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Abstract

Several European countries have followed the United States in introducing prospective payment for

hospitals with the expectation of achieving cost efficiency gains. This article examines whether

theoretical expectations of cost efficiency gains can be empirically confirmed. In contrast to previ-

ous studies, the analysis of Switzerland provides a comparison of a retrospective per diem payment

system with a prospective global budget and a payment per patient case system. Using a sample

of approximately 90 public financed Swiss hospitals during the years 2004 to 2009 and Bayesian

inference of a standard and a random parameter frontier model, cost efficiency gains are found,

particularly with a payment per patient case system. Payment systems designed to put hospitals at

operating risk are more effective than retrospective payment systems. However, hospitals are hetero-

geneous with respect to their production technologies, making a random parameter frontier model

the superior specification for Switzerland.1
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1. Introduction

Growing health care expenditures over the last several decades have highlighted the need for

health care reforms in order to contain future cost increases. One promising approach, which was

first implemented in the U.S. and was recently adapted by many European countries, involves the

transition from retrospective (RPS) to prospective (PPS) hospital payment systems (see Smith, 2004

and Schneider, 2007 for an overview of Europe’s reforms). The assumption is that a change to

predetermined and fixed payments would place hospitals at operating risk and would increase their

cost efficiency.

Even though there are convincing theoretical arguments for cost reductions and efficiency gains

(Biorn et al., 2003; Chalkley and Malcomson, 1998; Newhouse, 1996), empirical literature is lack-

ing. The linkage between efficiency gains and PPS has yet to be demonstrated for the U.S. Medicare

reform of 1983, which switched from RPS to a payment per patient case system, or for any of the

European countries that moved from RPS to a payment per patient case or a global budget system

(see Section 2 for further information on the payment systems). For example, Borden (1988) found

no significant efficiency gains for 93 New Jersey hospitals from the years 1979 to 1984. Similar

results were obtained by Chern and Wan (2000) when they examined the catch-up effect of tech-

nically inefficient hospitals in Virginia from 1984 to 1993. Inefficient hospitals became even more

inefficient in 1993, which is contrary to the expectations of PPS. However, efficiency gains were

shown by Morey and Dittman (1996), who analyzed the technical inefficiency of 105 hospitals in

North Carolina. The results of European reforms remain inconclusive. While no efficiency gains

were found in Austrian hospitals after funding shifted from per diem payments to global budgets in

1997 (Sommersguter-Reichmann, 2000), gains were found in Portugal (Dismuke and Sena, 1999),

Finland (Linna, 1999), and Norway (Biorn et al. (2006)). Thus, hospital costs could even increase

with PPS. Since PPS is well known to be concurrent to higher administration and supervising costs,

which is not yet included in theoretical models, the incentive for cost reduction could be overstated.

However, these inconclusive results are most likely due to a lack of analytical rigor. In particular,

although it is widely accepted that hospitals are rather heterogeneous in their production of health

care services (Widmer et al., 2010), previously applied Data Envelopment Analysis (DEA) and

Stochastic Frontier Analysis (SFA) have been restricted to homogeneous technology. Furthermore,

it is well known that results of the frequently applied two-stage DEA approach are biased since it

does not account for a possible correlation of the independent variables with the inputs and outputs of

the first-stage DEA (Simar and Wilson, 2000). Finally, since most countries only recently switched

to PPS at the country level, the time series available for within treatment analysis have been very
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short. Most studies analyze a time period of four to five years, which may be too short for any reliable

conclusion to be drawn. For instance, any changes could be driven by unobserved exogenous shocks,

such as new medical technologies or inflation, that occurred concurrent with the implementation of

PPS (Linna, 1999).

In order to overcome the limitations of previous studies, this article compares a retrospective

per diem system with a prospective global budget and a payment per patient case system using data

from Switzerland, where some member states changed to different variants of PPS while others

remained with RPS. The contribution of this article is twofold. First, it extends previous work

by implementing a random parameter frontier model to control for the importance of unobserved

heterogeneity among six hospital categories and addresses whether empirical results significantly

depend on the assumptions made for the production technology. Second, it determines whether

theoretical expectations for cost savings can be confirmed in empirical analysis by relating calculated

inefficiency scores to the three payment systems. Estimates are derived by an extended single-step

approach of Battese and Coelli (1995).

The empirical analysis reveals two key results. First, with respect to model comparison, the ran-

dom parameter frontier model is more robust and has a higher explanatory power than the single cost

frontier model. Heterogeneity correction among hospital categories is crucial in deriving meaningful

inefficiency scores. Second, PPS are negatively correlated with hospital cost inefficiency, particu-

larly the payment per patient case system. Payment systems designed to put hospitals at operating

risk are more effective than retrospective payment systems in containing health care costs.

The remainder of this paper is structured as follows. Section 2 gives an overview of the different

prospective and retrospective payment systems that coexisted in Switzerland between 2004 and

2009. Section 3 outlines the standard and random parameter frontier model and Section 4 describes

the data used as well as the empirical specifications. Finally, Section 5 presents the results of the

cost frontier models and the determinants of inefficiency.

2. Introduction to Swiss Hospital Financing

The Swiss health care system has been shaped by the country’s decentralized federal structure,

in which all 26 member states (cantons) are responsible for providing health care services to their

residents. The hospital sector is no exception. Cantonal authorities are responsible for capacity

planning and for the quality of hospital care. Provision is typically purchased from hospitals that

are qualified to provide health care to primary insured patients. However, this does not imply that

hospital financing only comes from cantonal sources. On the contrary, health insurers pay an agreed
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amount of up to 45 percent of operating costs, resulting in a dual system where cantons cover the

residual cost and investments in infrastructure.2 Modes of financing can therefore differ among

cantons.

Increasing health care costs have induced many cantons to revise their hospital payment sys-

tem. Especially the implementation of the new federal law on social health care insurance in 1994

(effective in 1996), where cantonal authorities were given legislative power to control for hospital

operating costs, has resulted in the coexistence of various RPS and PPS in Switzerland (see Figure

1 for an overview of existing payment systems).

Figure 1: Swiss Payment Systems

Hospital Financing

Fee-For-Service

(Per Diem Payment)
Global Budget Payment per Case

Price per Clinic &
Per Diem Element

Price per DRG
Classification

Prior to 1996, cantons primarily used a retrospective cost-based per diem or fee-for-service sys-

tem to pay hospitals for their services. Remuneration was equal to reported costs and bankruptcy

was only possible if cantonal authorities decided to reduce overcapacity. Unsurprisingly, critics of

these schemes argued that there was little incentive for cost containment. Hospitals could waste re-

sources and increase health care costs in order to obtain greater reimbursement. Hence, after 1996,

several cantons experimented with PPS to set incentives for cost containment. The two alternatives

included a global budget and a payment per patient case system (see second level in Figure 1). Under

a global budget system, hospitals are paid a fixed amount for a predetermined number of admissions

whether or not a patient seeks care during the accounting period. Under a payment per patient case

system, hospitals are paid a fixed amount per admission, regardless of the actual cost. In both cases,

hospitals obtain the gain or incur the loss, making them act to minimize costs. However, the incen-

tive for cost minimization could be weakened in the Swiss case because many cantons still do not

firmly exclude a bailout. This is especially the case in a global budget system, where hospitals are

2 Health care insurers might cover more than 45 percent of expenditures in privately owned hospitals, which are
not on the cantonal list. However, these are typically for-profit hospitals specializing in supplementary insured
patients.
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generally allowed to renegotiate their budget for unexpected costs. Hospitals still have an implicit

deficit guaranty which reduces their operating risk and therefore the incentive for cost minimization.

Furthermore, the determination of the remuneration per admission could also influence incentives

for cost containment. Two variants are widely used in Switzerland (see third level in Figure 1). The

first variant determines payments per admission according to a clinic-specific average price and a per

diem element to control for differences in the length of stay. The second variant uses a Swiss spec-

ification of the DRG classification system that attempts to classify patients into groups with similar

usage of resource. In contrast to the first variant, payments are independent of the length of stay.

Thus, hospitals have no incentives to maximize the length of stay, which should result in additional

cost savings. Even in a DRG system there is provision for additional payment for those patients who

are unusually expensive within the DRG classification, but these outlier payments apply to only a

small portion of patients and are not directly related to length of stay.

An increasing number of cantons have changed to PPS. In 2004, only 38 percent of all Swiss

hospitals were still reimbursed by per diem payments. Most hospitals had PPS and almost 36 percent

of them already used DRG classifications. In 2007, the number of hospitals with PPS increased even

more and most cantons used DRG classifications (see Meister, 2008). Unsurprisingly, in 2007 the

Swiss parliament revised the insurance law to introduce a DRG system in all cantons by 2012.

Following the U.S. Medicare reform of 1983 and the German reform of 2004, policy makers believe

that the new reimbursement system would increase cost efficiency as outlined in the Introduction

section. This article aims to determine whether the DRG system is preferable to contain health care

costs. The hypotheses of interest are:

1. Hospitals with PPS are more cost efficient than hospitals with RPS. Putting a hospital at any

amount of operating risk should strengthen incentives for cost minimization (lower cost inef-

ficiency).

2. Hospitals with payments based on DRG classifications are more cost efficient than those paid

with a per diem element. The fact that DRG systems do not account for longer length of stay

should cause additional cost savings (lower cost inefficiency).

3. Estimation Models

In order to analyze these hypotheses, firm-specific inefficiency scores must first be established

from estimated cost frontiers.3 This paper applies two specifications to check for the importance

3 See Coelli et al. (2005) and Kumbhakar and Lovell (2000) for an overview of inefficiency measurement methods.
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of unobserved heterogeneity among hospitals. The first specification is a standard frontier model

that was first implemented by Aigner et al. (1977) and Meeusen and van den Broeck (1977). It

estimates inefficiency as the distance between a cost frontier and observed expenditures. Observable

heterogeneity is captured by shifting means of the inefficiency term, similar to preliminary work by

Battese and Coelli (1995), Huang and Liu (1994), and Kumbhakar et al. (1991). The second specifi-

cation is a random parameter frontier model that additionally controls for unobserved heterogeneity

in technology parameters (for other applications see Orea and Kumbhakar, 2004 and Tsionas, 2002).

Inefficiency is estimated as cost deviations from category-specific cost frontiers.

3.1. The Standard Frontier Model (SFM)

The cost frontier for hospital i = 1, ...,N at time period t = 1, ...,T can be written as

Cit = C(Yit,Wit;α, β) +

εit︷  ︸︸  ︷
uit + vit, (1)

with Cit representing operating expenditures, Yit denoting the output vector, and Wit as the vector of

input prices. α is the intercept and β is a (K×1) vector of unknown slope parameters. C(Yit,Wit;α, β)

is the deterministic part of the cost frontier that remains to be specified for the empirical estimation.

Typically, this is either a Cobb-Douglas or a more flexible translog functional form.

The error term εit is split into two additive components, enabling deviations for random noise, vit

and cost inefficiency, uit. Random noise is normally distributed vit
iid
∼ N[0, σ2

v] with mean zero and

variance σ2
v . Firm-specific inefficiency uit is assumed to follow a one-sided distribution supported

on the interval [0,∞). The larger uit, the more cost inefficient a hospital and the greater the potential

for cost savings.

Since the main purpose of this paper is to analyze the influence of PPS on inefficiency, in-

efficiency is specified congruent to Battese and Coelli (1995) as a truncated normal distribution

uit ∼ fN+[ūit, σ
2
u] with firm specific means ūit and variance σ2

u. In this article, mean inefficiency is a

linear function of l = 1, .., L explanatory variables Zit that influence inefficiency.

ūit = γo +

L∑
l=1

γlZlit + ςit, (2)

where γ is an (L × 1) vector of unknown parameters to be estimated and ςit remains as unexplained

hospital-specific inefficiency.
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3.2. The Random Parameter Frontier Model (RPFM)

One way to extend the SFM for unobserved heterogeneity is the random parameter frontier

model, which estimates inefficiency scores from individual cost frontiers.4 In this article, the model

accounts for j = 1, ..., J exogenously given hospital categories that are expected to have different

production technologies.

Cit = C(Yit,Wit;α j, β j) +

εit︷  ︸︸  ︷
uit + vit,

uit ∼ fN+ [ūit, σ
2
u], ūit = γo +

L∑
l=1

γlZlit + ςit,

α j = α + w j,

β j = β + w j. (3)

Different from SFM, this specification allows inefficiency to be disentangled from unobservable

heterogeneity with hospital category-specific intercepts α j = α+w j and slope parameters β j = β+w j.

All time-invariant and firm-specific heterogeneity is captured in w j, which is a [(K + 1) × 1] vector

of random variables.

This paper specifies α j and β j similar to Tsionas (2002) as a multivariate normal distribution

(
α j

β j

)
∼ fMN

[(
ᾱ

β̄

)
,Σ

]
, with Σ ∼ fW

 σ2
α σα,β

σα,β σ2
β

 , (4)

where ᾱ ∼ N[0, σ2
ᾱ] and β̄ ∼ N[0, σ2

β̄
] are both normally distributed with mean zero and variance

(σ2
u, σ2

v). This is a hierarchical model that first measures the mean effects (ᾱ, β̄) and then estimates

individual effects (α j, β j) for each parameter. Variance Σ is Wishart distributed with a [(K + 1) ×

(K + 1)] positive definite covariance matrix S = (σ2
α, σ

2
β, σα,β), denoting unobserved heterogeneity

among hospitals. For Σ = 0 no variation exists and the RPFM simplifies to a SFM.

Based on the distributional assumptions made in the SFM and RPFM, Bayesian econometrics

is applied for the simultaneous estimation of the parameters in the cost frontier and the inefficiency

term. This is superior to the frequently applied classical maximum likelihood statistics since it

considers unknown parameters as random variables, specified as prior distributions. Exact small

sample results are possible because of the prior information included. Estimation is performed using

4 It is worth mentioning that a separation is not preferable in every case. If technology is manageable, defining of
inefficiency on the frontier intercepts and ignoring the variation of the slope parameters could be justified. In this
case, inferior technology is manageable inefficiency.
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R and Winbugs. Corresponding Bayesian specifications and R programming codes are described in

the Appendix.

4. Data and Econometric Specifications

4.1. The Sample

Data used in this study were provided by the annual reports of the federal office of public health

and by the conference of cantonal health ministers. They include 333 Swiss hospitals for the time

period of 2004 to 2009, consisting of 5 university hospitals, 23 central hospitals, 27 large regional

hospitals, 46 medium regional hospitals, 46 small regional hospitals, 28 specialized surgery hos-

pitals, and sundry hospitals, viz. psychiatric and rehabilitation clinics. In total, 127 of the 333

hospitals are private and not subsidized.

In the interest of comparability, the entire data set was reviewed and assessed for the presence

of any missing data and outliers that could distort the results. Furthermore, the sundry category and

all non-subsidized hospitals were discarded. An unbalanced panel consisting of 545 observations

from six different hospital categories with sufficient was finally analyzed. In Table 1, the variables

are listed together with descriptive statistics.

Table 1: Definition and Descriptive Statistics of the Variables Used in the Analysis

Variable Definition Mean Min Max

VC Variable operational expense, in thousands of CHF (VC)1) 135,621 8,550 1,015,756
Y1 No. of inpatient cases, CMI-adj. (CAS ES ) 9,113 502 52,143
Y2 Revenue from outpatients, in thousands of CHF (OUT P)1) 27,418 0 223,937
PL Labor input price, in thousands of CHF (PL)1) 101 34 146
PM Price of other production inputs, in thousands of CHF (PM)1) 4 2 7
K No. of beds (BEDS ) 229 31 1,169
S 1 No. of internship categories (INT ERN) 22 0 134
S 2 No. of specialties (S PEC) 39 4 106
Z1 Dummy= 1 for prospective payment systems (PPS )2) 78 0 100
Z2 Dummy= 1 for payments per patient case (CAS EP)2) 14 0 100
Z3 Dummy= 1 for global budgets (GLOB)2) 64 0 100
Z4 Dummy= 1 for DRG classifications (DRG)2) 51 0 100
Tt Year dummies, t = 2005 to 2009 (base year is 2004)

1) in 1,000 CHF, 1 CHF=0.8 USD (2004 exchange rates)
2) in percent, PPS=78 in column three means that on average 78 percent of all hospitals have PPS
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4.2. Specification of the Cost Frontier

With these data, a variable Cobb-Douglas cost frontier (subscripts i = 1, ...,N and t = 1, ...,T are

dropped for simplicity) can be specified as

ln
VC
PM

= α +

2∑
m=1

βmlnYm + β3ln
PL
PM

+ β4lnK4 +

2∑
l=1

βlS l +

5∑
t=1

βtTt + u + v, (5)

where variable cost (VC) depends on two output categories (Y), one input price for labor (PL), one

price for other production inputs (PM), one capital stock (K), two structural variables (S ), and five

time dummies (T ) to control for any unobserved dynamics over time (base year 2004). Normalizing

VC and PL by PM imposes linear homogeneity in input prices.

Health care output – change in health status – is difficult to measure directly for Swiss hospitals.

In this article, measures for inpatient care CAS ES and outpatient care OUT P serve as interme-

diate outputs. To adjust for severity in inpatient care, CMI-adjusted admissions are used. Outpa-

tient care is approximated by ambulatory earnings, similar to Farsi et al. (2006) and Biorn et al.

(2003). Furthermore, input price PL is calculated as labor expense divided by the number of full

time employees. Input price PM aggregates all the remaining inputs, such as energy, material, and

purchased services that cannot be distinguished due to data limitations. An approximate price for

PM is calculated as residual cost divided by the number of admissions (a discussion of this com-

mon simplification is given in Coelli et al., 2005, p.141). Since capital stock (total fixed assets) is

hardly measurable, BEDS serve as an approximation. Finally, the number of internship categories

INT ERN and specialties S PEC control for observable service heterogeneity among hospitals.

The formulation can be justified on several grounds. First, it is compatible with short-term cost

minimization, reflecting the fact that capital (indicated by BEDS ) is a predetermined rather than

a decision variable. In Switzerland, cantonal hospital planning divisions mainly decide capacity.

Second, the exclusion of user cost of capital from the equation avoids measurement errors since

values would have to be imputed since most hospitals are not charged capital user costs.

4.3. Determinants of Inefficiency

Since the influence of PPS on inefficiency is the focus of this article, additional explanatory

variables are included in the inefficiency term – see eq. (2) – to test for the two hypotheses from

Section 2:

(1) Hospitals with PPS are more cost efficient than hospitals with RPS;
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(2) Hospitals with payments based on DRG classifications are more cost efficient than those paid

with a per diem element.

Hypothesis (1) is tested with two models. Model (1) refers to eq. (6),

ūit = γo + γ1PPS + γ2PPS :DRG + ςit, (6)

which relates mean inefficiency to a dummy variable that equals one for hospitals with PPS and zero

for hospitals with RPS. It determines whether PPS – either a global budget or a payment per patient

case system – is more effective than the retrospective alternative.

Model (2) refers to eq. (7),

ūit = γo + γ1CAS EP + γ2GLOB + γ3CAS EP:DRG + γ4GLOB:DRG + ςit, (7)

which is a refinement of Model (1) that checks for the unique effects of a global budget and a

payment per patient case system. Therefore, the variable PPS is replaced by two dummy variables,

GLOB, for hospitals with a global budget, and CAS EP, for hospitals with payments per patient case.

Hospitals with a retrospective per diem system form the control group. In Model (2), it is expected

(from Section 2) that hospitals receiving payments per patient case are more cost efficient (have

lower inefficiency scores) since most hospitals with global budgets have a partial deficit guaranty

through the opportunity to adjust their budgets for unexpected costs.

Hypothesis (2) calls for the introduction of an additional dummy variable, DRG, in eqs. (6)

and (7), which is specified as a nested interaction term. It measures the supplementary effect of

DRG classifications relative to the alternative specification with a per diem element. As outlined

in Section 2, payments based on a per diem element can reduce incentives for cost minimization

since hospitals have incentive to increase the length of stay. Therefore, it is expected that hospitals

with DRG, which is free from any adjustment for length of stay, are more efficient (have lower

inefficiency scores) than the frequently applied alternative.

Finally, Model (3) refers to eq. (8),

ūit = γo + γ1PPS + γ2PPS :DRG + γ3PPS :DRG1 + γ4PPS :DRG2 + ςit, (8)

which refines Model (1) for a possible catch-up effect of DRG over time. Therefore, two additional

dummies DRG j, j = 1, 2 are included, where j indicates the time lag from the initiation of the

reimbursement scheme. Since it is possible that DRG only becomes effective after a few years after
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initiation, it is preferable to test for these effects as well.

5. Empirical Results

This section first presents estimates of the technology parameters and inefficiency scores with a

special focus on the influence of unobserved heterogeneity. Second, in Section 5.2, the influence of

PPS is discussed for the three models outlined in Section 4.3.

To obtain posterior estimates, Monte Carlo Markov Chain (MCMC) algorithms were run for

20,000 iterations and the first 10,000 samples were discarded as a burn-in phase. Different assump-

tions for priors and starting values converged to roughly the same values without strong periodicities

or tendencies in the trace plot. Furthermore, the Monte Carlo error is very low. All cost frontier pa-

rameters and inefficiency scores have a Monte Carlo error lower than 7.02 ∗ 10−4, indicating that the

results are quite precise and have reached the equilibrium distribution.

5.1. Cost Frontier Estimates and Their Inefficiency Scores

Table 2 shows the estimates of the technology parameters of the the variable cost frontier from

eq. (5) after an analysis of cost drivers together with tests for endogeneity, heteroscedasticity, and

the skewness of the composite error term were performed. Hospital output could be endogenous in

the RPS when hospitals have incentive to increase their output due to higher remuneration. How-

ever, a Hausman test did not suggest rejection of the exogeneity assumption. Heteroscedasticity

was also not problem according to a Breusch-Pagan test. Only INT ERN had a weak effect on the

variance of the composite error term. Finally, because inefficient hospitals by definition lie above

the cost frontier, a positively skewed composite error term is required for efficiency measurement.

Otherwise, no inefficiency would exist and OLS would be sufficient to estimate the cost frontier.

However, residuals of the cost driver analysis were positively skewed, indicating that inefficiency

does exist in the Swiss hospital sector.

In the SFM, the first three columns contain the estimation mean, the 2.5, and 97.5 percentile of

the technology parameters. They satisfy economic conditions in that the cost frontier monotonically

increases in the outputs CAS ES and OUT P as well as in the input price PL. The only exception

is hospital beds (BEDS = 0.22). Since it is an indicator of capital stock, it should have a negative

sign (see Kumbhakar and Lovell, 2000). However, because hospital capacity (no. of hospital beds)

is exogenously determined by the cantonal authority, the expected substitution effect could be very

small. Furthermore, because BEDS is a poor proxy for capital stock, which is highly correlated

with hospital output, estimates might show an output rather than a substitution effect (see e.g. Fil-
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ippini et al., 2004 for similar difficulties). Consequently, an investigation of the shadow price is

not possible, but inefficiency scores are still derivable. Moreover, variable costs tend to shift up

systematically over time, with a maximum in 2009 (T09 = 0.036). Finally, with regard to service

heterogeneity it is not surprising that internship categories (INT ERN = 0.002) and the number

of specialties (S PEC = 0.001) have a positive effect. Variable cost increases with the number of

different services offered.

Table 2: Econometric Results for the SFM and RPFM, Years 2004 to 2009

Variables1) SFM RPFM

Mean 2.50% 97.50% Mean 2.50% 97.50% SD

Constant -0.088 -0.103 -0.073 -0.123 -0.201 -0.059 0.074
CAS ES 0.744 0.708 0.781 0.592 0.359 0.768 0.224
OUT P 0.004 -0.002 0.011 0.076 -0.045 0.217 0.158
PL 0.382 0.347 0.418 0.434 0.286 0.612 0.169
BEDS 0.220 0.182 0.258 0.281 0.118 0.482 0.159
INT ERN 0.002 0.001 0.002 0.000 -0.001 0.002 0.001
S PEC 0.001 0.000 0.002 0.001 0.000 0.002 0.001
T09 0.036 0.008 0.065 0.017 -0.014 0.045 0.019
T08 0.023 -0.005 0.051 0.007 -0.013 0.031 0.009
T07 0.012 -0.016 0.040 0.002 -0.016 0.024 0.008
T06 0.023 -0.005 0.051 0.009 -0.011 0.032 0.009
T05 0.009 -0.017 0.034 0.004 -0.015 0.028 0.011

σu 0.013 0.009 0.017 0.001 0.000 0.003
σv 0.004 0.003 0.006 0.003 0.002 0.004
DIC -1106 -1596
Obs. 545 545

1) Variable cost (VC) is the dependent variable. Determinants of inefficiency are shown separately in Table 3

Estimates for the RPFM only have slightly different values [estimation means are represented

by β̄ of eq. (4)]. However, the results in the last column suggest that there is a fair amount of

variation in the frontier model parameters. Estimates reveal the diagonal of the covariance matrix

Σ of eq. (4), which can be interpreted as the variation in the parameters across hospital categories.

Heterogeneity is highest for inpatient care (CAS ES = 0.224), followed by the input price for labor

(PL = 0.169), capital stock (BEDS = 0.159), and outpatient care (OUT P = 0.158). It is remarkable

that even though heterogeneity in inpatient care is already adjusted for by a casemix index, indis-

putable variation remains among hospital categories. This raises doubts about the relevance of the

DRG classifications to control for cost variability in inpatient care. However, in order to determine

whether the greater flexibility of the RPFM is indicated by the data, both models are assessed by the

DIC information criteria shown in Table 2 (Spiegelhalter et al., 2002). The lower the DIC-value, the

better the goodness of fit of the estimated cost frontier, indicating that the RPFM (DIC = −1596)

has better fit than the SFM (DIC = −1106). The SFM seems to be too restrictive for Switzerland.
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More flexible variants are needed to capture all the existing heterogeneity among hospital categories.

For the present study, the more important question is the impact of unobserved heterogeneity

on the estimated inefficiency scores. As shown by Widmer et al. (2010), unmeasured heterogeneity

can masquerade as inefficiency uit. This is shown in the scatter and density plots in Figures 2 and

3. Figure 2 shows the inefficiency scores of the SFM and the RPFM. Figure 3 presents preliminary

indications of the influence of PPS.

Figure 2: Estimated Inefficiency Scores of the SFM and RPFM, Years 2004-9

A) Density of the SFM & RPFM Inefficiency Scores
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Mean Minimum Maximum Std. Dev. Skewness Kurtosis

SFM 0.066 0.019 0.294 0.039 2.277 10.851
RPFM 0.049 0.015 0.157 0.024 1.417 5.364

There are strong differences across the two models. Unobserved heterogeneity increases es-

timated inefficiency scores, potentially resulting in the overstatement of cost reduction (Figure 2

panel A). The mean inefficiency score of the SFM is 0.066, meaning that Swiss hospitals could on

average reduce 7 percent of their variable costs. However, using the RPFM, mean inefficiency re-

duces to about 5 percent. Approximately 2 percent of the SFM scores can be detected as unobserved

heterogeneity. A comparison of the individual scores in panel B is even more revealing. Although

both models have a high correlation of 0.75, hospitals are systematically measured as more ineffi-

cient in the SFM. In particular, hospitals that would have been rated highly inefficient in the SFM

gain ground when the RPFM is applied. The maximum inefficiency score decreases from 0.294 for

the SFM to 0.157 for the RPFM, putting the maximum cost reduction at about 16 percent. At a given

point in time and for the majority of Swiss hospitals, it clearly matters whether or not unobserved

heterogeneity is taken into account.

At this point, it is noteworthy that even the SFM reveals a significant smaller potential for cost

reduction than previous studies to the Swiss hospital sector, such as in Widmer et al. (2010), Farsi

and Filippini (2006), and Steinmann and Zweifel (2003). However, since only a subsample of public
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financed Swiss hospitals is used here, results can not directly be compared.

Next, it is of interest to determine whether unobserved heterogeneity biases inferences on ineffi-

ciency scores as well. A preliminary indication is given in Figure 3 for the effectiveness of PPS.

Figure 3: Estimated Inefficiency Scores by Model Type, Year 2004-9

A) Density of the SFM Inefficiency Scores
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B) Density of the RPFM Inefficiency Scores
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PPS=1 0.047 0.015 0.149 0.023

Surprisingly, even though SFM scores are indisputably biased, both models come up with com-

parable conclusions that PPS reduces hospital cost inefficiency. In the SFM, mean inefficiency

decreases from 0.073 to 0.064 (Figure 3 panel A). In the RPFM, mean inefficiency scores decrease

from 0.053 to 0.047 Figure 3 panel B). Both reductions are significant according to a Wilcoxon rank

sum test (the hypothesis that mean inefficiency is equal for the two groups can be rejected at the 95

confidence level). However, the decrease in inefficiency is larger in the SFM (mean = −0.009) than

in the RPFM (mean = −0.006), with a favor for the RPFM.

It is also worth noting at this point that because heterogeneity is specified as a time-invariant

random variable, time-invariant inefficiency could be misleadingly estimated as heterogeneity in the

RPFM as well. Thus, estimates of the inefficiency scores could be negatively biased, putting the true

influence of PPS on inefficiency somewhere in between the two cost frontier specifications.

5.2. Sources of Inefficiency

Given the encouraging results in the preceding section, further analysis of the influence of PPS

on inefficiency is warranted. Table 3 presents estimation results for the three models outlined in

Section 4.3. The dependent variable is the mean inefficiency ūit of eq. (2). All results are estimated
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together with the parameters of the cost frontier, shown in Table 2 for Model (1).5

Table 3: Determinants of Inefficiency by Model Type, Years 2004-9

Variables1) SFM RPFM

Mean 2.5% 97.5% Mean 2.5% 97.5%

Model 1:
Constant -0.13 -0.31 0.01 -0.17 -0.35 -0.04
PPS 0.02 -0.09 0.12 -0.01 -0.15 0.09
PPS:DRG -0.15 -0.31 -0.04 -0.08 -0.22 0.02

Model 2:
Constant -0.15 -0.35 -0.01 -0.17 -0.33 -0.05
CASEP -0.08 -0.30 0.13 -0.07 -0.26 0.11
GLOB 0.03 -0.07 0.14 0.00 -0.13 0.10
CASEP:DRG -0.06 -0.29 0.14 -0.04 -0.24 0.15
GLOB:DRG -0.15 -0.32 -0.03 -0.07 -0.22 0.03

Model 3:
Constant -0.16 -0.36 -0.03 -0.19 -0.36 -0.06
PPS 0.02 -0.11 0.13 -0.02 -0.16 0.09
PPS:DRG -0.13 -0.33 0.03 -0.08 -0.25 0.07
PPS:DRG1 -0.08 -0.29 0.10 -0.03 -0.21 0.14
PPS:DRG2 -0.01 -0.25 0.18 -0.02 -0.19 0.15

1) Mean inefficiency ūit is the dependent variable in each model. Technology parameters are dropped for simplicity;
those of Model (1) are shown in Table 2

In Model (1), an unexpected positive sign is obtained for PPS in the SFM (mean = 0.02), in-

dicating that PPS increases hospital inefficiency. In contrast, the more appropriate RPFM shows a

small negative value (mean = −0.01). This is rather counterintuitive, suggesting that unobserved het-

erogeneity substantively biases estimates of the influence of PPS on inefficiency. Yet, a 1 percent

decrease in inefficiency remains after controlling for unobserved heterogeneity. Estimates for the

interaction term PPS :DRG are more intuitive. In both cases, DRG is negatively correlated with hos-

pital inefficiency. However, the effect is unreasonably large in the SFM (mean = −0.15). Estimates

for Model (2) are similar. Although both approaches have comparable signs, estimates for GLOB

and GLOB:DRG differ significantly between the two approaches. In the SFM, GLOB is found to

have a positive influence (mean = 0.03) on inefficiency and no effect in the RPFM (mean = 0.00).

Moreover, the interaction term indicates an unreasonably high negative effect (mean = −0.15) in

the SFM. Even in Model (3), which controls for a possible time-lag of DRG, the estimated effects

are systematically larger in the SFM and again PPS seems to be significantly biased by unobserved

heterogeneity. Taken together, estimation results are less robust between the SFM and RPFM than

expected. The results mainly depend on the assumptions made to the production technology.

5 Technology parameters of Model (2) and (3) are not shown. They are found to be comparable to those discussed
in Section 5.1.
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Nevertheless, RPS appears to undermine efforts for cost containment, addressing hypothesis

(1). Inefficiency decreases by about −0.01 for hospitals with PPS, meaning that a switch to PPS

causes hospitals to reduce their variable costs by an average of 1 percent. However, as shown in

Model (2), efficiency gains depend substantially on whether hospitals are paid by a global budget

or receive payments per patient case. While a payment per patient case system reduces hospital-

specific inefficiency by about −0.07 on average, no efficiency gains occur wit a global budget system

(in the biased SFM they are even more inefficient, 0.03). The renegotiations that most cantons still

allow of the global budget at the end of the accounting period seem to reduce incentives for cost

minimization. Hospital managers may anticipate that additional financial support will be given for

unexpected operating cost.

While general remuneration settings per admission, which include a per diem element, can in-

duce hospitals to treat patients too long, a DRG system increases the incentive for a shorter length of

stay. As estimates from Table 3 show, this results in lower cost inefficiency for hospitals with a DRG

system, addressing hypothesis (2). Model (2), which shows the unique effects of DRG for hospitals

with a global budget and payments per patient case system, revealed that the efficiency gains of DRG

are even larger in the global budget (−0.07) than in the payment per patient case system (−0.04).

However, the combined effect of the payment per patient case system is larger (−0.11 = −0.07−0.04)

than the expected cost savings under a global budget system (−0.07 = 0.00− 0.07), making the pay-

ment per patient case system together with DRG classifications the preferable variant for Switzer-

land. Under a payment per patient case system with DRG classifications, hospitals have 11 percent

lower inefficiency scores on average than their counterparts with RPS. Moreover, Model (3) re-

veals that a DRG system is not fully effective in the first year after initiation. Although most cost

savings occur in the first year (DRG = −0.08), additional reduction is observable in the second

(DRG1 = −0.03) and third year (DRG2 = −0.02) after implementation.

Finally, these findings are in line with the theoretical expectations, for example outlined in Chalk-

ley and Malcomson (2000) and Newhouse (1996). With respect to the hospital payment reform be-

coming effective in 2012, these results support the policy expectations that PPS will rather increase

cost efficiency. However, the implementation has to be fully prospective and preclude any bailouts.

6. Concluding Remarks

The purpose of this article was to estimate the effectiveness of prospective payment systems

in reducing hospital cost inefficiency. Hospitals in Switzerland are analyzed, which, in contrast

to previous studies, enables a comparison of a retrospective per diem system with two prospective
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payment systems, one based on a global budget and other based on payments per patient case. Since

the results of previous studies may have been affected by the existence of unobserved heterogeneity,

two stochastic frontier models are used to control for potential bias. The first is a standard frontier

model (SFM) that assumes a homogeneous technology for all hospitals. The second one is a random

parameter frontier model (RPFM) that controls for unobserved heterogeneity with hospital group-

specific intercepts and slope parameters. A variable cost frontier is estimated for approximately 90

public financed Swiss hospitals during the time period of 2004 to 2009.

There are two main results from this analysis. First, a comparison of the standard and random pa-

rameter frontier models reveals that heterogeneity is substantial between Swiss hospital categories.

Inefficiency scores are biased upwards by two percent on average in the SFM. The maximum inef-

ficiency score decreases from 0.294 in the SFM to 0.157 in the RPFM, putting the maximum cost

savings at approximately 16 percent. Further analysis of the determinants of inefficiency shows that

unobserved heterogeneity systematically varies among hospitals, indicating that the SFM is not able

to detect the true effect of prospective payment systems on inefficiency. The assumptions made for

the production technology (SFM vs. RPFM) are important in the Swiss case.

Second, prospective payment systems are associated with an increase in hospital cost efficiency,

particularly for the payment per patient case system. Payment systems designed to put hospitals

at operating risk seem to be more effective in reducing hospital costs than retrospective payment

systems. However, these effects may be diminished if cantons do not firmly preclude a bailout.

Results relating to the global budget system reveal that if hospitals can obtain higher budgets to

cover past errors, then the incentive for cost minimization disappears. In addition, the settings for

the remuneration per admission are also important. Whereas general remuneration settings with

a per diem element can be used to unnecessarily keep a patient in the hospital, a DRG system

strengthens incentives for cost minimization. Nonetheless, estimates show that DRG is not fully

effective after initiation. Additional efficiency gains occur later on, although these are smaller in the

third year than in the second year. Therefore, these empirical findings are in line with the theoretical

expectations. With respect to the hospital payment reform effective in 2012, these results support

the expectations of Swiss politicians that the new payment system can contain health care costs.

However, the implementation has to be fully prospective and has to preclude any bailouts.

This analysis is not without limitations. Above all, unobserved heterogeneity is estimated as a

time-invariant random variable, meaning that all time-invariant random noise is measured as hetero-

geneity. Since inefficiency could be time-invariant as well, estimates to the RPFM underestimate in-

efficiency. Nevertheless, together with the SFM, which overestimates inefficiency, the true influence
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of PPS must lie somewhere between, making the results still reliable. Additionally, a translog form

would have been more accurate than the Cobb-Douglas form for the production technology since it

can test for specific features of technology (like economies of scale or homotheticity) by examining

the estimated model parameters. Unfortunately, limitations of the data dictated the application of

the reduced self-dual Cobb-Douglas form, which per definition is restricted to constant elasticities

of substitution and is constant in economies of scale. Thus, estimates might be biased in cases when

these assumptions are not reasonable. In spite of this limitation, the analysis not only identifies the

effect of PPS on inefficiency, it also outlines the importance of unobserved heterogeneity in deriving

unbiased inefficiency scores.
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Appendix: The Bayesian Specification

This paper uses Bayesian statistics to estimate eqs. (1) and (3). Inference is made from a pos-

terior distribution p(θ|X) of the unknown parameters (summarized as θ) given the observed data

(summarized as X). According to the Bayesian rule this is

p(θ|X) =
L(X|θ)p(θ)

p(X)
∝ p(θ)L(X|θ), (9)

expressed as the product of the prior information p(θ) and the likelihood L(X|θ), respectively.

For the estimates in Section 5, the posterior distribution for the SFM is specified as

p(α, β, u, γ, σ−2
v , σ−2

u ; C,Y,W,Z) ∝ p(α, β, γ, σ−2
v , σ−2

u )
N∏

i=1

T∏
t=1

p(u, γ, σ−2
u |Z)

×

N∏
i=1

T∏
t=1

1√
2πσ2

v

exp
[
−

1
2σ2

v
(Cit − [C(Yit,Wit;α, β) + uit])2

]
, (10)

where p(α, β, γ, σ−2
v , σ

−2
u ) are probability distributions of the unknown parameters. The likelihood

function in eq. (10) is as in Griffin and Steel (2007), normally distributed with σ2
v as the variance of

the random noise vit = Cit−[C(Yit,Wit;α, β)+uit]. This is a gain in flexibility over classical maximum

likelihood applications, where a joint density function of the random noise and the inefficiency

term is specified. Here, only random noise enters the likelihood function. Inefficiency is estimated

hierarchically as a latent variable along with the other parameters of the cost frontier.

Turning to the RPFM the posterior is given by

p(α, ᾱ, β, β̄, u, γ,Σ, σ−2
v , σ−2

u ; C,Y,W,Z) ∝ p(ᾱ, β̄, γ,Σ, σ−2
v , σ−2

u )
N∏

i=1

T∏
t=1

p(u, γ, σ−2
u |Z)

×

J∏
j=1

(2π)−K/2|Σ|−1/2exp
[
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1
2

((
α j

β j

)
−

(
ᾱ

β̄

))′
Σ−1

((
α j

β j

)
−

(
ᾱ

β̄

))]

×

N∏
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T∏
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1√
2πσ2

v

exp
[
−

1
2σ2

v

(
Cit − [C(Yit,Wit;α j, β j) + uit]

)2
]
. (11)

Again, the likelihood function is specified as a normal distribution and inefficiency is estimated as

a latent variable together with the other unknown parameters. Different is the specification of the

random intercept α j and the slope parameters β j, which are estimated at two levels. At the first level,

overall influences on hospital cost (ᾱ, β̄) are determined, corresponding to the first factor following

the proportionally sign of eq. (11). The second-level estimates of the individual effects (α j, β j)

defined in eq. (4) are derived from the multivariate normal distribution shown in eq. (11).
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In contrast to classical statistics, an application of Bayesian statistics requires additional infor-

mation for the prior distributions of the unknown parameters, since all parameters are considered as

random variables. They should comprise all information available before any data are involved in

the statistical analysis. In this case, the values for the hyperparameters are chosen in a way to imply

relatively vague but proper priors. In particular, the priors for the SFM and RPFM are assumed to

be independent,

p(α, β, γ, σ−2
v , σ

−2
u ) = p(α), p(β), p(γ), p(σ−2

v ), p(σ−2
u ) (12)

p(ᾱ, β̄, γ,Σ, σ−2
v , σ

−2
u ) = p(ᾱ), p(β̄), p(γ), p(Σ), p(σ−2

v ), p(σ−2
u ) (13)

Here, p(α) = fN[0, θα], p(ᾱ) = fN[0, θᾱ], p(β) = fN[0, θβ], p(β̄) = fN[0, θβ̄] have a normal distri-

bution with mean zero and a diffuse prior for their corresponding variance θ. The variance of the

likelihood function has a gamma distribution p(σ−2
v ) = fG[µ, θσ−2

v
] with diffuse shape and scale pa-

rameters. Inefficiency is assumed to be truncated normally distributed p(u, γ, σ2
u|Z) = f +

N [γZ, σ2
u]

with σ2
u = fG[5, (5 ∗ log(r̄)2)] and p(γ) = fN[0, θγ]/

√
fG[5, (5 ∗ log(r̄)2)]. This specification is in line

with Griffin and Steel (2007) and Koop et al. (1997), permitting to impose a priori information with

regard to mean efficiency, e f f = exp(−u). Following the formulation of Griffin and Steel (2007),

e f f = 0.875 is assumed for prior efficiency. Finally, the variance of the random parameters is spec-

ified as a Wishart distribution p(Σ) = fW[S ] in accordance with Eq. 11 with diffuse prior for the

covariance matrix S .

Finally, note that estimates of the unknown parameters can be derived by the marginal posteriors

of eqs. (10) and (11). However, it is not always possible to compute the posteriors analytically.

Therefore, iterative Monte Carlo Markov Chain (MCMC) simulation is used, which involves itera-

tive sampling from posterior parameter densities. Here, we use WINBUGS to derive the estimates

(see Ntzoufras, 2009 for an introduction). The corresponding computational codes for the SFM and

RPFM are shown in Table 4.
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Table 4: Computation codes for the standard frontier and the random parameter frontier model with
truncated normal distributed efficiency scores

Standard Frontier Model Random Parameter Frontier Model

model{ model{
for ( it in 1:NT ){ for( it in 1:NT ){

firm[it]← n[it,1] firm[it]← n[it,1]
typ[it]← n[it,3]

Likelihood: Likelihood:
Y[it] ∼ dnorm(mu[it], prec) Y[it] ∼ dnorm(mu[it], prec)
mu[it]← inprod(b[1:K+1], X[it, 1:K+1]) mu[it]← inprod(b[typ[it],1:K+1], X[it,1:K+1])
+ u[firm[it]] + u[firm[it]]

} }

Hyperpriors: Hyperpriors:
for (it in 1:NT) { for (it in 1:NT) {

u[it] ∼ djl.dnorm.trunc(mu1[it],lambda,0,1000) u[it] ∼ djl.dnorm.trunc(mu1[it],lambda,0,1000)
mu1[it]← inprod(t[1:L+1], Z[it,1:L+1]) mu1[it]← inprod(t[1:L+1], Z[it,1:L+1])

} }

for(j in 1:J){
for(k in 1:K+1){

b[j,k]← xi.b[j]*b.raw[j,k ]
}

b.raw[j,1:K+1] ∼ dmnorm(b.bar.raw[],b.tau.raw[,])
}

Priors: Priors:
for (k in 1:K+1) { for(k in 1:K+1){

b[k] ∼ dnorm(0, 0.0001) b.bar[k]← xi.b[k]*b.bar.raw[k]
b.bar.raw[k] ∼ dnorm(0,0.0001)
xi.b[k] ∼ dunif(-10,10)

} }

for(l in 1:L+1){ for(l in 1:L+1){
t[l]← gamma[l] / sqrt(lambda) t[l]← gamma[l] / sqrt(lambda)
gamma[l] ∼ dnorm(0.0, 1) gamma[l] ∼ dnorm(0.0, 1)

} }

lambda0← 5*log(r̄)*log(r̄) lambda0← 5 * log(r̄) * log(r̄)
lambda ∼ dgamma(5,lambda0) lambda ∼ dgamma(5,lambda0)

prec ∼ dgamma(0.1,0.01) prec ∼ dgamma(0.1,0.01)
b.tau.raw[1:K+1,1:K+1] ∼ dwish(S[1:K+1, 1:K+1], nu)
nu← K+1
Sigma.B.raw[1:K+1,1:K+1]← Inverse (b.tau.raw[,])

for(k in 1:K+1){
Sigma.B[k]← abs(xi.b[k])* sqrt(Sigma.B.raw[,])

}
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