through a comprehensive set of Monte Carlo simulations.

The paper is organized as follows. Section 2 briefly summarizes the finite-sample theory

of Stein (1975, 1986). Section 3 details what adjustments are necessary to transplant Stein’s
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theory from finite samples to large-dimensional asymptotics. Section 4 develops our feasible

estimator of a covariance matrix, which is asymptotically optimal. Section 5 studies finite-

sample properties via Monte Carlo simulations. Section 6 contains concluding remarks. All

mathematical proofs are collected in an appendix.

2 Shrinkage in Finite Samples under Stein’s Loss

This section expounds the finite-sample theory of Stein (1975, 1986), with minor notational

changes designed to enhance compatibility with the large-dimensional analysis conducted in

subsequent sections. Such changes are highlighted where appropriate.

2.1 Finite-Sample Framework

Assumption 2.1 (Dimension). The number of variables p and the sample size n are both fixed

and finite; p is smaller than n.

Assumption 2.2 (Population Covariance Matrix). The population covariance matrix Σn is a

nonrandom symmetric positive-definite matrix of dimension p × p. Let τn
.

.= (τn,1, . . . , τn,p)
′

denote a system of eigenvalues of Σn. The empirical distribution function (e.d.f.) of the pop-

ulation eigenvalues is defined as: ∀x ∈ R, Hn(x) .

.= p−1
∑p

i=1 1[τn,i,+∞)(x), where 1 denotes

the indicator function of a set.

Note that all relevant quantities are indexed by n because in subsequent sections we let the

sample size n go to infinity (together with the dimension p).

Assumption 2.3 (Data Generating Process). Xn is a matrix of i.i.d. standard normal random

variables of dimension n × p. The matrix of observations is Yn .

.= Xn ×
√
Σn, where

√
Σn

denotes the symmetric positive-definite square root of Σn. Neither
√
Σn nor Xn are observed

on their own: only Yn is observed.

The sample covariance matrix is defined as Sn ..= n−1Y ′
nYn = n−1

√
ΣnX

′
nXn

√
Σn. It

admits a spectral decomposition Sn = UnΛnU
′
n, where Λn is a diagonal matrix, and Un is an

orthogonal matrix: UnU
′
n = U ′

nUn = In, where In (in slight abuse of notation) denotes the

identity matrix of dimension p× p. Let Λn
..= Diag(λn) where λn

..= (λn,1, . . . , λn,p)
′. We can

assume without loss of generality that the sample eigenvalues are sorted in increasing order:

λn,1 ≤ λn,2 ≤ · · · ≤ λn,p. Correspondingly, the ith sample eigenvector is un,i, the ith column

vector of Un.

Assumption 2.4 (Estimators). We consider covariance matrix estimators of the type S̃n .

.=

UnD̃nU
′
n, where D̃n is a diagonal matrix: D̃n

.

.= Diag
(
λn,1ψ̃n(λn,1) . . . , λn,pψ̃n(λn,p)

)
, and ψ̃n

is a (possibly random) real univariate function which can depend on Sn.

This is the class of rotation-equivariant estimators introduced by Stein (1975, 1986): rotat-

ing the original variables results in the same rotation being applied to the covariance matrix
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estimator. Such rotation equivariance is appropriate in the general case where the statistician

has no a priori information about the orientation of the eigenvectors of the covariance matrix.

We call ψ̃n the shrinkage function because, in all applications of interest, its effect is to

shrink the set of sample eigenvalues by reducing its dispersion around the mean, pushing

up the small ones and pulling down the large ones. Note that Stein (1986) does not work

with the function ψ̃n(·) itself but with the vector (ψ̃n,1, . . . , ψ̃n,p)
′ ..= (ψ̃n(λn,1), . . . , ψ̃n(λn,p))

′

instead. This is equivalent because the sample eigenvalues are distinct with probability one,

and because the values taken by the shrinkage function ψ̃n(·) outside the set {λn,1, . . . , λn,p}
do not make their way into the estimator S̃n. Of these two equivalent formulations, the

functional one is easier to generalize into large-dimensional asymptotics than the vector one,

for the same reason that authors in the Random Matrix Theory (RMT) literature have found

it more tractable to work with the empirical distribution function (e.d.f.) of sample eigenvalues

Fn(x) ..= p−1
∑p

i=1 1[λn,i,+∞)(x) than with the vector of sample eigenvalues.

Assumption 2.5 (Loss Function). Estimators are evaluated according to the following scale-

invariant loss function used by Stein (1975, 1986) and commonly referred to as Stein’s loss:

Ln(Σn, S̃n) .

.=
1

p
Tr(Σ−1

n S̃n)−
1

p
log det(Σ−1

n S̃n)− 1 ,

and its corresponding risk function Rn(Σn, S̃n) .

.= E[Ln(Σn, S̃n)].

Note that Stein (1975, 1986) does not divide by p, but this normalization is necessary

to prevent the loss function from going to infinity with the matrix dimension under large-

dimensional asymptotics; it makes no difference in finite samples. By analogy with Stein’s loss,

we will refer to Rn(Σn, S̃n) as Stein’s risk.

2.2 Stein’s Loss in Finite Samples

Under Assumptions 2.1–2.5, Stein (1986) shows that the risk function verifies Rn(Σn, S̃n) =

E[Θn(Σn, S̃n)], where

Θn(Σn, S̃n) ..=
n− p+ 1

np

p∑

j=1

ψ̃n(λn,j)−
1

p

p∑

j=1

log[ψ̃n(λn,j)] + log(n)

+
2

np

p∑

j=1

∑

i>j

λn,jψ̃n(λn,j)− λn,iψ̃n(λn,i)

λn,j − λn,i

+
2

np

p∑

j=1

λn,jψ̃
′
n(λn,j)−

1

p

p∑

j=1

E[log(χ2
n−j+1)]− 1 , (2.1)

with

ψ̃′
n(x)

..=
∂ψ̃n(x)

∂x
.

Therefore, the random quantity Θn(Σn, S̃n) can be interpreted as an unbiased estimator of the

risk (function).
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Ignoring the term (2/np)
∑p

j=1 λn,jψ̃
′
n(λj), the unbiased estimator of risk is minimized

when the shrinkage function ψ̃n satisfies ∀i = 1, . . . , p, ψ̃n(λn,i) = ψ∗
n(λn,i), where

∀i = 1, . . . , p ψ∗
n(λn,i)

..=
1

1− p− 1

n
− 2

p

n
λn,i ×

1

p

∑

j 6=i

1

λn,j − λn,i

. (2.2)

While this approach broke new ground and had a major impact on subsequent developments

in multivariate statistics, a drawback of working in finite samples is that expression (2.2) di-

verges when some λn,j gets infinitesimally close to another λn,i. In such cases, Stein’s original

estimator can exhibit violation of eigenvalues ordering, or even negative eigenvalues. It necessi-

tates post-processing through an ad hoc isotonizing algorithm whose effect is hard to quantify

theoretically. This is one of the motivations for going to large-dimensional asymptotics.

The appendix of Lin and Perlman (1985) gives a detailed description of the isotonizing

algorithm. If we call the isotonized shrinkage function ψST
n , Stein’s isotonized estimator is

SST
n

..= UnD
ST
n U ′

n where DST
n

..= Diag(λn,1ψ
ST
n (λn,1), . . . , λn,pψ

ST
n (λn,p)) . (2.3)

3 Shrinkage in Large Dimensions under Stein’s Loss

This section largely mirrors the previous one, and contains adjustments designed to convert

from finite samples to large-dimensional asymptotics.

3.1 Large-Dimensional Asymptotic Framework

Assumption 3.1 (Dimension). Let n denote the sample size and p .

.= p(n) the number of

variables. It is assumed that the ratio p/n converges, as n → ∞, to a limit c ∈ (0, 1) called

the concentration. Furthermore, there exists a compact interval included in (0, 1) that contains

p/n for all n large enough.

Assumption 3.2 (Population Covariance Matrix). The population covariance matrix Σn is a

nonrandom symmetric positive-definite matrix of dimension p × p. Let τn
.

.= (τn,1, . . . , τn,p)
′

denote a system of eigenvalues of Σn, and Hn the e.d.f. of population eigenvalues. It is assumed

that Hn converges weakly to a limit law H, called the limiting spectral distribution (function).

Supp(H), the support of H, is the union of a finite number of closed intervals, bounded away

from zero and infinity. Furthermore, there exists a compact interval [h, h] ⊂ (0,∞) that con-

tains Supp(Hn) for all n large enough.

The existence of a limiting concentration (ratio) and a limiting population spectral dis-

tribution are standard assumptions in the literature on large-dimensional asymptotics; see

Bai and Silverstein (2010) for a comprehensive review.

Assumption 3.3 (Data Generating Process). Xn is an n×p matrix of i.i.d. random variables

with mean zero, variance one, and finite 12th moment. The matrix of observations is Yn .

.=
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Xn×
√
Σn, where

√
Σn denotes the symmetric positive-definite square root of Σn. Neither

√
Σn

nor Xn are observed on their own: only Yn is observed.

Note that we no longer require normality.

The literature on sample covariance matrix eigenvalues under large-dimensional asymp-

totics is based on a foundational result by Marčenko and Pastur (1967). It has been strength-

ened and broadened by subsequent authors including Silverstein (1995), Silverstein and Bai

(1995), and Silverstein and Choi (1995), among others. These articles imply that, under As-

sumptions 3.1–3.3, there exists a continuously differentiable limiting sample spectral distribu-

tion F such that

∀x ∈ R Fn(x)− F (x)
a.s.−→ 0 . (3.1)

In addition, the existing literature has unearthed important information about the limiting

spectral distribution F , including an equation that relates F to H and c. The version of this

equation given by Silverstein (1995) is that m ..= mF (z) is the unique solution in the set

{
m ∈ C : −1− c

z
+ cm ∈ C

+

}
(3.2)

to the equation

∀z ∈ C
+ mF (z) =

∫
1

τ
[
1− c− c z mF (z)

]
− z

dH(τ) , (3.3)

where C
+ is the half-plane of complex numbers with strictly positive imaginary part and, for

any increasing function G on the real line, mG denotes the Stieltjes transform of G:

∀z ∈ C
+ mG(z) ..=

∫
1

λ− z
dG(λ) .

The Stieltjes transform admits a well-known inversion formula:

G(b)−G(a) = lim
η→0+

1

π

∫ b

a
Im

[
mG(ξ + iη)

]
dξ , (3.4)

if G is continuous at a and b. While the Stieltjes transform of F , mF , is a function whose

domain is the upper half of the complex plane, it admits an extension to the real line, since

Silverstein and Choi (1995) show that: ∀λ ∈ R, limz∈C+→λmF (z) =.. m̆F (λ) exists and is

continuous.

Another useful result concerns the support of the distribution of sample eigenvalues. The-

orem 1.1 of Bai and Silverstein (1998) and Assumptions 3.1–3.3 imply that the support of F ,

Supp(F ), is the union of a finite number κ ≥ 1 of compact intervals: Supp(F ) =
⋃κ

k=1[ak, bk],

where 0 < a1 < b1 < · · · < aκ < bκ <∞.

Assumption 3.4 (Estimators). We consider covariance matrix estimators of the type S̃n .

.=

UnD̃nU
′
n where D̃n is a diagonal matrix: D̃n

.

.= Diag
(
λn,iψ̃n(λn,i) . . . , λn,iψ̃n(λn,i)

)
, and ψ̃n is a

(possibly random) real univariate function which can depend on Sn. We assume that there exists
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a nonrandom real univariate function ψ̃ defined on Supp(F ) and continuously differentiable

such that ψ̃n(x)
a.s−→ ψ̃(x) for all x ∈ Supp(F ). Furthermore, this convergence is uniform over

x ∈ ⋃κ
k=1[ak + η, bk − η], for any small η > 0. Finally, for any small η > 0, there exists a

finite nonrandom constant K̃ such that almost surely, over the set x ∈ ⋃κ
k=1[ak − η, bk + η],

|ψ̃n(x)| is uniformly bounded by K̃, for all n large enough.

Shrinkage functions need to be as well behaved asymptotically as spectral distribution

functions, except possibly on a finite number of arbitrarily small regions near the boundary

of the support. The large-dimensional asymptotic properties of a generic rotation-equivariant

estimator S̃n are fully characterized by its limiting shrinkage function ψ̃.

Assumption 3.5 (Loss Function). Estimators are evaluated according to the limit, as n and p

go to infinity together, of the following loss function:

Ln(Σn, S̃n) .

.=
1

p
Tr(Σ−1

n S̃n)−
1

p
log det(Σ−1

n S̃n)− 1 ,

and of its corresponding risk function Rn(Σn, S̃n) .

.= E[Ln(Σn, S̃n)].

The key difference is that, instead of minimizing the unbiased estimator of risk Θn(Σn, S̃n)

from equation (2.1), as Stein (1986) does, we minimize limn,p→∞Θn(Σn, S̃n). The almost sure

existence of this limit is established below.

3.2 Stein’s Loss under Large-Dimensional Asymptotics

Theorem 3.1. Under Assumptions 3.1–3.5,

Ln(Σn, S̃n)
a.s.−→

κ∑

k=1

∫ bk

ak

{(
1− c− 2 c xRe[m̆F (x)]

)
ψ̃(x)− log[ψ̃(x)]

}
dF (x)

+
1− c

c
log(1− c) . (3.5)

The proof is in Appendix A. The connection with Stein’s finite sample-analysis is further

elucidated by an equivalent result for the unbiased estimator of risk.

Proposition 3.1. Under Assumptions 3.1–3.5,

Θn(Σn, S̃n)
a.s.−→

κ∑

k=1

∫ bk

ak

{(
1− c− 2 c xRe[m̆F (x)]

)
ψ̃(x)− log[ψ̃(x)]

}
dF (x)

+
1− c

c
log(1− c) . (3.6)

The proof is in Appendix B. Proposition 3.1 shows that, under large-dimensional asymp-

totics, minimizing the unbiased estimator of risk is actually equivalent to minimizing the loss,

with probability one. It also shows that ignoring the term (2/np)
∑p

j=1 λn,jψ̃
′
n(λj) in the unbi-

ased estimator of risk, which was an ad hoc approximation in finite samples, is justified under

large-dimensional asymptotics, since this term vanishes in the limit.

Theorem 3.1 enables us to characterize the set of asymptotically optimal estimators under

Stein’s loss in large dimensions.
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Corollary 3.1. Under Assumptions 3.1–3.5, a covariance matrix estimator S̃n minimizes

the almost sure limit of Stein’s loss if and only if its limiting shrinkage function ψ̃ verifies

∀x ∈ Supp(F ) ψ̃(x) = ψ∗(x), where

∀x ∈ Supp(F ) ψ∗(x) .

.=
1

1− c− 2 c xRe[m̆F (x)]
. (3.7)

The proof follows immediately from Theorem 3.1 by differentiating the right-hand side of

equation (3.5) with respect to ψ̃(x).

Remark 3.1 (Stein’s loss versus Frobenius-norm loss). Interestingly, an equivalent formula

to equation (3.7) is attained by Ledoit and Péché (2011, Theorem 5), even though it is mo-

tivated by a different loss function, namely ‖Σ−1
n − Σ̂−1

n ‖F , where ‖A‖F ..= Tr(AA′) denotes

the Frobenius norm of a matrix. The formula of Ledoit and Péché (2011) is the reciprocal

of equation (3.7), as the object of interest is the precision matrix (that is, the inverse of the

covariance matrix) instead of the covariance matrix itself. The loss function ‖Σn − Σ̂n‖F leads

to a different asymptotic formula, as shown by Ledoit and Péché (2011, Theorem 4).

The fact that the denominator on the right-hand side of equation (3.7) is nonzero and that

the optimal limiting shrinkage function ψ∗ is strictly positive and bounded over the support

of F is established by the following proposition.

Proposition 3.2. Under Assumptions 3.1–3.3

∀x ∈ Supp(F ) 1− c− 2 c xRe[m̆F (x)] ≥
a1

h
.

The proof is in Appendix C.

4 Optimal Covariance Matrix Estimation under Stein’s Loss

The Stieltjes transform of the limiting distribution of sample eigenvalues F contained in for-

mula (3.7) is unobservable. Therefore, formula (3.7) can be interpreted as an infeasible oracle.

Ledoit and Wolf (2013), extending the methodology of Ledoit and Wolf (2012), develop an

approach that can be used to estimate this Stieltjes transform consistently.

4.1 The QuEST Function

Ledoit and Wolf (2013) introduce a nonrandom multivariate function, called the Quantized

Eigenvalues Sampling Transform, or QuEST for short, which discretizes, or quantizes, the

relationship between F , H, and c defined in equations (3.1)–(3.4). For any positive integers n

and p, the QuEST function, denoted by Qn,p, is defined as

Qn,p : [0,∞)p −→ [0,∞)p (4.1)

t ..= (t1, . . . , tp)
′ 7−→ Qn,p(t) ..=

(
q1n,p(t), . . . , q

p
n,p(t)

)′
, (4.2)
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where

∀i = 1, . . . , p qin,p(t)
..= p

∫ i/p

(i−1)/p

(
F t

n,p

)−1
(u) du , (4.3)

∀u ∈ [0, 1]
(
F t

n,p

)−1
(u) ..= sup{x ∈ R : F t

n,p(x) ≤ u} , (4.4)

∀x ∈ R F t

n,p(x)
..= lim

η→0+

1

π

∫ x

−∞
Im

[
mt

n,p(ξ + iη)
]
dξ , (4.5)

and ∀z ∈ C
+ m ..= mt

n,p(z) is the unique solution in the set

{
m ∈ C : −n− p

nz
+
p

n
m ∈ C

+

}
(4.6)

to the equation

m =
1

p

p∑

i=1

1

ti

(
1− p

n
− p

n
z m

)
− z

. (4.7)

It can be seen that equation (4.5) quantizes equation (3.4), that equation (4.6) quantizes

equation (3.2), and that equation (4.7) quantizes equation (3.3). Thus, F t

n,p is the limiting

distribution (function) of sample eigenvalues corresponding to the population spectral distri-

bution (function) p−1
∑p

i=1 1[ti,+∞). Furthermore, by equation (4.4),
(
F t

n,p

)−1
represents the

inverse spectral distribution function, also known as the quantile function. By equation (4.3),

qin,p(t) can be interpreted as a ‘smoothed’ version of the (i− 0.5)/p quantile of F t

n,p.

4.2 Consistent Estimator of Population Eigenvalues

Ledoit and Wolf (2013) estimate the eigenvalues of the population covariance matrix by nu-

merically inverting the QuEST function.

Theorem 4.1. Suppose that Assumptions 3.1–3.3 are satisfied. Define

τ̂n
.

.= argmin
t∈(0,∞)p

1

p

p∑

i=1

[
qin,p(t)− λn,i

]2
, (4.8)

where λn
.

.= (λn,1, . . . , λn,p)
′ are the sample covariance matrix eigenvalues, and Qn,p(t) .

.=(
q1n,p(t), . . . , q

p
n,p(t)

)′
is the nonrandom QuEST function defined in equations (4.1)–(4.7); both

τ̂n and λn are assumed sorted in nondecreasing order. Let τ̂n,i denote the ith entry of τ̂n

(i = 1, . . . , p), and let τn
.

.= (τn,1, . . . , τn,p)
′ denote the population covariance matrix eigenvalues

sorted in nondecreasing order. Then

1

p

p∑

i=1

[τ̂n,i − τn,i]
2 a.s.−→ 0 .

The proof is given by Ledoit and Wolf (2013, Theorem 2.2). The solution to equation (4.8)

can be found by standard nonlinear optimization software such as SNOPT
TM

; see Gill et al.

(2002).
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4.3 Asymptotically Optimal Estimator of the Covariance Matrix

Recall that, for any t ..= (t1, . . . , tp)
′ ∈ (0,+∞)p, equations (4.6)–(4.7) define mt

n,p as the

Stieltjes transform of F t

n,p, the limiting distribution function of sample eigenvalues correspond-

ing to the population spectral distribution function p−1
∑p

i=1 1[ti,+∞). The domain of mt

n,p

is the strict upper half of the complex plane, but it can be extended to the real line, since

Silverstein and Choi (1995) prove that ∀λ ∈ R limz∈C+→λm
t

n,p(z) =.. m̆t

n,p(λ) exists. An

asymptotically optimal estimator of the covariance matrix can be constructed simply by plug-

ging into equation (3.7) the estimator of the population eigenvalues obtained in equation (4.8).

Theorem 4.2. Suppose that Assumptions 3.1–3.5 are satisfied. The covariance matrix esti-

mator defined by

Ŝn .

.= UnD̂nU
′
n where D̂n

.

.= Diag(λn,1ψ̂n(λn,1), . . . , λn,pψ̂n(λn,p))

and ∀i = 1, . . . , p ψ̂n(λn,i) .

.=
1

1− p

n
− 2

p

n
λn,i Re

[
m̆τ̂n

n,p(λn,i)
] (4.9)

minimizes in the class of rotation-equivariant estimators described in Assumption 2.4 the al-

most sure limit of Stein’s loss as n and p go to infinity together.

The proof is in Appendix D. The structure of formula (4.9) is very similar to the struc-

ture of the corresponding formula in Stein (1975, 1986). The key difference lies in the term

Re
[
m̆τ̂n

n,p(λn,i)
]
. In its place, equation (2.2) has

1

p

∑

i 6=j

1

λn,j − λn,i
.

The connection is that Re
[
m̆τ̂n

n,p(λn,i)
]
can be expressed as a (Cauchy) Principal Value.

Re
[
m̆τ̂n

n,p(λn,i)
]
= PV

[∫
1

λ− λn,i
dF τ̂n

n,p(λ)

]

..= lim
εց0

{∫ λn,i−ε

−∞

1

λ− λn,i
dF τ̂n

n,p(λ) +

∫ ∞

λn,i+ε

1

λ− λn,i
dF τ̂n

n,p(λ)

}
.

See, e.g., Henrici (1988, pp. 259–262) for a reference on Principal Values. While Stein’s original

estimator picks the λn,j ’s from the empirical distribution function of the sample eigenvalues, Fn,

which is a step function, our estimator picks the λ’s from the smooth distribution F τ̂n
n,p instead.

This enables us to avoid the problems that beset Stein’s original estimator when some λn,j

happens to be ‘too close’ to another λn,i, such as violation of eigenvalue ordering or negative

eigenvalues.

Remark 4.1 (Stein’s loss versus Frobenius-norm loss; Remark 3.1 continued). The loss func-

tion ‖Σn − Σ̂n‖F leads to a different asymptotically optimal estimator of the covariance matrix,

as discussed by Ledoit and Wolf (2012, 2013). Which loss function, Stein’s loss or Frobenius-

norm loss, is more appropriate may generally depend on the objective for which the estimator
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of the covariance matrix is intended (construction of a test statistic, linear discriminant anal-

ysis, efficient generalized method of moments, Markowitz-type portfolio optimization, etc.).

It is not the goal of this paper to enter such a debate. On the other hand, we would like

to point out that the same methodology — using the approach of Ledoit and Wolf (2013) to

consistently estimate the oracle formulæ of Ledoit and Péché (2011) — ultimately delivers the

asymptotically optimal solution for both loss functions.

5 Monte Carlo Simulations

For compactness of notation, in this section, “Stein’s estimator” stands for “Stein’s isotonized

estimator” always.

The isotonized shrinkage estimator of Stein (1986) is widely acknowledged to have very

good performance in Monte Carlo simulations, which compensates for theoretical limitations

such as the recourse to an ad hoc isotonizing algorithm, minimizing an unbiased estimator of

risk instead of the risk itself, and neglecting the derivatives term in equation (2.1). The article

by Lin and Perlman (1985) is a prime example of the success of Stein’s estimator in Monte

Carlo simulations.

We report a set of Monte Carlo simulations comparing the nonlinear shrinkage estimator

developed in Theorem 4.2 with Stein’s estimator. There exist a host of alternative rotation-

equivariant shrinkage estimators of a covariance matrix; see the literature review in the intro-

duction. Including all of them in the Monte Carlo simulations is certainly beyond the scope of

the paper.

The chosen metric is the Percentage Relative Improvement in Average Loss (PRIAL) rela-

tive to Stein’s estimator. For a generic estimator Σ̂n, define

PRIAL(SST
n , Σ̂n) ..=

[
1− Rn(Σn, Σ̂n)

Rn(Σn, SST
n )

]
× 100% .

Thus PRIAL(SST
n , SST

n ) = 0% and PRIAL(SST
n ,Σn) = 100% by construction. We report

PRIAL(SST
n , Ŝn), where the empirical risks of SST

n and Ŝn are computed as averages across

1,000 Monte Carlo simulations.

In all designs, the ith population eigenvalue is equal to τn,i ≡ H−1((i−0.5)/p) (i = 1, . . . , p),

where H is the limiting population spectral distribution. Unless stated otherwise, the distri-

bution of the random variates comprising the n× p data matrix Xn is Gaussian.

Our numerical experiments are built around a ‘baseline’ scenario, and we vary different

design elements in turn. In the baseline case, p = 100, n = 200, and H is given by the

distribution of 1 +W , where W ∼ Beta(2, 5). This distribution is right-skewed, meaning that

there are a lot of small eigenvalues and few big ones, which is representative of many practically

relevant situations; see Figure 4 below. In this case, the PRIAL of our new nonlinear shrinkage

estimator relative to Stein’s is 42%.

Convergence
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First, we vary the matrix dimension p from p = 30 to p = 200 while keeping the concentra-

tion ratio p/n fixed at the value 1/2. The results are displayed in Figure 1.
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Figure 1: Evolution of the PRIAL of the new nonlinear shrinkage estimator relative to Stein’s

isotonized estimator as matrix dimension and sample size go to infinity together.

One can see that the improvement is strong across the board, and stronger in small-to-medium

dimensions.

Concentration

Second, we vary the concentration (ratio) from p/n = 0.05 to p/n = 0.94 while keeping the

product p× n constant at the value 20, 000. The results are displayed in Figure 2.
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Figure 2: PRIAL of the new nonlinear shrinkage estimator relative to Stein’s isotonized esti-

mator as a function of the concentration ratio p/n.

One can that the improvement is good across the board, and stronger when the matrix dimen-

sion is close to the sample size.
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Condition Number

Third, we vary the condition number of the population covariance matrix. We do this by

taking H to be the distribution of a + (2 − a)W , where W ∼ Beta(2, 5). Across all values of

a ∈ [0.01, 2], the upper bound of the support of H remains constant at the value 2, while the

lower bound of the support is equal to a. Consequently, the condition number decreases in a

from 32 to 1. The results are displayed in Figure 3.
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Figure 3: PRIAL of the new nonlinear shrinkage estimator relative to Stein’s isotonized esti-

mator across various condition numbers.

One can see that the improvement is positive across the board, and increases as the population

covariance matrix becomes better conditioned.

Shape

Fourth, we vary the shape of the distribution of the population eigenvalues. We take H

to be the distribution of 1 +W , where W ∼ Beta(α, β) for various pairs of parameters (α, β).

The corresponding densities are displayed in Figure 4.
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Figure 4: Densities of various shifted Beta distributions. Note that the density of Beta(β, α)

is just the mirror image (around the mid point of the support) of the density of Beta(α, β).

The results are presented in Table 1.

Parameters PRIAL

(1, 1) 21%

(1, 2) 27%

(2, 1) 31%

(1.5, 1.5) 26%

(0.5, 0.5) 15%

(5, 5) 52%

(2, 5) 42%

(5, 2) 55%

Average 34%

Table 1: PRIAL of the nonlinear shrinkage estimator relative to Stein’s isotonized estimator

for various shapes of the population spectral distribution.

There is no obvious pattern; the improvement is good across all distribution shapes, and the

baseline case (α, β) = (2, 5) is neither the best nor the worst.

Non-normality

Finally, we vary the distribution of the variates Xn. Beyond the normal distribution with

kurtosis 0, we also consider the coin-toss Bernoulli distribution, which is platykurtic with

kurtosis −2, and the Laplace distribution, which is leptokurtic with kurtosis 3. The results are

presented in Table 2.
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Distribution PRIAL

Normal 42%

Bernoulli 42%

Laplace 44%

Table 2: PRIAL of the nonlinear shrinkage estimator relative to Stein’s isotonized estimator

for various distributions of the variates.

One can see that the results obtained above carry over to the non-normal case.

Overall, the conclusion from these numerical experiments is that, even though Stein’s estima-

tor is known for performing very well in Monte Carlo simulations, our new nonlinear shrinkage

estimator improves substantially over it across a wide variety of situations. The improvement

is strongest when the sample size is not very large and the population eigenvalues are not very

dispersed.

6 Concluding Remarks

Estimating a covariance matrix is one of the most fundamental problems in statistics, with

a host of important applications. But in a large-dimensional setting, when the number of

variables is not small compared to the sample size, the traditional estimator (that is, the

sample covariance matrix) is ill-conditioned and performs poorly.

This paper has revisited the pioneering work of Stein (1975, 1986) to construct an improved

estimator of a covariance matrix, based on a scale-invariant loss function commonly known as

Stein’s loss. The estimator originally proposed by Stein suffers from two pitfalls: violation

of eigenvalue ordering and the possibility of negative eigenvalues (that is, a negative definite

estimator of a covariance matrix). As a dual remedy, Stein proposed an ad hoc isotonizing

algorithm to be applied to the eigenvalues of his original estimator.

Stein derived has original estimator by minimizing an unbiased estimator of risk in finite

samples, considering a certain class of rotation-equivariant estimators (and assuming multivari-

ate normality). In contrast, we have opted for large-dimensional asymptotic analysis, consid-

ering the same class of rotation-equivariant estimators. We show that the unbiased estimator

of risk for such an estimator, under mild regularity conditions (where even the assumption of

multivariate normality can be dropped), almost surely converges to a nonrandom limit; and

that this limit is actually equal to the almost sure limit of the value of the loss. Our alternative

estimator is then based on minimizing this limiting expression of the loss.

Not surprisingly, the initial solution depends on unknown population quantities, resulting

in an oracle estimator. However, using recent nonlinear shrinkage methodology developed by

Ledoit and Wolf (2012, 2013) with tools from the Random Matrix Theory literature, we are
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able to derive a bona fide estimator that is also asymptotically optimal (in the sense of mini-

mizing the limiting expression of the loss). This enables us to avoid the theoretical difficulties

that beset Stein’s estimator and also to improve finite-sample performance, as evidenced by

extensive simulation studies.
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Appendix

For notational simplicity, the proofs below assume that the support of F is a single compact

interval [a, b] ⊂ (0,+∞). But they generalize easily to the case where Supp(F ) is the union of

a finite number κ of such intervals, as maintained in Assumptions 3.2 and 3.4.

When there is no ambiguity, the first subscript, n, can be dropped from the notation of the

eigenvalues and eigenvectors.

A Proof of Theorem 3.1

Lemma A.1. Define ∀x ∈ R Φn(x) .

.= p−1
∑p

i=1 u
′
iΣ

−1
n ui × 1[λi,+∞)(x). Under Assump-

tions 3.1–3.3, there exists a nonrandom function Φ defined on R such that Φn(x) converges

almost surely to Φ(x), for all x ∈ R. Furthermore, Φ is continuously differentiable on R and

can be expressed as

∀x ∈ R Φ(x) =




0 if x < a,
∫ x
a ϕ(λ)dF (λ) if x ≥ a,

where ∀λ ∈ [a,+∞) ϕ(λ) .

.=
{
1− c− 2 c λRe[m̆F (λ)]

}
/λ.

Proof of Lemma A.1. The proof of Lemma A.1 follows directly from Ledoit and Péché (2011,

Theorem 5) and the corresponding proof, bearing in mind that we are in the case c < 1 because

of Assumption 3.1.

Lemma A.2. Under Assumptions (3.1)–(3.4),

1

p
Tr
(
Σ−1
n S̃n

) a.s.−→
∫ b

a
x ψ̃(x) dΦ(x) .

Proof of Lemma A.2. Restrict attention to the set Ω1 of probability one on which Φn(x)

converges to Φ(x), for all x, and one which also the almost sure convergences of Assumption 3.4

hold. Wherever necessary, the results in the proof are understood to hold true on this set Ω1.

Note that

1

p
Tr
(
Σ−1
n S̃n

)
=

1

p

p∑

i=1

(
u′iΣ

−1
n ui

)
λi ψ̃n(λi) =

∫
x ψ̃n(x) dΦn(x) . (A.1)

Since ψ̃ is continuous and Φn converges weakly to Φ,

∫ b

a
x ψ̃(x) dΦn(x)−→

∫ b

a
x ψ̃(x) dΦ(x) . (A.2)

Since
∣∣ψ̃

∣∣ is continuous on [a, b], it is bounded above by a finite constant K̃1. Fix ε > 0. Since

Φ is continuous, there exists η1 > 0 such that

∣∣Φ(a+ η1)− Φ(a)
∣∣+

∣∣Φ(b)− Φ(b− η1)
∣∣ ≤ ε

6 b K̃1

. (A.3)
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Since Φn(x)−→Φ(x), for all x ∈ R, there exists N1 ∈ N such that

∀n ≥ N1 max
x∈{a,a+η1,b−η1,b}

∣∣Φn(x)− Φ(x)
∣∣ ≤ ε

24 b K̃1

(A.4)

Putting equations (A.3)–(A.4) together yields

∀n ≥ N1

∣∣Φn(a+ η1)− Φn(a)
∣∣+

∣∣Φn(b)− Φn(b− η1)
∣∣ ≤ ε

3 b K̃1

(A.5)

Therefore, for all n ≥ N1,
∣∣∣∣∣

∫ b−η1

a+η1

x ψ̃(x) dΦn(x)−
∫ b

a
x ψ̃(x) dΦn(x)

∣∣∣∣∣

≤ bK̃1

[∣∣Φn(a+ η1)− Φn(a)
∣∣+

∣∣Φn(b)− Φn(b− η1)
∣∣
]

≤ ε

3
(A.6)

Since ψ̃n(x)−→ψ̃(x) uniformly over x ∈ [a+ η1, b− η1], there exists N2 ∈ N such that

∀n ≥ N2 ∀x ∈ [a+ η1, b− η1]
∣∣∣ψ̃n(x)− ψ̃(x)

∣∣∣ ≤ ε h

3 b

By Assumption 3.2, there exists N3 ∈ N such that, for all n ≥ N3, maxx∈R |Φn(x)| =

Tr(Σ−1
n )/p is bounded by 1/h . Therefore for all n ≥ max(N2, N3)

∣∣∣∣
∫ b−η1

a+η1

x ψ̃n(x) dΦn(x)−
∫ b−η1

a+η1

x ψ̃(x) dΦn(x)

∣∣∣∣ ≤ b× ε h

3 b
× 1

h
=
ε

3
(A.7)

Arguments analogous to those justifying equations (A.3)–(A.5) show there exists N4 ∈ N

such that

∀n ≥ N4

∣∣Φn(a+ η1)− Φn(a− η1)
∣∣+

∣∣Φn(b+ η1)− Φn(b− η1)
∣∣ ≤ ε

3 b K̃
,

for the finite constant K̃ of Assumption 3.4 Therefore, for all n ≥ N4,

∣∣∣∣
∫ b+η1

a−η1

x ψ̃n(x) dΦn(x)−
∫ b−η1

a+η1

x ψ̃n(x) dΦn(x)

∣∣∣∣ ≤
ε

3
(A.8)

Putting together equations (A.6)–(A.8) implies that, for all n ≥ max(N1, N2, N3, N4),

∣∣∣∣
∫ b+η1

a−η1

x ψ̃n(x) dΦn(x)−
∫ b

a
x ψ̃(x) dΦn(x)

∣∣∣∣ ≤ ε

Since ε can be chosen aribtrarily small,

∫ b+η1

a−η1

x ψ̃n(x) dΦn(x)−
∫ b

a
x ψ̃(x) dΦn(x) −→ 0 .

By using equation (A.2) we get

∫ b+η1

a−η1

x ψ̃n(x) dΦn(x)−→
∫ b

a
x ψ̃(x) dΦ(x) .
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Theorem 1.1 of Bai and Silverstein (1998) shows that one a set Ω2 of probability one, there

are no sample eigenvalues outside the interval [a−η1, a+η1], for all n large enough. Therefore,

on the set Ω ..= Ω1 ∩ Ω2 of probability one,

∫
x ψ̃n(x) dΦn(x)−→

∫ b

a
x ψ̃(x) dΦ(x) .

Together with equation (A.1), this proves Lemma A.2.

Lemma A.3.

1

p
log

[
det

(
Σ−1
n S̃n

)] a.s.−→ c− 1

c
log(1− c)− 1 +

∫ b

a
log

[
ψ̃(x)

]
dF (x) .

Proof of Lemma A.3.

1

p
log

[
det

(
Σ−1
n S̃n

)]
=

1

p
log

[
det

(
Σ−1
n

)
det

(
S̃n

)]

=
1

p
log

[
det

(
Σ−1
n

) p∏

i=1

(
λiψ̃n(λi)

)]

=
1

p
log

[
det

(
Σ−1
n

)
det

(
Sn

) p∏

i=1

ψ̃n(λi)
]

=
1

p
log

[
det

(
Σ−1
n

1

n

√
ΣnX

′
nXN

√
Σn

) p∏

i=1

ψ̃n(λi)

]

=
1

p
log

[
det

(
1

n
X ′

nXn

)]
+

∫
log

[
ψ̃n(x)

]
dFn(x) (A.9)

Equation (1.1) of Bai and Silverstein (2004) shows that the first term on the right-hand side

of equation (A.9) converges almost surely to
(
1− c−1

)
log(1− c)− 1. As for the second term,

a reasoning analogous to that conducted in the proof of Lemma A.2 shows that it converges

almost surely to
∫ b
a log

[
ψ̃(x)

]
dF (x). Then Lemma A.3 follows.

We are now ready to tackle Theorem 3.1. Lemma A.1 and Lemma A.2 imply that

1

p
Tr
(
Σ−1
n S̃n

) a.s.−→
∫ b

a
ψ̃(x)

{
1− c− 2 c xRe[m̆F (x)]

}
dF (x) .

Lemma A.3 implies that

−1

p
log

[
det

(
Σ−1
n S̃n

)]
− 1

a.s.−→ 1− c

c
log(1− c)−

∫ b

a
log

[
ψ̃(x)

]
dF (x) .

Putting these two results together completes the proof of Theorem 3.1.

B Proof of Proposition 3.1

We start with the simpler case where ∀n ∈ N, ∀x ∈ R, ψ̃n(x) ≡ ψ̃(x). We make implicitly

use of Theorem 1.1 of Bai and Silverstein (1998), which states that, for any fixed η > 0, with

probability one there are no eigenvalues outside the interval [a−η, b+η], for all n large enough.
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For any given estimator S̃n with limiting shrinkage function ψ̃, define the bivariate function

∀x, y ∈ [a, b] ψ̃♯(x, y) ..=





xψ̃(x)− yψ̃(y)

x− y
if x 6= y

xψ̃′(x) + ψ̃(x) if x = y .

Since ψ̃ is continuously differentiable on [a, b], ψ̃♯ is continuous on [a, b]× [a, b]. Consequently,

there exists K > 0 such that, ∀x, y ∈ [a, b], |ψ̃♯(x, y)| ≤ K.

Lemma B.1.

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi

a.s.−→
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) . (B.1)

Proof of Lemma B.1.

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi
=

1

p2

p∑

j=1

p∑

i=1

ψ̃♯(λi, λj)−
1

p2

p∑

j=1

ψ̃♯(λj , λj)

=

∫ b

a

∫ b

a
ψ̃♯(x, y) dFn(x) dFn(y)−

1

p2

p∑

j=1

ψ̃♯(λj , λj) .

Given equation (3.1), the first term converges almost surely to the right-hand side of equa-

tion (B.1). The absolute value of the second term is bounded by K/p; therefore, it vanishes

asymptotically.

Lemma B.2.

∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) = −2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x) (B.2)

Proof of Lemma B.2. Fix any ε > 0. Then there exists η1 > 0 such that, for all v ∈ (0, η1),

∣∣∣∣2
∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x)− 2

∫ b

a
xψ̃(x)Re [m̆F (x+ iv)] dF (x)

∣∣∣∣ ≤
ε

4
.

The definition of the Stieltjes transform implies

−2

∫ b

a
xψ̃(x)Re [m̆F (x+ iv)] dF (x) = 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
dF (x) dF (y) .

There exists η2 > 0 such that, for all v ∈ (0, η1),

∣∣∣∣∣2
∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
dF (x)dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2}dF (x)dF (y)

∣∣∣∣∣ ≤
ε

4

and

∣∣∣∣
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y)−

∫ b

a

∫ b

a
ψ̃♯(x, y)1{|x−y|≥η2} dF (x) dF (y)

∣∣∣∣ ≤
ε

4
.
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We have

∫ b

a

∫ b

a
ψ̃♯(x, y)1{|x−y|≥η2} dF (x) dF (y) =

∫ b

a

∫ b

a

xψ̃(x)− yψ̃(y)

x− y
1{|x−y|≥η2} dF (x) dF (y)

=

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)

+

∫ b

a

∫ b

a

yψ̃(y)

y − x
1{|y−x|≥η2} dF (y) dF (x)

= 2

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)

Note that

2

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y)

= 2

∫ b

a

∫ b

a

xψ̃(x)

x− y

v2

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y) ,

and that

∀(x, y) such that |x− y| ≥ η2
v2

(x− y)2 + v2
≤ v2

η22 + v2
.

The quantity on the right-hand side can be made arbitrarily small for fixed η2 by bringing v

sufficiently close to zero. This implies that there exists η3 ∈ (0, η1) such that, for all v ∈ (0, η3),

∣∣∣∣∣2
∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y)

∣∣∣∣∣ ≤
ε

4
.

Putting these results together yields

∣∣∣∣
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) + 2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x)

∣∣∣∣ ≤ ε .

Since this holds for any ε > 0, equation (B.2) follows.

Putting together Lemmas B.1 and B.2 yields

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi

a.s.−→ −2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x) .

Lemma B.3. As n and p go to infinity with their ratio p/n converging to the concentration c,

log(n)− 1

p

p∑

j=1

E[log(χ2
n−j+1)] −→ 1 +

1− c

c
log(1− c) .

Proof of Lemma B.3. It is well known that, for every positive integer ν,

E[log(χ2
ν)] = log(2) +

Γ′(ν/2)

Γ(ν/2)
,
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where Γ(·) denotes the gamma function. Thus

1

p

p∑

j=1

E[log(χ2
n−j+1)] = log(2) +

1

p

p∑

j=1

Γ′((n− j + 1)/2)

Γ((n− j + 1)/2)
.

Formula 6.3.21 of Abramowitz and Stegun (1965) states that

∀x ∈ (0,+∞)
Γ′(x)

Γ(x)
= log(x)− 1

2x
− 2

∫ ∞

0

t dt

(t2 + x2)(e2πt − 1)
.

It implies that

log(n)− 1

p

p∑

j=1

E[log(χ2
n−j+1)] = −1

p

p∑

j=1

log

(
1− j − 1

n

)
+

1

p

n∑

k=n−p+1

1

k

+
1

p

n∑

k=n−p+1

∫ ∞

0

t dt

[t2 + (k/2)2](e2πt − 1)

=.. −1

p

p∑

j=1

log

(
1− j − 1

n

)
+An +Bn .

It is easy to verify that

−1

p

p∑

j=1

log

(
1− j − 1

n

)
−→ −1

c

∫ c

0
log(1− x)dx = 1 +

1− c

c
log(1− c) .

Therefore, all that remains to be proven is that the two terms An and Bn vanish. Using

Formulæ 6.3.2 and 6.3.18 of Abramowitz and Stegun (1965), we see that

An
..=

1

p

n∑

k=n−p+1

1

k
=

1

p

[
Γ′(n)

Γ(n)
− Γ′(n− p+ 1)

Γ(n− p+ 1)

]
=

1

p
log

(
n

n− p+ 1

)
+O

(
1

p(n− p+ 1)

)
,

which vanishes indeed. As for the term Bn, it admits the upper bound

Bn
..=

1

p

n∑

k=n−p+1

∫ ∞

0

t dt

[t2 + (k/2)2](e2πt − 1)
≤

∫ ∞

0

t dt

[t2 + ((n− p+ 1)/2)2](e2πt − 1)
,

which also vanishes.

Going back to equation (2.1), we notice that the term

2

p

p∑

j=1

λjψ̃
′(λj)

remains bounded asymptotically with probability one, since ψ̃′ is bounded over a compact set.

Putting all these results together shows that the unbiased estimator of risk Θn(Sn, Σ̂)

converges almost surely to

(1− c)

∫ b

a
ψ̃(x)dF (x)−

∫ b

a
log[ψ̃(x)]dF (x)− 2c

∫ b

a
xψ̃(x)Re[m̆F (x)]dF (x) +

1− c

c
log(1− c) .

It is easy to verify that these results carry through to the more general case where the

shrinkage function ψ̃n can vary across n, as long as it is well behaved asymptotically in the

sense of Assumption 3.4.
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C Proof of Proposition 3.2

We provide a proof by contradiction. Suppose that Proposition 3.2 does not hold. Then there

exist ε > 0 and x0 ∈ Supp(F ) such that

1− c− 2 c x0 Re[m̆F (x0)] ≤
a1

h
− 2ε . (C.1)

Since m̆F is continuous, there exist x1, x2 ∈ Supp(F ) such that x1 < x2, [x1, x2] ⊂ Supp(F ),

and

∀x ∈ [x1, x2] 1− c− 2 c xRe[m̆F (x)] ≤
a1

h
− ε .

Define, for all n ∈ N and x ∈ R,

ψ(x) ..= 1[x1,x2](x)

ψn(x)
..= ψ(x)

Dn
..= Diag

(
λn,1ψn(λn,1), . . . , λn,pψn(λn,p)

)

Sn
..= UnDnU

′
n .

By Lemmas A.1–A.2,

1

p
Tr

(
Σ−1
n Sn

) a.s.−→
∫
ψ(x) {1− c− 2 c xRe[m̆F (x)]} dF (x) . (C.2)

The left-hand side of equation (C.2) is asymptotically bounded from below as follows.

1

p
Tr

(
Σ−1
n Sn

)
=

1

p

p∑

i=1

u′n,iΣ
−1
n un,i × λn,i 1[x1,x2](λn,i)

≥ λn,1

h
[Fn(x2)− Fn(x1)]

a.s.−→ a1

h
[F (x2)− F (x1)] . (C.3)

The right-hand side of equation (C.2) is bounded from above as follows.
∫
ψ(x) {1− c− 2 c xRe[m̆F (x)]} dF (x) ≤

(
a1

h
− ε

)
[F (x2)− F (x1)] . (C.4)

Given that F (x2)− F (x1) > 0, equations (C.2)–(C.4) form a logical contradiction. Therefore,

the initial assumption (C.1) must be false, which proves Proposition 3.2.

D Proof of Theorem 4.2

Define the shrinkage function

∀x ∈ Supp
(
F τ̂n
n,p

)
ψ̂n(x) ..=

1

1− p

n
− 2

p

n
xRe

[
m̆τ̂n

n,p(x)
] .

Theorem 2.2 of Ledoit and Wolf (2013) and Proposition 4.3 of Ledoit and Wolf (2012) imply

that ∀x ∈ Supp(F ) ψ̂n(x)
a.s−→ ψ∗(x), and that this convergence is uniform over x ∈ Supp(F ),

apart from arbitrarily small boundary regions of the support. Theorem 4.2 then follows from

Corollary 3.1.
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