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Abstract

I expose the risk of false discoveries in the context of multiple treatment effects. A false discovery
is a nonexistent effect that is falsely labeled as statistically significant by its individual t-value.
Labeling nonexistent effects as statistically significant has wide-ranging academic and policy-related
implications, like costly false conclusions from policy evaluations. I reexamine an empirical labor
market model by using state-of-the art multiple testing methods and I provide simulation evidence.
By merely using individual t-values at conventional significance levels, the risk of labeling probably
nonexistent treatment effects as statistically significant is unacceptably high. Individual t-values even
label a number of treatment effects as significant, whereas multiple testing indicates false discoveries
in these cases. Tests of a joint null hypothesis such as the well-known F -test control the risk of false
discoveries only to a limited extent and do not optimally allow for rejecting individual hypotheses.
Multiple testing methods control the risk of false discoveries in general while allowing for individual
decisions in the sense of rejecting individual hypotheses.
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1 Introduction

I put the danger of false discoveries into perspective by providing simulation evidence and by reexamining
treatment effects within an empirical labor market model of Lalive et al. (2005). A false discovery is a
nonexistent effect that is falsely labeled as statistically significant by its individual t-value. I provide
evidence that the risk of making false discoveries is unacceptably high if one does not account for the
danger of false discoveries. It is shown that individual t-values even label a number of treatment effects
as statistically significant that are probably false discoveries. As usual in inferential statistics, one can
only ’prove beyond a reasonable doubt’ that an effect exists. One can show by multiple testing methods
that some individually significant treatment effects are probably nonexistent, as quantified in a so-called
multiple significance level. In this paper, ’nonexistent treatment effects’ should be understood in this
inferential way.

In the empirical labor market model of Lalive et al. (2005), there are multiple treatment effects.
These treatment effects are potentially interrelated, thus one must consider the treatment effects jointly.
The central empirical question is whether some of the treatment effects being individually significant are
false discoveries in the sense of not having controlled the risk of labeling nonexistent treatment effects
as statistically significant, that is, of making false discoveries. I reexamine the empirical model of Lalive
et al. (2005) with respect to making false discoveries. I control the risk of labeling nonexistent treatment
effects as (individually) significant by using the powerful multiple testing methods from Romano and
Wolf (2005).

To ease understanding, I chose the somewhat vague phrase ’one must consider the effects jointly ’
instead of the technically correct ’one must consider effects with a multiple error type one’. In reading
jointly, most readers probably think of an F -test. However, an F -test cannot control the risk of labeling
some nonexistent treatment effects as statistically significant. To see why, let us first consider the
difference between testing a number of individual hypotheses and testing one joint null hypothesis; the
difference between the former and multiple testing is explained in a second step. The crucial first point
is that a joint null hypothesis does not allow for individual decisions in the sense of rejecting individual
null hypotheses from a joint point of view.

Number of individual hypotheses versus one joint hypothesis For the sake of exposition,
consider the regression

yi = β0 + β1x1,i + β2x2,i + β3x3,i + εi. (1)

Suppose that β1, β2, β3 measure treatment effects. It is clear that testing one joint null hypothesis
H0,joint : β1 = β2 = β3 = 0 with an F -test does not necessarily yield the same result than testing three
single null hypotheses H0,1 : β1 = 0, H0,2 : β2 = 0, and H0,3 : β3 = 0 in the following sense. It may
be the case that the first and third individual hypothesis H0,1, H0,3 are rejected, although the joint
H0,joint cannot be rejected. Nonetheless, some coefficients may still be significant by jointly considering
the three coefficients, despite the fact that the F -test could not reject H0,joint : β1 = β2 = β3 = 0.
Furthermore, it may happen that no individual t-test rejects while the joint F -test rejects, as for highly
correlated regressors. By t-testing I mean calculating the tistic and comparing it to the appropriate
quantile of the t (or normal) distribution. Of course, simply relying on individual t-tests of single null
hypotheses and bluntly discarding the joint point of view of the F -test is not the solution. The more
general Wald, Lagrange Multiplier (LM), or Likelihood Ratio (LR) tests have the same drawback than
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the F -test. They can just test one joint nonlinear hypothesis H0,joint : a(θ0) = 0 against its joint
alternative hypothesis1. We really want a test that considers statistical significance jointly, as in the
F -test. But we also want this joint test to tell us which individual coefficients out of the joint null
hypothesis are individually significant while taking into account their joint nature. Section 3 provides
graphical illustrations in this respect. We want a joint test in which individual rejections are possible.

Individual testing versus multiple testing To this end, multiple testing methods tell us exactly
which null hypotheses out of the family of individual null hypotheses can be rejected at a given multiple
significance level. A multiple significance level takes account of the danger of false discoveries. None
of the aforementioned tests of the joint null hypothesis can optimally tell us which single coefficients
are statistically significant as seen from a point of view joint with the other coefficients under scrutiny.
Table 1 explains individual versus joint versus multiple testing for the case of p > 1 regression coefficients.

Risk of false Individual deci- Number of
discoveries controlled sion possible null hypotheses

Individual tests No Yes p > 1a

F -test or Wald, LM, LR Maybe Nob onec

Multiple testing Yes Yes p > 1d

aThere is one null hypothesis for each of the p coefficients H0,s : βs = 0 for s = 1, . . . , p.
bRectangular approximations to the elliptic joint confidence region are possible. See Section 3.
cAll individual coefficients are merged to one joint null hypothesis H0,joint : β1 = . . . = βp = 0.
dAll individual coefficients are merged to a family of null hypotheses {H0,s : βs = 0, s = 1, . . . , p}.

Table 1: Multiple Testing allows joint testing while individual decisions are possible

The crucial point is that only multiple testing methods can generally control the risk of false dis-
coveries, while optimally allowing for rejecting individual hypotheses from a joint point of view.

In our stylized regression example (1), suppose as before that only β1 and β3 are individually
significant according to t-testing β1, β2, and β3 at the 5% level. Regardless of the outcome of testing
the joint H0 : β1 = β2 = β3 = 0 at the 5% level, it may well be the case that a multiple error type one
is very large instead of being at a conventional level between 1% and 10%. In this paper, I consider a
multiple error type one called the familywise error rate FWE that is defined as follows

Familywise error rate FWE = P (Number of falsely rejected null hypotheses ≥ 1)

= P (Number of false discoveries ≥ 1).
(2)

where P (·) denotes the probabilty mechanism. The well-known error type one ’α’ of an individual test
is the probability of falsely rejecting the null hypothesis H0 : βs = 0 for one specific s ∈ {1, . . . , p}.
Thus, it makes sense that the multiple error type one FWE is an error probability as well. Controlling
the error probability FWE at the 5% level means ensuring that FWE ≤ 5%. If the familywise error
rate is not explicitly taken care of, it may easily be the case that only FWE ≤ 50% holds. Section 2
provides a Monte Carlo simulation in this respect.

Note that a familywise error rate FWE at 50% instead of at 5% renders statistical inference useless.
One cannot trust in the comparison of t-values to the conventional critical value c

N(0,1)
1−α/2, or to its

1Where a : Rp → Rp is a continuously differentiable function
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bootstrap version cboot1−α/2, in presence of such a high probability of labeling one or more nonexistent
effects as statistically significant. In the empirical results of this paper, we will even see an empirical
instance where carrying out six individual t-tests at the 5% level translates to the FWE being around
90%, that is, the probability of having made one or more false discoveries is around 90%.

Why False Discoveries Matter A high familywise error rate FWE translates into a high risk of
having labeled some treatment effects as individually significant that do not exist, which statisticians
call false discoveries. The larger the family of individual null hypotheses is that are scrutinized jointly,
the higher is the risk of labeling some treatment effects as significant that do not exist. Thus, one runs
the uncontrolled danger of so-called false discoveries by testing merely individually.

Not controlling for false discoveries has wide-ranging academic and policy-related implications. In
policy evaluation, if effects are falsely labeled as significant, wrong policies may be pursued, leading to
a waste of public funds or to an unexpected deterioration where an improvement was expected. False
discoveries are sometimes even published results as if there had been no prescreening of results based
on individual p-values. Heckman et al. (2010) refer to this problem as ’cherry picking’. In this sense,
results that ’did not work’ should be reported along with results that ’worked’. The common robustness
checks that report results of different specifications certainly are steps in the right direction.

The remainder of this paper is organized as follows. Section 2 provides simulation evidence on
how large the danger of false discoveries can be by testing merely individually. Section 3 explains
the difference between testing one joint null hypothesis and multiple testing of a family of hypotheses
with some graphs. Section 4 briefly summarizes the labor market model in Lalive et al. (2005) that I
reexamine. A more detailed description of the model is in Appendix A. Section 5 describes different
extents of detail in distinguishing treatment effects and reports results from individual and multiple
testing of these treatment effects. Section 5 thus indicates to which extent the danger of false discoveries
is ignored by individual t-tests within the empirical labor market model of Lalive et al. (2005). Section
6 concludes.

2 Individually Testing p > 1 Null Hypotheses versus Multiple Testing

2.1 Simulation Setup

The point that I illustrate in this section is: How large can the probability of falsely rejecting one or
more null hypotheses (FWE) be by naively testing all p null hypotheses merely individually?

Consider the following simulation setup. There are p explanatory random variables X1, . . . , Xp,
with which one associates p treatment effects β1, . . . , βp onto the random response variable Y . The
explanatory variables may be correlated with each other. The data generating process is

Y = c+ β1X1 + . . .+ βpXp + εt, (3)

where εt ∼ N(0, 1). There is not a single (nonzero) treatment effect: β1 = . . . = βp = 0.
The empiricist only observes data sets of size N from the data generating process (3), resulting in

estimates β̂1, . . . , β̂p that may assume nonzero values based on an observed sample. Given that there
does not exist any treatment effect, a test that labels any β̂s, s = 1, . . . , p, as statistically significant
commits an error type one; any sensible test at level α ensures that this error does not occur more
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often than α ·M times, at least asymptotically as the number of data sets M →∞. Let us check if the
conventional t-test at level α falsely labels nonexistent treatment effects as significant in no more than
α ·M cases, for the null hypothesis H0,s : βs = 0 versus alternative HA,s : βs 6= 0 for each s = 1, . . . , p.

First, I generate M = 2000 data sets of size N from the data generating process (3), denoted as
x(1), . . . , x(M). Second, I compute the estimates β̂(m)

1 , . . . , β̂
(m)
p based on each generated data set x(m),

as well as the respective t-statistics t(m)
1 , . . . , t

(m)
p . H0,s is rejected on data set x(m) if |t(m)

s | > c1−α/2

holds. If one or more t-tests reject on data set x(m), which is the case if the number of rejections∑p
s=1 1[|t(m)

s | > c1−α/2] is larger than one, a familywise error FErr(m) is committed on data set x(m)

FErr(m) = 1

[
p∑
s=1

1[|t(m)
s | > c1−α/2] > 1

]
(4)

The estimated probability of falsely labeling one or more β̂s as statistically significant (committing
a FErr) at level α is the arithmetic mean over all M simulation runs

FWE =
1
M

M∑
m=1

FErr(m) (5)

Clearly, FWE ≈ α should hold if individually t-testing p treatment effects should be any help in
controlling the danger of labeling nonexistent treatment effects as statistically significant. I check this in
a number of cases. Namely, let the number of (nonexistent) treatment effects p lie in {2, 5, 10, 20}. I allow
the explanatory variables [X1, . . . , Xp]′ to be correlated with each other, according to the covariance
matrix

Σ =



1 ρ ρ2 . . . ρp−1

ρ 1 ρ . . . ρp−2

ρ2 ρ 1 . . . ρp−3

...
...

...
. . .

...
ρp−1 ρp−2 ρp−3 . . . 1


,


X1

...
Xp

 ∼ N(0,Σ) (6)

for ρ ∈ {0.9, 0.5, 0,−0.5,−0.9}. That is, the further the indices s, q of two explanatory variables Xs, Xq

are apart, the less Xs, Xq are correlated with each other in absolute value. A data set of explanatory
variables x(m) can then be simulated from a set of p i.i.d. N(0, 1) variables by using the triangular
Cholesky factor C as in Σ = CC′.

2.2 Simulation Results

Table 2 summarizes the results from simulation setup 2.1 for: numbers of (nonexistent) treatment effects
p ∈ {2, 5, 10, 20}, correlation ρ ∈ {0.9, 0.5, 0,−0.5,−0.9}, size of data sets N = 1000 2, level of individual
tests α = 5%, and number of simulation runs M = 2000.

First, note that the higher the number of treatment effects p, the higher is the probability of
discovering one or more (nonexistent) treatment effects. Hence, the higher the number of multiple
treatment effects is, the higher is the danger of making one or more false discoveries. Note that even
for only two treatment effects p = 2, the FWE is 7.1% at best instead of α = 5%, which a sensible
(multiple) test ought to ensure. For p = 5 and larger, the probability of falsely labeling one or more
nonexistent effects as significant rises to 63.2%.

2For N = 100, the results are virtually identical
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FWE ρ = 0.9 ρ = 0.5 ρ = 0 ρ = −0.5 ρ = −0.9

p = 2 7.3% 9.6% 10.1% 9.1% 7.1%
p = 5 19.4% 21.4% 23.2% 21.6% 19.8%
p = 10 36.4% 38.9% 40.3% 38.3% 36.7%
p = 20 57.8% 60.2% 63.2% 60.1% 57.9%

Table 2: Probability of falsely labeling one or more nonexistent treatment effects out of p as statistically
significant by doing p t-tests individually at level α = 5%

Second, observe that the probability of labeling nonexistent treatment effects as significant (FWE) is
highest for uncorrelated treatment effects ρ = 0. The higher the correlation between the p explanatory
variables is in absolute value, the lower is the probability of committing a familywise error, which is
not surprising. In case of perfect correlation ρ = 1, one essentially tests only one null hypothesis in
individually testing all p null hypotheses {H0,s : βs = 0, s = 1, . . . , p}; knowing one β̂s means knowing
all other β̂q, s 6= q. For uncorrelated X1, . . . , Xp, however, β̂s is unrelated to β̂q = 0 for s 6= q: thus each
single β̂s, s = 1, . . . , p, poses a danger of making a false discovery.

Third, there does not seem to be a systematic pattern with respect to positive or negative correlation
ρ, the latter meaning alternating between negative and positive correlation as in row [1, ρ, ρ2, . . . , ρp−1]
of Σ 3.

Bear in mind that the probability of labeling one or more nonexistent treatment effects as significant
can be much higher for a given number of treatment effects p than in this simple simulation study. The
empirical part provides an example where the FWE is 90% for p = 6 treatment effects.

This section illustrated that individual confidence intervals at level α do not control the probability
of labeling one or more treatment effects at level α. Hence, the confidence intervals resulting from
naively testing s = 1, . . . , p individual null hypotheses under N(0, 1) or under bootstrapping

naive CIN(0,1)
βs

= [β̂s − σ̂βsc
N(0,1)
1−α , β̂s + σ̂βsc

N(0,1)
1−α ] (7)

naive CIbootβs
= [β̂s − σ̂βsc

boot
1−α, β̂s + σ̂βsc

boot
1−α] (8)

are too small. In geometric terms, this being too small means that the rectangular region spanned by
all s = 1, . . . , p individual naive CIN(0,1)

βs
or naive CIbootβs

has coverage probability smaller than 1− α.

3 Tests of One Joint Null Hypothesis versus Multiple Testing

One of the key issues in comparing tests of one joint null hypothesis to multiple testing is whether
individual decisions in the sense of rejecting individual null hypotheses are possible, as summarized in
Table 1. From a purely mechanical point of view, individual decisions are possible with an F -test, say,
by projecting the ellipsoidal confidence region onto the axes. However, the H0,joint-derived individual
confidence intervals are too large. In multiple testing, however, one sets up a rectangular joint confidence
region, leading to small individual confidence intervals with favorable size and power properties.

3For all off-diagonal elements in Σ being negative, the Cholesky factor does not exist because Σ is not positive semi-

definite in this case.
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To see why, consider the case of a joint confidence region for the two-dimensional parameter (β1, β2)
from a linear regression such as in equation (1), representing two treatment effects. In multiple testing,
one constructs a rectangular joint confidence region, as depicted in Figure 1. Thus, individual decisions
based on this rectangular joint confidence region are straight forward. One just projects each side of
the rectangle onto the corresponding axis, where small confidence intervals result. Specifically, one finds
one single multiple critical value cMTest

1−α in multiple testing. The individual confidence intervals directly
inferred from the rectangular joint confidence region are

individual CIMTest
βs

= [β̂s − σ̂βsc
MTest
1−α , β̂s + σ̂βsc

MTest
1−α ] (9)

for each individual parameter βs. In the β1, β2 example above, the resulting CIMTest
β1

and CIMTest
β2

are large enough, such that the familywise error rate FWE as in (2) is controlled. But CIMTest
β1

and
CIMTest

β2
are also small enough so that a rejection occurs with a high probability when H0,s : βs = 0 is

wrong, meaning that the test has high statistical power.

1− α
Generalized Joint

Confidence Region
β1

β2

]

]

[

] P
ro

je
ct

ed
C
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T
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t

β
2

Projected CIMTest
β1

β̂1 − σ̂β1c
MTest
1−α β̂1 + σ̂β1c

MTest
1−α

β̂
2
−
σ̂
β
2
cM

T
es
t

1
−
α

β̂
2

+
σ̂
β
2
cM

T
es
t

1
−
α

Figure 1: Individual CI’s inferred from rectan-
gular joint confidence region as in Romano and
Wolf (2005)’s multiple testing method
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β2

]][

]
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β
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Projected CIjointβ1

? ?

?
?

Figure 2: Individual CI’s inferred from ellip-
soidal joint confidence region as in a test of
one joint null hypothesis, e.g. F -test.

In setting up a joint null hypothesis H0,joint : β1 = β2 = 0 and F -testing it at significance level α, we
implicitly set up an ellipsoidal joint confidence region as depicted in Figure 2. The more general Wald,
LM, LR tests make use of ellipsoidal confidence regions as well, by considering an ellipsoidal confidence
region at level 1− α whose ellipsoidal boundary is characterized by points with a constant χ2

1−α value.
Testing H0,joint can be carried out by checking whether the null-hypothesized values of (β1, β2) lie
outside the ellipsoidal joint confidence region, in which case one rejects H0,joint. If we want to make
individual decisions based on this H0,joint-derived ellipsoidal confidence region, we essentially construct
two individual confidence intervals from the joint confidence region. One general way of carrying out
this projection is to choose the bounds of the individual confidence intervals as the maximum value the
joint confidence region attains in the associated dimension, which is represented by the light-gray lines
enveloping the ellipsoid in Figure 24.

4The Scheffé (1953) method, based on inferring from an elliptical joint region onto individual hypotheses, is not optimal
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The problem resulting from these individual decisions based on H0,joint is the following. The ellipsoid
itself has good coverage properties and is powerful with respect to H0,joint : β1 = β2 = 0. However, the
projected individual H0,joint-derived confidence intervals CIjointβ1

and CIjointβ2
are too large, in the sense

that they have too little power against the individual hypotheses. Additionally, it is not clear whether
using CIjointβ1

and CIjointβ2
controls the familywise error rate FWE at level α.

4 False Discoveries in Estimating Multiple Treatment Effects

I now turn to reexamining the empirical labor market model of Lalive et al. (2005) with respect to false
discoveries. For reasons of brevity, I describe their model only shortly in this section. Their competing
risks duration model is outlined in more detail in Appendix A.

Lalive et al. (2005) analyze the treatment effects of benefit sanctions and corresponding warnings on
the duration of unemployment. Having controlled for observable characteristics x of an individual, let
δ1 denote the treatment effect of a warning, and let δ2 denote the treatment effect of a benefit sanction
on the duration of unemployment.

Common sense suggests that one tries harder to find a job when one is faced with less unemployment
benefits. A warning of an unemployment benefit sanction may even be enough to induce the unemployed
to look harder for jobs. If the benefit sanction is even enforced, there is a strong disutility from being
unemployed, thus even the most recalcitrant unemployed have a strong incentive to find a job. This
is formalized in the theoretical economic model of Boone and van Ours (2006). Lalive et al. (2005)
quantify the two treatment effects of a warning, δ̂1, and of a benefit sanction, δ̂2, on the duration of
unemployment. They use a large and reliable data set with 10,404 observations from Swiss labor market
authorities to estimate the model.

In what follows, I look at cases in which the danger of making false discoveries is present. Lalive
et al. (2005) do not take account of the danger of false discoveries, since they just report individual
t-values. This corresponds to individually t-testing each coefficient. Given 10,404 observations, it seems
reasonable to compare the observed t-statistics to quantiles from the standard normal distribution. The
more coefficients that one tests individually, the higher is the danger of labeling nonexistent treatment
effects as statistically significant, hence making false discoveries. Therefore, I will progressively increase
the number of treatment coefficients under multiple statistical scrutiny within each of the following
subchapters. In this step-wise manner, I will quantify the risk of making one or more false discoveries.
Hence, we will see to which extent individual t-testing ignored the risk of labeling nonexistent treatment
effects as statistically significant in the empirical context of Lalive et al. (2005)’s labor market model.

5 Empirical Results

A multiple test of the two treatment effects δ̂1 (warning) and δ̂2 (benefit sanction) as in (10) is a natural
starting point

{H0,1 : δ1 = 0, H0,2 : δ2 = 0}. (10)

The difference between individual and multiple testing is not pronounced though, thus the results are
not reported. This may be due to the low number of two null hypotheses or due to the correlation of

for FWE control either, as explained in detail in an oncoming paper from Wolf, Wunderli
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the test statistics in the two null hypotheses, as I illustrated in Section 2.

5.1 Duration Dependence in Treatment Effects

5.1.1 Family of Null Hypotheses

If one accounts for flexible duration dependence of the treatment effects themselves, individual testing
may find too many individually significant treatment effects. Table A.2 of Lalive et al. (2005) reports
results of treatment effects taking account of duration dependence therein. Thus, the first multiple test
scrutinizes the following family of null hypotheses while controlling the risk of false discoveries

{H0,1 : δ1,’0-29 days’ = 0, H0,2 : δ1,’≥30 days’ = 0,

H0,3 : δ2,’0-59 days’ = 0, H0,4 : δ2,’≥60 days’ = 0}
(11)

δ1,’0-29 days’ denotes the treatment effect of a warning on the duration of unemployment during the
first 29 days after the warning. 30 days or more after the warning was communicated to the unemployed,
δ1,’≥30 days’ denotes the incremental effect to δ1,’0-29 days’. Hence, δ1,’≥30 days’ < 0 does not mean that
the effect of the warning after 30 days was to increase the duration of unemployment. It means that
the overall effect of a warning after 30 days is δ1,’0-29 days’ + δ1,’≥30 days’, which is thus smaller than the
treatment effect of a warning during the first 29 days δ1,’0-29 days’. Therefore, the family of alternative
hypotheses to (11) needs to be two-sided as follows

{HA,1 : δ1,’0-29 days’ 6= 0, HA,2 : δ1,’≥30 days’ 6= 0,

HA,3 : δ2,’0-59 days’ 6= 0, HA,4 : δ2,’≥60 days’ 6= 0}.
(12)

5.1.2 Testing Results

Table 3 summarizes the results from individual and multiple testing of (11) with two-sided alternative
hypotheses. Each coefficient Coeff. in the first column is followed by its estimate Ĉoeff. and its t-statistic
|t|. The columns labeled as individual tests list the critical values c··, the p-values p·, and if the individual
test rejected at the 5% level, denoted as rej·. First under the normal distribution as in naive CIN(0,1)

βs

in (7), denoted as cN0.975, pN , rejN . Second under bootstrapping as in naive CIbootβs
in (8), denoted as

cboot|.|,0.95, pboot, rejboot. Details of the one- and two-sided bootstrapping methodology are in Appendix B.
Note that all tests are at the 5% level5.

The columns labeled as ’multiple test’ contain the multiple critical value cMTest
|.|,0.95 such that the

familywise error rate FWE defined in (2) is controlled at the 5% level. This means that we control the
risk of labeling one or more nonexistent treatment effects as statistically significant (making one or more
false discoveries) at the 5% level. The last column rejMTest indicates which individual null hypotheses
can be rejected using the multiple test that controls the risk of making false discoveries.

First, observe that the first three coefficients are statistically significantly different from zero under
the N -distribution assumption, under bootstrapping, and under multiple testing. Thus, despite the fact
that Lalive et al. (2005) just t-tested individually, they seem not having made false discoveries in the
sense of having labeled nonexistent treatment effects as significant6.

5cN0.975 = cN|.|,0.95 corresponds to the cboot
|.|,0.95 notation in Romano and Wolf (2005)

6We cannot match their reported results exactly, because we do not have the set of regressors k denoting public

employment service dummies (PES), see Appendix A.
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individual tests at 5% level multiple test 5% level

Coeff. Ĉoeff. |t| cN0.975 pN rejN cboot|.|,0.95 pboot rejboot cMTest
|.|,0.95 rejMTest

δ1,’0-29 days’ 0.4103 5.51 1.96 0.000 yes 2.00 0.000 yes 2.40 yes
δ1,’≥30 days’ −0.2522 3.25 1.96 0.000 yes 2.05 0.012 yes 2.40 yes
δ2,’0-59 days’ 0.2925 2.47 1.96 0.007 yes 2.17 0.032 yes 2.40 yes
δ2,’≥60 days’ 0.0437 0.42 1.96 0.338 no 1.97 0.701 no 2.40 no

Table 3: Results from testing four treatment effects under two-sided alternatives

Second, note that the N -distribution assumption seems quite accurate, given that the bootstrap
critical values cboot|.|,0.95 and the N derived cN0.975 are quite close to each other. This does not hold for the
associated p-values pN and pboot, though. Also note that the individual critical values cboot|.|,0.95 differ from
each other, while the critical value resulting from multiple testing is one and the same by construction
for all coefficients.

It is possible to control more liberal multiple error types I, such as the 2-FWE being the probability
of making two or more false discoveries; the interested reader finds these testing results in Appendix C.

5.1.3 Quantifying the Risk of Making False Discoveries by Individual Testing

The bootstrapping of the model produced slightly different individual critical values for the t-tests
than by using the N -assumption. That the difference between assuming N and bootstrapping is not
pronounced is not surprising: there are 10, 404 data points. This conclusion was drawn in Table 3 by
comparing the individual N -assumed critical values 1.96 with the individual bootstrap critical values
cboot|.|,0.95 that range from 1.97 to 2.17.

How large is the risk of making one or more false discoveries7 by individual testing? It turns out
that one needs to be ready to run the risk of making one or more false discoveries at around 20% to
justify the N -assumed critical value of 1.96. Thus, by individually testing at the 5% significance level
under N , the implicit risk of making one or more false discoveries is around 20%. This is clearly too
large a multiple error type one to justify it with conventional significance levels. Hence, conventional
significance levels at the individual testing level do not translate into putting conventional thresholds
on multiple error types one that take account of the danger of false discoveries.

Note: In principle, this high risk of making false discoveries can be attributed to the following two
sources

1. Individual bootstrap testing versus multiple testing

2. Assumed normality versus data-driven approximation of the data generating distribution by boot-
strapping

Given that there are 10, 404 i.i.d. data points, the sampling distribution should be close to the normal
distribution as a central limit theorem suggests. Thus, the main source of this high risk of making false
discoveries should be the naive individual testing instead of the multiple test. Quantifying the impor-

7That is, of falsely labeling one or more treatment effects that do not exist as statistically significant
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tance of these two sources exactly requires a very computing-intensive two-stage bootstrap simulation,
as shortly described in the note at the end of Appendix B.

5.2 Qualification Dependence in Treatment Effects

5.2.1 Family of Null Hypotheses

A natural question to ask is whether the effect of warnings or benefit sanctions on the duration of
unemployment depends on the qualification of an unemployed person. One may also expect a systematic
pattern in treatment effects with respect to gender, age groups, or with respect to other explanatory
variables. I choose to differentiate the two treatment effects δ1, δ2 with respect to three levels of
qualification quali1, quali2, quali3 here, resulting in six treatment effect coefficients. The family of null
hypotheses containing the six treatment effects is

{H0,1 : δ1,’quali1’ = 0, H0,2 : δ1,’quali2’ = 0, H0,3 : δ1,’quali3’ = 0,

H0,4 : δ2,’quali1’ = 0, H0,5 : δ2,’quali2’ = 0, H0,6 : δ2,’quali3’ = 0}
(13)

Note that there are no incremental effects here as in the case of duration dependence in treatment
effects. This means that it does not make economic sense if any of these qualification differentiated
treatment effects is negative. Hence, the family of alternative null hypotheses is one-sided

{HA,1 : δ1,’quali1’ > 0, HA,2 : δ1,’quali2’ > 0, HA,3 : δ1,’quali3’ > 0,

HA,4 : δ2,’quali1’ > 0, HA,5 : δ2,’quali2’ > 0, HA,6 : δ2,’quali3’ > 0}.
(14)

5.2.2 Testing Results

The results from these qualification differentiated treatment effects (13) are listed in Table 4.
Each coefficient Coeff. in the first column is followed by its estimate Ĉoeff., and its t-statistic labeled

as t. The columns labeled as individual tests list the critical values c··, p-values p·, and rejection at the
5% level rej· of the individual tests. First under the normal distribution cN0.95, pN , rejN , and second
under bootstrapping cboot0.95, pboot, rejboot.

The columns labeled as ’multiple test’ contain the multiple critical value cMTest
0.95 such that the

multiple error type one ’probability of falsely rejecting one or more null hypotheses’ is controlled at the
5% level. This means that I control the risk of labeling one or more nonexistent treatment effects as
statistically significant (one or more false discoveries) at the 5% level. The last column rejMTest indicates
which individual null hypotheses can be rejected using the multiple test instead of the individual tests.

δ1,’quali3’, δ2,’quali3’, and δ1,’quali2’ are found to be significantly larger than zero under individual testing
with an N assumption. Under individual testing using bootstrapping instead of the N assumption, one
also labels three treatment effect as statistically significant. However, these three individually significant
treatment effects from individual testing are probably false discoveries, as multiple testing at the 5%
significance level indicates. Under multiple testing, none of the six treatment effects are found to be
statistically significantly greater than zero8. Thus, individual tests seem to falsely label these treatment
effects as statistically significant at the 5% level, while multiple testing indicates that these are false
discoveries at the 5% level.

8Nonetheless, by controlling the FWE at the 10% level rather than at the 5% level, the three treatment effects that are

significant under individual bootstrap testing remain statistically significant under multiple testing.
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individual tests at 5% level multiple test 5% level

Coeff. Ĉoeff. t cN0.95 pN rejN cboot0.95 pboot rejboot cMTest
0.95 rejMTest

δ1,’quali3’ 0.3282 4.39 1.64 0.000 yes 0.783 0.000 yes 4.43 no
δ2,’quali3’ 0.1805 1.70 1.64 0.044 yes 1.233 0.019 no 4.43 no
δ1,’quali2’ 0.3795 4.28 1.64 0.000 yes 0.687 0.002 yes 4.43 no
δ2,’quali2’ 0.1855 1.40 1.64 0.081 no 1.344 0.044 yes 4.43 no
δ1,’quali1’ 0.0409 0.80 1.64 0.211 no 4.371 0.953 no 4.43 no
δ2,’quali1’ 0.0020 0.02 1.64 0.490 no 2.954 0.910 no 4.43 no

Table 4: Results from testing six treatment effects under one-sided alternatives

5.2.3 Quantifying the Risk of Making False Discoveries by Individual Testing

Here again, the question is of what magnitude the risk of making false discoveries is by testing only
individually. Note that the multiple critical value 4.43 puts a 5% threshold on the familywise error
rate9. The individual critical value under N at 1.64 is very far off the multiple critical value 4.43.

It is thus not surprising that the risk of making one or more false discoveries is around an unaccept-
ably high 90% if one tests individually under the N distribution. The same note as in Subsection 5.1.3
concerning the two sources of the risk of making false discoveries applies here.

6 Conclusions

Is is important to test multiple effects in a multiple testing manner to guard against the danger of making
false discoveries. If we test coefficients only individually by looking at their t-statistics, we run the danger
of so-called false discoveries. That is, we run the danger of labeling treatment effects as statistically
significant that do not exist. The simulation study illustrated that the higher the number of coefficients
is that one looks at jointly, the higher is the risk of making such false discoveries. Furthermore, the
lower the correlation is between the random variables associated with the null hypotheses, the higher
is the risk of making one or more false discovery.

To this end, the well-known F -test or the more general Wald, Lagrange Multiplier, or Likelihood
Ratio test have one major shortcoming. Any of these joint tests can essentially test just one joint null
hypothesis against its joint alternative hypothesis. Thus, any of these tests can only tell us in special
cases which individual coefficients contained in the joint null hypothesis are significant from a joint
point of view; multiple testing methods generally allow for individual rejections.

The study from Lalive et al. (2005) that I reexamine uses a data set of 10,404 independent observa-
tions. Individual testing at the 5% significance level under the normal distribution translates into high
risks of making false discoveries. Namely, the probabilities of falsely labeling one or more nonexistent
treatment effects as statistically significant is around 20%10 or even around 90%11.

Multiple testing methods allow putting multiple treatment effects under joint statistical scrutiny,
while controlling the risk of making false discoveries. Lalive et al. (2005) do not seem to have reported

9I.e., making one or more false discoveries
10Four treatment effect coefficients, hence four null hypotheses
11Six treatment effect coefficients, hence six null hypotheses
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false discoveries, despite the fact that they just tested their treatment effects individually.
However, by differentiating treatment effects of benefit sanctions on the basis of qualifications11,

I provide evidence that individual t-tests probably make three false discoveries. That is, individual
testing labels three treatment effects out of six as statistically significant. By putting a 5% threshold
on the risk of making one or more false discoveries, these three individually significant treatment effects
are indicated as false discoveries by multiple testing methods from Romano and Wolf (2005).

Unfortunately, most applied work does not take the risk of false discoveries into account, since only
individual t-statistics are reported, or a test of one joint null hypothesis at the most. Among others, this
paper and Heckman et al. (2010) highlight the need to control the risk of making false discoveries. From
a meta point of view, the problem of false discoveries is even aggravated. If scientists only report results
that work out of an actually much larger pool of candidate results they have tried, which Heckman
et al. (2010) refer to as cherry picking, the danger of selectively reporting convenient results that may
in fact be false discoveries undermines scientific credibility.
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A The Model that I Reexamine with Respect to False Discoveries

Let the random variable Tu denote the duration spent in unemployment. Ts1 denotes the duration from
entry to unemployment until a person gets a warning. Let Ts2 denote the duration from a warning
until the 100% benefit sanction is enforced, which is the case under Swiss law. The corresponding rates
(15), (16), (17) of Tu, Ts1, Ts2 are parameterized with observables only or with unobservables to allow
for unobserved heterogeneity over individuals. In the first model without unobservables, Lalive et al.
(2005) assume that the three rates of Tu, Ts1, Ts2 are explained perfectly well by a set of observable
variables. To make the model more realistic, they add unobserved heterogeneity terms u, v1, v2 within
the rates θu, θs1, θs2 as follows

θu(t | x,D1, D2, u) = λu(t) exp{x′βu + δ1D1 + δ2D2 + u}, (15)

θs1(t | x, v1) = λs1(t) exp{x′βs1 + v1}, (16)

θs2(t | x, v2) = λs2(t) exp{x′βs2 + v2}. (17)

which corresponds to equations (11) and (12) in Lalive et al. (2005).
(15) is the rate at which individuals drop out of employment. The higher θu is, the more likely is

the favorable case that the individual drops out of unemployment. (16) is the rate of getting a warn-
ing. (17) is the rate of getting an unemployment benefit sanction. x denotes individual characteristics.
Lalive et al. (2005) have an additional set of regressors k, which are public employment dummy vari-
ables. We could not get the data of these dummy variables k, thus our results do not perfectly match
theirs. D1 = I(ts1 < tu) is a dummy variable indicating if there was a warning for the individual.
D2 = I(ts2 < tu) denotes the dummy variable indicating if a sanction was enforced for the individual.
The coefficients δ1 and δ2 are the two so-called ex-post treatment effects of benefit sanctions. Due to
our missing public employment service dummy variables, we cannot estimate ex-ante treatment effects
as in Lalive et al. (2005), which is a key innovation of their paper.

The λ•(t) are coefficients, modeling flexible duration dependence with a step function. Generally
speaking, the longer a person is unemployed, the less likely finding a job becomes, thus λu(t) models
negative duration dependence.

λu(t) = exp{
4∑

k=0

λu,kIk(t)}, λs1(t) = exp{
4∑

k=0

λs1,kIk(t)}, λs2(t) = exp{
4∑

k=0

λs2,kIk(t)} (18)

The indicator functions I•,k(t) are set up for the following time intervals, respectively: 0 to 3 months,
3 to 6 months, 6 to 9 months, 9 to 12 months, 12 and more months. Each λ•,0 is set to zero because a
constant term is also estimated.

The model comprises a competing risks specification. That is, while a person is unemployed, he runs
the competing risks of getting a benefit sanction warning or finding a job. Once the person has got a
warning, he runs the competing risks of a benefit sanction or finding a job. Once the person incurred a
benefit sanction, he is left with the single risk of finding a job.

There are four treatment effect coefficients in Section 5.1 of this paper, which enter the three rates
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as follows

θu(t | x,D1, D2, u) = λu(t) exp{x′βu + δ1,0-29dD1,0-29d + δ1,≥30dD1,≥30d

+ δ2,0-59dD2,0-59d + δ2,≥60dD2,≥60d + u}, (19)

θs1(t | x, v1) = λs1(t) exp{x′βs1 + v1}, (20)

θs2(t | x, v2) = λs2(t) exp{x′βs2 + v2}. (21)

In Section 5.2 of this paper, I differentiated treatment effects based on three levels of qualifications
’quali1’, ’quali2’, ’quali3’, which are abbreviated as q1, q2, q3 here, respectively. Thus, there are three
rates θu,q1, θu,q2, θu,q3 instead of just one rate θu as before. The resulting five rates are

θu,q1(t | x,D1, D2, uq1) = λu,q1(t) exp{x′βu,q1 + δ1,q1D1 + δ2,q1D2 + uq1}, (22)

θu,q2(t | x,D1, D2, uq2) = λu,q2(t) exp{x′βu,q2 + δ1,q2D1 + δ2,q2D2 + uq2}, (23)

θu,q3(t | x,D1, D2, uq3) = λu,q3(t) exp{x′βu,q3 + δ1,q3D1 + δ2,q3D2 + uq3}, (24)

θs1(t | x, v1) = λs1(t) exp{x′βs1 + v1}, (25)

θs2(t | x, v2) = λs2(t) exp{x′βs2 + v2}. (26)

Lalive et al. (2005) estimate the model by maximizing the resulting closed-form log-likelihood func-
tion. The Heckman-Singer mass point approach is used to estimate the model with unobservables by
maximum likelihood, as in Heckman and Singer (1984). I used TSP (Time Series Package) to estimate
the model, as Lalive et al. (2005) did. The ML solver of TSP can make use of analytic derivatives,
which is a neat feature for the closed-form densities of the model. These authors did not bootstrap the
model, however, they rely on asymptotic normality to judge the significance of the estimated treatment
effects.

B Implementation

The short code of the simulation study is available from the author on request; I do not elaborate
on it here. Nonetheless, I elaborate on the implementation of the empirical part of this paper, which
consisted of the following five steps

(a) Replicate Lalive et al. (2005)’s results

(b) Implement four and six treatment effects model based on replicating code

(c) Bootstrap the four and six treatment effects model

(d) Do individual and multiple testing of four or six treatment effects based on bootstrap results

(e) Quantify the risk of making one of more false discoveries by individual instead of multiple testing

B.1 Replicate their results

I got the original TSP code (Time Series Package) for the basic two treatment effects model in Lalive
et al. (2005) from Raphael Lalive, to which I could compare my implementation. He also provided me
with the original data, except for the public employment dummies, which he was not allowed to pass
on to me due to data protection issues.
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B.2 Implement Four and Six Treatment Effects Model Based on Replicating Code

Rafael Lalive also helped me set up the code for the four treatment effects model that is contained in
Lalive et al. (2005). Based on these two codes, I coded the six treatment effects model. Details of the
six treatment effects model can be found in Appendix A.

B.3 Bootstrap the Four and Six Treatment Effects Model

Bootstrapping my two models was fairly easy, given that one can use the conventional i.i.d. bootstrap
by drawing single data points with replacement from the original data.

Specifically, let θ̂ denote the ML coefficients of one of my two models using the original data

θ̂ = arg maxθ L(θ; data), (27)

where data denotes the [10404 × p] matrix containing the original data and L(·; ·) denotes the (log)
likelihood. Given no dependence between individuals but possible contemporaneous dependence be-
tween variables, one can generate an artificial bootstrap data set data∗1 by drawing single data rows
with replacement 10, 404 times from the sequence of data rows 1, 2, . . . , 10404. Note that by falsely i.i.d
bootstrapping each variable, that is column, separately, the possible contemporaneous dependence of
the variables is destroyed. Thus, the first bootstrap data set of size [10404× p] may be

First bootstrap data set data∗1 : data row235, data row52,data row9874, . . . ,data row52︸ ︷︷ ︸
10,404 data rows as in original data set

The second bootstrap data set of size [10404× p] may look like

Second bootstrap data set data∗2 : data row189, data row8532, data row10203, . . . ,data row9874︸ ︷︷ ︸
10,404 data rows as in original data set

In this way, I generated 2, 500 bootstrap data sets data∗1, data∗2, . . ., data∗2500. By computing the ML
coefficients on each of these 2,500 bootstrap data sets, I get 2,500 bootstrap ML coefficients

θ̂∗1 = arg maxθ L(θ; data∗1),

θ̂∗2 = arg maxθ L(θ; data∗2),
...

θ̂∗2500 = arg maxθ L(θ; data∗2500).

(28)

B.4 Do Individual and Multiple Testing of Four or Six Treatment Effects Based on

Bootstrap Results

B.4.1 Individual One- and Two-Sided Bootstrap Tests

To carry out an individual t-test of an individual coefficient β ∈ θ based on bootstrapping instead of an
N -assumption, one computes the t-value of the individual coefficient β on each of these bootstrap data
sets, resulting in 2,500 t-values β̂∗1/σ̂(β̂∗1), β̂∗2/σ̂(β̂∗2), . . ., β̂∗2500/σ̂(β̂∗2500)12.

12The standard deviation σ̂(β̂∗m) on bootstrap data set data∗m was computed by the Eicker-White method, which is a

combination of analytic second derivatives and the covariance of the analytic gradient. Asymptotically, these two ways of

computing the standard deviation of an ML estimator obtain the same result, as stipulated in the so-called information

matrix equality. On the computer, these two ways may yield different results, though. The Eicker-White estimator finds

an optimal combination thereof. This corresponds to the HCOV=W option in TSP’s ML() routine.
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The bootstrap critical value at significance level α for a one-sided bootstrap test with alternativeHA :
β > 0 is just the 1− α empirical quantile of the 2,500 t-values β̂∗1/σ̂(β̂∗1), β̂∗2/σ̂(β̂∗2), . . ., β̂∗2500/σ̂(β̂∗2500).

The bootstrap critical value at significance level α for a two-sided bootstrap test with alternative
HA : β 6= 0 is the 1−α empirical quantile of the 2,500 t-values in absolute value

∣∣∣β̂∗1/σ̂(β̂∗1)
∣∣∣, ∣∣∣β̂∗2/σ̂(β̂∗2)

∣∣∣,
. . .,

∣∣∣β̂∗2500/σ̂(β̂∗2500)
∣∣∣.

If the observed t-value β̂/σ̂(β̂) is larger than the 1 − α bootstrap critical value based on the 2,500
bootstrap data sets, the null hypothesis is rejected at significance level α.

The one-sided bootstrap p-value for coefficient β ∈ θ is computed as

pboot =
∑2500

m=1 1{β̂∗m/σ̂∗(β̂∗m) > β̂/σ̂(β̂)}
2500 + 1

, (29)

where 1 denotes the indicator function. In the two-sided case, the absolute values of the bootstrap and
the original t-values must be used to compute the bootstrap p-value.

B.4.2 Multiple Testing

The implementation of the multiple test is straight forward. On Michael Wolf’s webpage, there is R
and Matlab code available that carries out multiple testing. One can simply pass the vector of ob-
served t-statistics [β̂/σ̂(β̂), β ∈ θ] and the matrix of bootstrap t-statistics [β̂∗1/σ̂(β̂∗1), β̂∗2/σ̂(β̂∗2), . . .,
β̂∗2500/σ̂(β̂∗2500), β ∈ θ] to the R or Matlab code. The bootstrap matrix [β̂∗1/σ̂(β̂∗1), β̂∗2/σ̂(β̂∗2), . . .,
β̂∗2500/σ̂(β̂∗2500), β ∈ θ] consists of 2,500 rows, each row containing the estimated t-statistic for the mth

bootstrap data set. As said before, for the two-sided alternative hypothesis case, element-wise absolute
values must be provided.

Thus, for my four treatment effects model, I passed a [4 × 1] vector of observed t-statistics and
a [2500 × 4] matrix of bootstrap t-statistics to the R function, since [β̂1, β̂2, β̂3, β̂4] = θ̂. For the six
treatment effects model, I passed a [6 × 1] vector of observed t-statistics and a [2500 × 6] matrix of
bootstrap t-statistics to the R function.

To control the familywise error rate at the 5% level, one must additionally provide the R or Matlab
function with k = 1 and α = 0.05. The R or Matlab function then returns the multiple critical value
and the indices of the null hypotheses that could be rejected while controlling the familywise error rate
at the α% level.

B.5 Quantify the Risk of Making One of More False Discoveries by Testing Indi-

vidually Instead of Multiple Testing

Quantifying the risk of making one or more false discoveries by assumingN instead of relying on multiple
testing is easy. The multiple testing method of Romano and Wolf (2005) based on bootstrapping
essentially solves the following problem

MTest: Find one critical value cMTest
1−α such that familywise error rate FWE ≤ α asymptotically.

Quantifying the probability of making one or more false discoveries F̂WE in assuming N essentially
solves the related problem

Find F̂WE: Find α̂ such that the N -assumed critical value cNass.
1−α ensures FWE ≤ α̂ asymptotically.
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This can be done by a grid search over the parameter α that is passed on to the multiple testing routine.
For example, in the two-sided testing, the N assumption results in the critical value 1.96 at the 5%
level. I quantify the committed multiple error type one F̂WE in using 1.96 instead of the multiple
critical value as follows. Increase α̂ passed to the multiple testing routine until a multiple critical value
of 1.96 is returned. The α̂ that satisfies this criterion up to two decimal points is the approximate risk
of making one or more false discoveries F̂WE in assuming N instead of relying on multiple testing.

Note: Two sources of error in individually testing under normal assumption It would be
very interesting to know exactly whether the high risk of making one or more false discoveries by assum-
ing N is mostly due to individual bootstrap testing instead of multiple bootstrap testing. Or whether
it is mainly due to assuming N instead of bootstrapping the data generating distribution. I expect
the error stemming from assuming N instead of bootstrapping to be small, as a central limit theorem
suggests for 10, 404 data points. Nonetheless, to answer this question exactly, the easy approximation
scheme as in step (e) does not work for this case, since there is not a single individual bootstrap critical
value covering all null hypotheses. For example, the individual two-sided bootstrap critical values cboot|.|,0.95

range from 1.97 to 2.17 for the four treatment effects model.
Hence, one needs a two-stage bootstrap analysis to answer this question, which is very computing

intensive for this nonlinear ML problem. Specifically, one needs not only carry out an ML routine on
each of the 2,500 bootstrap data sets, as was the case to carry out multiple testing. One even needs to
conduct a so-called second-stage bootstrap analysis of 500 repetitions, say, on each of the 2,500 first-
stage bootstrap samples, to answer this question. Hence, the ML problem needs to be solved 2, 500×501
times, which takes a long time of parallel computing.

C Control of More Liberal Multiple Error Types

Four treatment effects: Duration Dependence in Treatment Effects Note that I control the
’probability of falsely rejecting one or more null hypotheses’ at the 5% level.

What happens if we get more liberal with respect to false discoveries, thus merely want to control
the ’probability of falsely rejecting two or more null hypotheses’? What if we even considered the very
liberal ’probability of falsely rejecting four or more null hypotheses’?

What essentially happens is that the more liberal the multiple error type one gets in the aforemen-
tioned sense, the lower the critical value gets that the multiple testing method returns. Controlling the
’probability of falsely rejecting two or more null hypotheses’ at the 5% level is achieved by a multiple
critical value of 1.36. The two multiple critical values 1.00 and 0.80 control the multiple error types I
’three or more . . . ’ and ’four or more . . . ’ at the 5% level, respectively. Thus, the higher one sets
the number of false discoveries in the risk threshold, the lower the critical value gets, thus the more
treatment effects are labeled as statistically significant. By merely individually testing, one knows that
the risk of false discoveries is present, but one cannot put a risk threshold on it. Unfortunately, this
seems to be the modus operandi in most applied work.

One can avoid choosing the k in controlling the ’probability of falsely rejecting k or more null
hypotheses’ by considering relative multiple error types I, such as the False Discovery Proportion (FDP).
Control of the FDP is achieved by increasing k within ’probability of falsely rejecting k or more null
hypotheses’ until a criterion is met; see Romano and Wolf (2005) for details.
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Six treatment effects: Qualification Dependence in Treatment Effects The more liberal
probability of falsely declaring two or more false discoveries is still at 33.3% by the individual critical
value 1.64 resulting from assuming N . Recall that the probability of falsely rejecting one or more null
hypotheses was around 90%.

The N derived individual critical value 1.64 puts a 1.9% threshold on the very relaxed multiple
error type one ’probability of falsely declaring three or more treatment effects as statistically significant’.
Thus, it is perfectly possible that by individually testing, one does control the risk of making a number of
false discoveries at conventional significance levels by coincidence. But again, multiple testing methods
let us quantify and put a threshold on the risk of making false discoveries.
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