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Abstract

Almost all important decisions in people’s lives entail risky and delayed consequences. Re-
gardless of whether we make choices involving health, wealth, love or education, almost every
choice involves costs and benefits that are uncertain and materialize over time. Because risk
and delay often arise simultaneously, theories of decision making should be capable of ex-
plaining how behavior under risk and over time interacts. There is, in fact, a growing body
of evidence indicating important interactions between behaviorally revealed risk tolerance
and patience. Risk taking behavior is delay dependent, and time discounting is risk depen-
dent. Here we show that the inherent uncertainty of future events conjointly with people’s
proneness to weight probabilities nonlinearly generates a unifying framework for explaining
time-dependent risk taking, risk-dependent time discounting, preferences for late resolution
of uncertainty, and several other puzzling interaction effects between risk and time.
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1 Introduction

Whatever we plan for the future, may it concern health, wealth, love or education, the conse-

quences of our decisions are almost always uncertain and usually take time to materialize. There-

fore, both our risk preferences and our time preferences are important drivers of our choices. In

economics, risk preferences are conventionally assumed to be unaffected by the passage of time

and time preferences to be unaffected by the presence of risk, even though some authors have

pointed out parallels between the two domains (Prelec and Loewenstein, 1991; Quiggin and

Horowitz, 1995). In contrast to this view, there is mounting evidence of complex interactions

between behavior under risk and behavior over time that challenges the standard models of risk

taking and time discounting. A new line of theoretical research, abandoning separability of risk

and time, developed more realistic models that capture some aspects of the observed regularities

(Halevy, 2008; Walther, 2010; Baucells and Heukamp, 2012). However, none of these approaches

has identified all the interaction effects as manifestations of a single driving force, which is the

objective of this paper.

Table 1 provides a summary of seven empirical facts, organized along five dimensions: First,

revealed risk tolerance and revealed patience are delay dependent. Second, risk taking and

time discounting behavior is also process dependent, i.e. it makes a difference whether a future

prospect is evaluated in one shot or sequentially over the course of time. Third, the timing of

uncertainty resolution affects risk taking behavior and, fourth, the presence of risk influences

time discounting. Finally, people’s evaluations of future risky payoffs depend on the sequence in

which they are discounted for risk and for time.

Turning to the first phenomenon, delay dependence of risk taking behavior, Table 1 indicates

that risk tolerance appears not to be a stable characteristic of people’s behavior. Rather, it is higher

for payoffs materializing in the future than for payoffs materializing in the present (Shelley, 1994;

Ahlbrecht and Weber, 1997; Sagristano, Trope, and Liberman, 2002; Noussair and Wu, 2006; Coble

and Lusk, 2010; Abdellaoui, Diecidue, and Öncüler, 2011). This finding may have far-reaching

implications: If people are willing to tolerate high risks for events in the remote future, they

may be reluctant to support policies combating global warming or to buy insurance for natural
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Table 1: Seven Facts on Risk Taking and Time Discounting

Dimension Fact Revealed risk tolerance Fact Revealed patience
Delay dependence #1 increases with delay #2 increases with delay

Process dependence #3 higher for one-shot #4 higher for one-shot
valuation valuation

Timing dependence #5 higher for late −
uncertainty resolution

Risk dependence − #6 higher for risky payoffs

Sequence dependence #7 depends on sequence of −
delay and risk discounting

The table describes seven facts regarding the effects of delay, process, timing, risk and sequence on risk taking
and discounting behavior.

hazards. Greater risk tolerance for future payoffs goes against the grain of the most widely used

models of risk taking behavior, such as expected utility theory and its prominent alternatives

rank-dependent utility, cumulative prospect theory, and theories of disappointment aversion.

It is well known by now that delay dependence is also manifest in discounting behavior,

which constitutes empirical fact #2. Contrary to the prediction of standard discounted utility

theory, people behave more patiently with respect to more remote payoffs, which implies that

people’s discount rates are not constant but decline with the length of delay (Strotz, 1955; Ben-

zion, Rapoport, and Yagil, 1989; Loewenstein and Thaler, 1989; Ainslie, 1991). This regularity

has triggered a large literature on so-called hyperbolic preferences (e.g. Laibson (1997); Freder-

ick, Loewenstein, and O’Donoghue (2002)). Hyperbolic discounting has been readily adopted by

applied economics in many fields such as saving behavior, procrastination, addiction, and retire-

ment decisions. Hyperbolic preference models provide, however, no explanation for interactions

between time and risk.

Another regularity in the data concerns facts #3 and #4, the process dependence of risk taking

and time discounting behavior. It generally makes a difference whether future prospects are

judged in one shot or frequently over the course of time. In the domain of risk, people tend

to invest less conservatively, i.e. they take on more risk, when they are informed about the
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outcomes of their decisions only at the end of the investment period rather than intermittently

(Gneezy and Potters, 1997; Thaler, Tversky, Kahneman, and Schwartz, 1997; Bellemare, Krause,

Kröger, and Zhang, 2005; Gneezy, Kapteyn, and Potters, 2003; Haigh and List, 2005). Stock

market data is easily accessible and thus provides continuous feedback on portfolio performance.

If people watch closely how uncertainty resolves, their risk tolerance may be much lower than

when they have no access to this information. Hence, frequent portfolio evaluation may be an

important factor driving the large equity premium, i.e. the return earned by stocks in excess of

that earned by relatively risk-free government bonds, as it has been observed in the U.S. and in

other industrialized countries (Mehra, 2006). The magnitude of the observed equity premium has

been puzzling economists for more than 25 years because it is hard to reconcile with plausible

levels of risk aversion when interpreted within the framework of expected utility theory. Some

authors have attributed the aversion to frequent information and, consequently the large equity

premium (Benartzi and Thaler, 1995; Barberis, Huang, and Santos, 2001), to loss aversion, an

integral concept of prospect theory (Tversky and Kahneman, 1992), that has increasingly attracted

economists’ attention in the last decade (Gächter, Johnson, and Herrmann, 2007; Köszegi and

Rabin, 2007; Abeler, Falk, Goette, and Huffman, 2011). While loss aversion may explain why

people are more risk averse when assessing portfolio performance frequently it cannot account

for the other findings on observed risk taking and discounting behavior.

In the domain of time discounting, a similar phenomenon of process dependence has been

observed, listed as fact #4 in Table 1: The discounting shown over a particular delay is greater

when the delay is divided into subintervals than when it is left undivided (Read, 2001; Read

and Roelofsma, 2003; Ebert and Prelec, 2007; Epper, Fehr-Duda, and Bruhin, 2009; Dohmen, Falk,

Huffman, and Sunde, 2012). For example, discounting over a one-year period will be greater

when the year is divided into two subperiods of six months, and even more so when it is divided

into, say, twelve monthly subperiods. This regularity has been labeled subadditive discounting.

So evaluating a future payoff sequentially rather than in one shot typically decreases its value -

decision makers exhibit less patience in this case, an effect equivalent to the process dependence

of risk tolerance.
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The third row in Table 1 refers to fact #5, the effect of the timing of uncertainty resolution on

risk taking behavior. Principally, knowing the outcome of one’s decision before the actual pay-

ment date should be beneficial because one can integrate this information into one’s future plans.

Therefore, according to the standard model of risky choice, information is valuable if it enables

the decision maker to design better strategies. If she does not or cannot condition her actions

on what she learns she should be indifferent toward the timing of uncertainty resolution, i.e.

information about realized outcomes should be worthless to her (Grant, Kajii, and Polak, 1998).

Hence, the value of information should be nonnegative. In contrast to this prediction, many

people prefer uncertainty to resolve later rather than sooner (Chew and Ho, 1994; Ahlbrecht and

Weber, 1996; Arai, 1997; Lovallo and Kahneman, 2000; Eliaz and Schotter, 2007; von Gaudecker,

van Soest, and Wengström, 2011). For instance, some people with a family history of a genetic

disorder may choose not to be informed whether they are affected by the disorder or not. Such

an intrinsic preference for resolution timing cannot be accommodated by the standard theory

of risk taking but is modeled by an additional preference parameter (Kreps and Porteus, 1978;

Chew and Epstein, 1989; Grant, Kajii, and Polak, 2000).

Fact #6 pertains to a number of experimental studies that report systematic effects of risk on

discounting behavior: Discount rates for certain future payoffs tend to be higher than discount

rates for risky future payoffs (Stevenson, 1992; Ahlbrecht and Weber, 1997). Higher discount

rates for certain payoffs not only run counter to intuition but also contradict the standard model

of discounting according to which the same level of patience applies to risky and certain future

prospects. Risk-dependent discounting is also evident in diminishing immediacy: People’s prefer-

ence for present certain outcomes over delayed ones, immediacy, weakens drastically when the

outcomes become risky: Whereas many people prefer a smaller immediate reward to a larger de-

layed one, merely a minority continue to do so when both rewards are made probabilistic - they

behave as if they discounted the risky reward less heavily than the original certain one (Keren

and Roelofsma, 1995; Weber and Chapman, 2005).

Finally, the valuation of future prospects appears to be sequence dependent, labeled fact #7: It

makes a difference whether a risky future payoff is first devalued for risk and then for delay or in
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the opposite order (Öncüler and Onay, 2009). When payoffs are discounted for risk first they are

assigned a less favorable value than in the reverse case. Moreover, the delay-first valuation prac-

tically coincides with the value reported when both dimensions are accounted for in one single

operation. This finding implies that risk tolerance revealed for future prospects systematically

depends on the sequence in which discounting for risk and for time is performed.

The evidence discussed above demonstrates striking parallels between the susceptibility of

observed risk tolerance and observed patience to the length of delay as well as the evaluation

process: Deferring payoffs to the remote future apparently makes people both more risk tolerant

and more patient, and one-shot evaluation has favorable effects on risk taking as well as on time

discounting behavior. Since the effects appear not to be arbitrary aberrations from the predictions

of the existing models, one might ask whether there is a common mechanism governing observed

behavior that accounts for delay, process, timing, risk, and sequence dependence.

In the following we show that all these interaction effects between risk and time can indeed

be rationalized within a single unifying framework that relies on two basic ideas. First, there is

uncertainty attached to any future event as only immediate consequences can be totally certain.

If future events are inherently uncertain, people’s risk tolerance must play a role in the valuation

of future prospects. Not surprisingly, risk has been identified as an important confound in the

measurement of time preferences (Frederick, Loewenstein, and O’Donoghue, 2002). Therefore,

the second pillar of our model pertains to the characteristics of risk preferences. Our model

is based on one of the most widely replicated experimental regularities found in human and

animal behavior, so-called common-ratio violations, which are inconsistent with classical theory

(Allais, 1953; Hagen, 1972; Kahneman and Tversky, 1979; MacCrimmon and Larsson, 1979; Bat-

talio, Kagel, and MacDonald, 1985; Kagel, MacDonald, and Battalio, 1990; Nebout and Dubois,

2012).

Researchers have developed a large number of alternative theories that are able to accommo-

date common-ratio violations.Proneness to common-ratio violations can be suitably captured by

a probability weighting function that exhibits a specific characteristic, subproportionality. There

is abundant evidence that risk taking behavior depends nonlinearly on the objective probabilities
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(for a recent review see Fehr-Duda and Epper (2012)). We show that subproportional probability

weighting conjointly with inherent future uncertainty provides an integrative account of all the

facts #1 to #7.

1.1 Related Literature

Our work utilizes other researchers’ theoretical insights, which are generally limited to specific

questions, and establish links that have remained unexplored so far. Furthermore, we show

that these links provide a unifying account of a host of puzzling findings that have not been

diagnosed as manifestations of the same underlying cause. In the following, we discuss in which

way previous theoretical contributions are related to this paper.

Many authors have noted before that “[a]nything that is delayed is almost by definition un-

certain” (Prelec and Loewenstein (1991), p.784) and, therefore, it is natural to conjecture that

uncertainty shapes discounting behavior in one way or another. Several papers identified uncer-

tainty as a potential cause of hyperbolic discounting (Sozou, 1998; Dasgupta and Maskin, 2005;

Bommier, 2006). Most closely related to our research are the models introduced by Halevy (2008)

and Walther (2010) that derive hyperbolic discounting from nonlinear probability weighting.

Walther’s approach is based on his model of affective utility (Walther, 2003) that endogenously

generates an inverse S-shaped probability weighting function and, consequently, a short-run hy-

perbolic decline of the implied discount function. However, this discount function turns out to

be U-shaped as discount rates start to increase again at some point in time. Halevy’s discount

function does not suffer from this deficiency because it is derived from subproportional probabil-

ity weights,1 a characteristic lacking in Walther’s probability weighting function. Neither model

addresses delay dependence of risk tolerance nor process, timing, and sequence dependence.

Inherent uncertainty does not play a role in Baucells and Heukamp (2012)’s axiomatic model

for the limited domain of prospects with one non-zero outcome which captures interactions of

risk tolerance and time discounting behavior by a psychological distance function. The psy-

chological distance of an outcome is assumed to increase with increasing delay or decreasing

1Halevy (2008) based his analysis on probability weighting functions of increasing elasticity, which is equivalent to
subproportionality.
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probability. Similarly to ours, their model is inspired by the common-ratio effect in risk tak-

ing behavior but, contrary to our approach, it is a descriptive representation of behavior rather

than a structural approach. In this setting, increasing risk tolerance and increasing patience are

equivalent. Hence, hyperbolic discounting is built into the assumptions and not derived from

probability weighting, in contrast to Halevy (2008) and Walther (2010).2 Moreover, they do not

deal with the issues of process, timing, and sequence dependence.

Process dependence is the focus of Palacios-Huerta (1999)’s contribution. He shows that,

in the context of Gul (1991)’s model, a disappointment averse decision maker exhibits much

larger risk aversion when she evaluates a multi-stage prospect sequentially rather than in one

shot. Dillenberger (2010) provides an axiomatic underpinning for this result. He proves that,

under the assumption of recursive valuation of multi-stage prospects, a weak preference for one-

shot resolution of uncertainty is equivalent to risk preferences satisfying a novel axiom, negative

certainty independence. This axiom weakens the standard independence axiom and allows for

common-ratio violations but is silent on their actual occurrence. Dillenberger also provides an

insightful discussion of the consequences of a preference for one-shot resolution of uncertainty

on the value of information. Finally, our rank-dependent discussion of the relationship between

subproportional probability weighting and one-shot resolution of uncertainty is based on the

seminal work by Segal (1987a,b, 1990) who analyzes the evaluation of multi-stage prospects in

the domain of rank-dependent utility. Since these papers deal with dynamic, but essentially

atemporal, situations, they are not concerned with time discounting or the other facts listed in

Table 1.

2 Key Assumptions

Our model builds on two basic ideas: First, there is uncertainty attached to any future event.

This uncertainty inherent in the future, inherent uncertainty for short, may stem from different

2Baucells and Heukamp (2012) claim that their model can explain the experimental results in Abdellaoui, Diecidue,
and Öncüler (2011) who find that the probability weighting function is more elevated for longer delays t. How-
ever, Baucells and Heukamp (2012)’s formulation of delay-dependent probability weights wt(p) = w(pe−rx t) with
probability p and discount rate rx appears to imply the opposite (p. 836).
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sources. At the personal level, it refers to a general feeling of “something may go wrong” due to

unexpected contingencies, such as a contract party reneging on her promises or a check getting

lost in the mail. Another important channel through which inherent uncertainty may manifest

itself is the institutional environment. Environments where property rights are only weakly pro-

tected or institutions of contract enforcement are not reliable, as is the case in many developing

countries, are characterized by high inherent uncertainty. This uncertainty turns allegedly guar-

anteed payoffs into risky ones and introduces an additional layer of uncertainty over and above

the objective probability distributions of risky payoffs. Consequently, there are two distinct types

of uncertainty, the objectively given prospect uncertainty and the subjective inherent uncertainty.

The second pillar of our model pertains to the characteristics of risk preferences. Abun-

dant empirical evidence has demonstrated that risk taking behavior depends nonlinearly on the

probabilities, which is inconsistent with expected utility theory. Consider the following famous

example, introduced by Allais (1953): Imagine you were to choose between one million dollars

for certain and five million dollars materializing with a probability of 98%. Most people choose

the certain option of one million dollars. Now consider the choice between a 1%-chance of re-

ceiving one million dollars and a 0.98%-chance of receiving five million dollars. In this case, the

majority opt for the five-million dollar alternative. Scaling down the probabilities of 100% and

98% by a common factor, in this example 0.01, induces many people to reverse their choices.3 An

intuitive explanation for common-ratio violations is the fear of disappointment: Losing a gamble

over almost certain five million dollars is anticipated to be much more disappointing than los-

ing a gamble over five million dollars that have only a tiny chance of materializing in the first

place. Thus, if people fear disappointment their behavior appears to depend nonlinearly on the

probabilities.

Not only emotions, such as disappointment and elation, were identified as potential drivers

of probability distortions (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991; Wu, 1999; Walther,

2003), but also perceptual and procedural factors. The fathers of prospect theory, Kahneman

and Tversky, attributed probability dependence to the psychophysics of perception according to

3This example constitutes a special case of common-ratio violations, known as certainty effect, as the smaller outcome
in the first decision situation, one million dollars, is to materialize with certainty.
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which the sensitivity toward changes in probabilities diminishes with the distance to the natural

reference points of certainty and impossibility (Tversky and Kahneman, 1992). Several other

contributions focused on procedural aspects of choice (Rubinstein, 1988; Loomes, 2010). In these

models, a prospect’s value depends not only on the prospect’s own characteristics but also on

other prospects in the choice set. A recent contribution in this category is Bordalo, Gennaioli,

and Shleifer (2012) who posit that probabilities are distorted in favor of payoffs that are perceived

as particularly salient.

There is persuasive evidence of nonlinear probability weighting not only in the laboratory,

but also in insurance, betting and financial markets (see the discussion of recent evidence in Fehr-

Duda and Epper (2012)). Furthermore, brain activity during valuation of monetary gambles was

discovered to be nonlinear in probabilities, providing a neurobiological foundation of observed

behavior (Paulus and Frank, 2006; Berns, Capra, Chappelow, and Moore, 2008; Hsu, Krajbich,

Zhao, and Camerer, 2009). In fact, probability distortions seem to be a ubiquitous feature of

people’s perception, action, and cognition (Zhang and Maloney, 2012).

In this paper, we rely on rank-dependent utility theory (RDU) (Quiggin, 1982), which captures

probability distortions directly by a nonlinear probability weighting function. By convention,

this function maps the weight attached to the probability of a prospect’s best outcome. RDU

has several attractive features. First, and most importantly, the common inverse S-shape of the

probability weighting function generates overweighting of a prospect’s extreme outcomes and

underweighting of its intermediate outcomes, which nicely captures the notion that more extreme

outcomes within a given prospect are more salient. Second, under appropriate assumptions,

RDU respects transitivity, continuity, and first-order stochastic dominance, qualities that many

economists are hesitant to dispense with. Finally, RDU displays first-order attitudes toward risk,

i.e. preferences between prospects whose consequences are sufficiently close to one another

do not necessarily tend to risk neutrality. In this sense, experimental evidence favors rank-

dependent utility theory over many other non-expected-utility approaches that can accommodate

the common-ratio effect but only permit second-order risk aversion (Sugden, 2004).

Experimental estimates of average probability weights typically yield inverse S-shaped proba-
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bility weighting curves, underweighting large probabilities and overweighting small probabilities

of the best outcome, which is also a common pattern in individual data (Gonzalez and Wu, 1999;

Bruhin, Fehr-Duda, and Epper, 2010). Underweighting of large probabilities can be interpreted

as manifestation of the disappointing potential of highly likely, yet uncertain, payoffs. Over-

weighting occurs when the realization of rather unlikely payoffs is expected to generate a feeling

of elation. Aside from inverse-S shapes, convex weighting curves, globally underweighting prob-

abilities, comprise another common category of shapes (van de Kuilen and Wakker, 2011). Since

we are primarily concerned with common-ratio violations, we need to put more structure on

the probability weighting function. Common-ratio violations are captured by a specific charac-

teristic, subproportionality. In principle, subproportionality can be exhibited by both inverse-S

shapes and convex shapes of probability weighting curves.

3 The Model

We consider the set of binary gain prospects P = (x1, p; x2) with payoffs x1 > x2 ≥ 0, probability

p of the larger payoff x1 and probability 1 − p of the smaller payoff x2.4 We assume that a

decision maker’s true atemporal risk preferences over such prospects, played out and paid out

instantaneously, can be represented by a rank-dependent functional:

V(P) = u(x1)w(p) + u(x2)(1− w(p))

= [u(x1)− u(x2)]w(p) + u(x2)
(1)

where u measures the utility of monetary amounts x,5 and w denotes the subjective probabil-

ity weight attached to p, the probability of the better outcome x1. As usual, both u and w are

assumed to be monotonically increasing, w to be twice differentiable and to satisfy w(0) = 0

and w(1) = 1. A summary of the model variables is provided in Table 2. Technically, common-

4Our approach can be easily generalized to n > 2 outcomes provided that inherent uncertainty does not change the
rank order of the prospects, i.e. if “something may go wrong” is encoded as an outcome no better than the prospects’
minimum outcome.

5Wakker (1994, 2010) offer a theoretical argument in favor of our implicit assumption that instantaneous utility is
transferable across the domains of risk and time. Abdellaoui, Attema, and Bleichrodt (2007); Abdellaoui, Barrios,
and Wakker (2007) provide supportive evidence.
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ratio violations are represented by subproportionality of the probability weighting function. Sub-

proportionality decreases the decision maker’s sensitivity to disappointment for scaled-down

probabilities, i.e. risky outcomes are potentially more disappointing the higher is their ex-ante

probability of materializing. In this sense, the loss of certainty hurts more than the scaling down

of a probability less than one does.

Formally, subproportionality is defined as follows (Prelec, 1998): Subproportionality holds if

1 ≥ p > q > 0 and 0 < λ < 1 imply the inequality

w(p)
w(q)

>
w(λp)
w(λq)

. (2)

Subproportionality implies the certainty effect, which constitutes the special case of p = 1. There-

fore, w(λq) > w(λ)w(q) is satisfied for any λ, q such that 0 < λ, q < 1. Many functional

specifications proposed in the literature exhibit subproportionality over some probability range

under appropriate parameter restrictions (see section 3.6 in Fehr-Duda and Epper (2012) for a

review). Perhaps the most prominent representative of a globally subproportional function is Pr-

elec (1998)’s flexible two-parameter specification, designed to capture common-ratio violations.

Gul (1991)’s theory, for example, implies a strictly convex subproportional function.6

If the prospect is not played out and paid out in the present, but at some future time t > 0,

two more factors become important. First, we follow the standard approach and model people’s

willingness to postpone gratification by a constant rate of time preference η ≥ 0, yielding a

discount weight of ρ(t) = exp(−ηt). This assumption is not crucial for our results - neither a

zero rate of time preference nor genuinely hyperbolic time preferences affect our conclusions. A

prospect to be played out and paid out at t > 0 is discounted for time in the following standard

way:

V0(P) = ([u(x1)− u(x2)]w(p) + u(x2)) ρ(t) (3)

Second, and most importantly, inherent future uncertainty changes the nature of the prospect.

6Incidentally, the salience-driven discontinuous probability distortions in Bordalo, Gennaioli, and Shleifer (2012) com-
prise a concave segment of a specific Rachlin, Raineri, and Cross (1991) variety and a convex segment of a Goldstein
and Einhorn (1987) one, both of which are subproportional over their respective ranges.
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Following Halevy (2008) and Walther (2010), let 0 < s ≤ 1 denote the constant subjective

per-period probability of prospect survival, i.e. the probability that the decision maker will

actually obtain the promised rewards by the end of the period. Then the probability that

the allegedly guaranteed payment of x2 materializes at the end of period t is perceived to

be st, and the probability of the risky component x1 − x2 effectively amounts to pst. There-

fore, the objective two-outcome prospect is subjectively perceived as a three-outcome prospect

P̃ = (x1, pst; x2, 1− pst; 0), where the zero outcome captures that “something may go wrong”.

With the passage of time, the probability of prospect survival gets progressively scaled down.

Therefore, subproportional preferences are a natural framework for studying the effects of time

on prospect valuation. At the present, the future prospect is evaluated according to

V0
(

P̃
)
=
(
[u(x1)− u(x2)]w(pst) + u(x2)w(st)

)
ρ(t)

=

(
[u(x1)− u(x2)]

w(pst)

w(st)
+ u(x2)

)
w(st)ρ(t)

(4)

Now suppose that an observer assumes that there is no inherent uncertainty, i.e. that s = 1,

while in fact s < 1. Consequently, she infers probability weights w̃ and discount weights ρ̃ from

observed behavior on the presumption that the decision maker evaluates the objectively given

prospect P. However, in the eye of the decision maker the prospect involves an additional layer

of uncertainty. If the observer neglects s < 1, she estimates preference parameters according to

Equation 3:

V0(P̃) = ([u(x1)− u(x2)] w̃(p) + u(x2)) ρ̃(t) (5)

interpreting w̃ as true probability weights and ρ̃ as true discount weights, while in fact the

weights are distorted by inherent uncertainty. Obviously, the measured weights are different

from the true ones if s < 1. By comparing Equation 4 with Equation 5 we can see that the

relationships between true and observed preference parameters are given by

w̃(p) =
w(pst)

w(st)
(6)
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ρ̃(t) = w(st)ρ(t) (7)

These equations define the central relationships between observed and true underlying prob-

ability and discount weights. Concerning the discount weights, this representation is equivalent

to Halevy (2008)’s who derives this relationship in the context of Yaari (1987)’s dual theory with

a convex probability weighting function. Because w̃(p) 6= w(p) and ρ̃(t) 6= ρ(t) for subpropor-

tional preferences, inherent uncertainty drives a wedge between true underlying preferences and

observed risk taking and discounting behavior. Thus, future uncertainty conjointly with prone-

ness to Allais-type behavior provides the missing link between behavior under risk and over

time.

Table 2: Model Variables
Variable Description Characteristics

Pr
os

pe
ct

s x monetary payoff x ≥ 0
p probability of x 0 ≤ p ≤ 1
s probability of prospect survival s ≤ 1
1− s inherent uncertainty
t length of time delay t ≥ 0

Pr
ef

er
en

ce
s u(x) utility function u(0) = 0, u′ > 0

w(p) true probability weight w(0) = 0, w(1) = 1, w′ > 0
η rate of pure time preference η ≥ 0, constant
ρ(t) discount weight ρ(t) = exp(−ηt)

Be
ha

vi
or w̃(p) observed probability weight w̃(p) = w(pst)/w(st)

ρ̃(t) observed discount weight ρ̃(t) = w(st)ρ(t)
η̃(t) observed discount rate η̃(t) = −ρ̃′(t)/ρ̃(t)

4 Model Predictions

In the following, we discuss the implications of our approach for the empirical phenomena

listed in Table 1 and demonstrate that all of them can be explained by our framework. An

important feature of future prospects concerns the timing of the resolution of uncertainty. We

distinguish three different cases: First, the prospect is played out and paid out at the same
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time. This situation is represented by Propositions 1 and 2. Second, both prospect and inherent

uncertainty are resolved gradually over the course of time. This case is covered by Proposition

3. Finally, prospect uncertainty is resolved before the payment date, the topic of Proposition 4.

The proofs of the propositions are presented in Appendix B, as is a discussion of the necessity of

subproportionality.

4.1 Fact #1: Delay Dependence of Observed Risk Taking Behavior

Turning to the simultaneous resolution of prospect and inherent uncertainty first, we see from

Equation 6 that observed probability weights w̃(p) deviate from true ones w(p) in two respects:

First, w(st) < 1 in the denominator boosts observed weights. Second, w(pst) in the numerator

distorts observed probability weights. The assumption of subproportional probability weights w

generates unambiguous predictions for w̃:

PROPOSITION 1 (Characteristics of observed probability weights) Given subproportionality of w
and s < 1:

1. The function w̃ is a proper probability weighting function, i.e. monotonically increasing in
p with w̃(0) = 0, w̃(1) = 1.

2. w̃ is subproportional.

3. w̃ is more elevated than w. Elevation increases with time delay t and inherent uncertainty
1− s, at a decreasing rate.

4. w̃ is less elastic than w.

5. The increase in observed risk tolerance is more pronounced for more strongly subpropor-
tional risk preferences.

[Proof in Appendix B]

That w̃ is more elevated than w constitutes one of the central implications of our model.

Probability weights are larger for delayed prospects and, hence, revealed risk tolerance appears

to be higher than risk tolerance for present ones. The departure of w̃(p)
w(p) =

w(pst)
w(p)w(st)

> 1 from unity

provides a measure of the wedge between observed and true probability weights and corresponds

to the strength of the certainty effect inherent in the underlying risk preferences. The intuition

behind this result is that, with the passage of time, payoffs become progressively less likely and,

therefore, their disappointment potential diminishes commensurately. Since in our model utility
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from money u is not affected by future uncertainty, an increase in the elevation of the probability

weighting curve gets directly translated into higher revealed risk tolerance. The presence of

future uncertainty therefore makes people appear more risk tolerant for delayed prospects than

for present ones. Moreover, w̃ is less strongly curved than w, implying a decreasing proneness

to common-ratio violations. Therefore, the risk taking behavior of a typical subject in the lab,

where uncertainty resolves almost immediately, is likely to overstate her risk aversion for real-

world decisions as well as her proneness to Allais-type violations. Furthermore, the wedge

between w̃ and w also increases with the degree of inherent uncertainty, implying, somewhat

paradoxically, that observed risk tolerance increases with uncertainty.7 It rises with the degree of

subproportionality as well, implying ceteris paribus individual-specific sensitivities to delay.

Illustration: Delay Dependence of Probability Weights
The delay dependence of observed probability weights is illustrated in Figure 1. Typically, deci-
sion makers exhibit an inverse S-shaped probability weighting function, characterized by under-
weighting of large probabilities and overweighting of small probabilities. The graph on the left
side shows such a decision maker’s true probability weights, labeled by t = 0, and the respective
observed probability weights generated by increasing delay t, depicted by the curves for delays
of two and twelve months, respectively. A different specimen of subproportional probability
weights is displayed on the right hand side of Figure 1. Here, the probability weighting curve is
globally convex, implying pronounced risk aversion.8

4.1.1 Evidence of Delay-Dependent Probability Weighting

Empirical evidence on the valuation of delayed prospects typically only provides results on sum-

mary measures of risk tolerance. The predominant finding in the literature is higher risk tol-

erance for delayed prospects than for present ones (Shelley, 1994; Ahlbrecht and Weber, 1997;

Sagristano, Trope, and Liberman, 2002; Noussair and Wu, 2006; Coble and Lusk, 2010). Recently,

Abdellaoui, Diecidue, and Öncüler (2011) conducted a carefully designed experiment eliciting

probability weights for both present and delayed prospects, i.e. in our notation w(p) and w̃(p).

Their results provide persuasive direct support for our approach. They find four distinctive char-

acteristics of delay-dependent prospect valuation. First, the utility for money u does not react to

time delay. Second, w̃ is significantly more elevated than w in the aggregate as well as for the

7This finding mirrors Quiggin (2003)’s result of atemporal risk tolerance increasing with background risk.
8Convex probability weighting implies risk aversion if utility u is, as usually assumed, (weakly) concave.
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Figure 1: Effect of Delay on Observed Probability Weights w̃
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The graphs show two typical specimens of atemporal risk preferences characterized by the probability weighting
curves w(p) = w̃(p) at t = 0: an inverse S-shaped curve on the left and a globally convex curve on the right.
Moving the payoff date into the future by t = 2 and t = 12 months, respectively, shifts the probability weighting
curves w̃ upwards. Furthermore, the probability weighting functions get progressively less strongly curved. For
purposes of illustration, the curves are derived from Prelec’s two-parameter probability weighting function w(p) =
exp(−β(− ln(p))α) (Prelec, 1998), assuming degrees of subproportionality α = 0.5 and convexity β = 1 (left hand
side) and β = 3 (right hand side), respectively. Inherent uncertainty 1− s is set at 0.2 per annum.
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majority of the individuals. Third, an additional six-month delay affects elevation less strongly

than the first six-month delay. Moreover, w̃ appears to be less strongly curved than w.9

4.2 Fact #2: Delay Dependence of Discounting Behavior

Repercussions on risk taking behavior are not the only effects of inherent uncertainty. The same

mechanism also affects the valuation of allegedly guaranteed delayed payoffs as it drives a wedge

between time preferences and observed discounting behavior. As shown in Equation 7, the ob-

served discount weight for time equals ρ̃(t) = w(st)ρ(t), which depends not only on the pure rate

of time preference η, but also on the probability of prospect survival s as well as on the shape of

the probability weighting function w. Clearly, if w is linear, ρ̃ declines exponentially irrespective

of the magnitude of s. To see this, note that ρ(t) = exp(−ηt) and st = exp(−(− ln(s))t), imply-

ing a discount rate η̃ = η − ln(s) > η for 0 < s < 1. In this case, uncertainty per se increases

the absolute level of revealed impatience, but cannot account for declining discount rates. Thus,

an expected-utility maximizer will exhibit a constant discount rate that is higher than her under-

lying rate of pure time preference, but her behavior will not show any of the interaction effects

addressed in this paper.

If, however, w is subproportional and 0 < s < 1, the component w(st) distorts the discount

weight in a predictable way. Increasing patience is not a manifestation of underlying preferences

but rather a consequence of inherent uncertainty changing the nature of future payoffs. At the

level of observed behavior, increasing patience is the mirror image of increasing risk tolerance.

In fact, the degree of proneness to common-ratio violations, the degree of subproportionality, can

be interpreted as degree of time insensitivity. Intuitively, when the future is inherently uncertain

promised rewards do not materialize with certainty and, therefore, they incorporate the potential

of disappointment. Because more immediate payoffs are more likely to actually materialize

than more remote payoffs, this potential is perceived to decline with the passage of time and

becomes almost negligible for payoffs far out in the future. Technically, since shifting a payoff

into the future amounts to scaling down its probability, a decision maker with subproportional

preferences becomes progressively insensitive to a given timing difference. These insights are

9In their study on ambiguity, Abdellaoui, Baillon, Placido, and Wakker (2011) show estimates of a probability weight-
ing curve derived from choices over prospects delayed by three months. This curve is also much more elevated than
typical atemporal estimates are (see for example Bruhin, Fehr-Duda, and Epper (2010)).
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formalized in the following proposition, prediction 3 of which is closely related to Theorem 1

in Halevy (2008). Note that our proposition holds for any subproportional function, even if it is

inverse S-shaped.

PROPOSITION 2 (Characteristics of observed discounting behavior) Given subproportionality of w:10

1. ρ̃(t) is a proper discount function for 0 < s ≤ 1, i.e. decreasing in t, converging to zero
with t→ ∞, and ρ̃(0) = 1.

2. Observed discount rates η̃(t) are higher than the rate of pure time preference η for s < 1.

3. Observed discount rates decline with the length of delay for s < 1.

4. Greater inherent uncertainty generates more strongly declining discount rates.

5. Comparatively more subproportional probability weighting generates comparatively more
strongly declining discount rates.

[Proof in Appendix B]

Illustration: Inherent Uncertainty and Discount Rates
The effects of inherent uncertainty on revealed discount rates are presented in Figure 2, which
depicts a typical decision maker’s observed discount rates η̃ as they react to varying levels of s. The
horizontal line represents the case of no inherent uncertainty. In this case, the observed discount
rate η̃ is constant and coincides with the true underlying rate of time preference η. When inherent
uncertainty comes into play, however, discount rates decline in a hyperbolic fashion, and depart
from constant discounting increasingly strongly with rising uncertainty, as shown by the curves
for s = 0.8 and s = 0.5, respectively.

4.2.1 Evidence of Link between Subproportionality and Hyperbolicity

A large body of empirical evidence documents the prevalence of common-ratio violations as

well as of non-exponential discounting, at least at the level of aggregate behavior (Kahneman

and Tversky, 1979; Thaler, 1981; Benzion, Rapoport, and Yagil, 1989; Starmer and Sugden, 1989),

which suggests that there may be a common cause driving behavior in both decision domains

(Prelec and Loewenstein, 1991). However, there is vast heterogeneity in individuals’ behaviors

(Hey and Orme, 1994; Chesson and Viscusi, 2000; Bruhin, Fehr-Duda, and Epper, 2010) and

the question arises whether common-ratio violations and non-constant discounting are actually

exhibited by the same people. Our framework predicts not only the existence of a link between

10See Appendix B for a discussion of sufficient versus necessary conditions.
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Figure 2: Effect of Inherent Uncertainty on Observed Discount Rates η̃
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The graph shows discount rates as they move with the length of delay t for different levels of inherent uncertainty
1− s, where s denotes the probability of prospect survival. When there is no inherent uncertainty, s = 1, the observed
discount rate is constant and equals the rate of pure time preference (line labeled by s = 1.0). The higher is the level of
uncertainty, the lower s, the more pronounced the hyperbolic decline of discount rates over time is for decision makers
with subproportional probability weights (curves labeled by s = 0.5 and s = 0.8). η̃(t) := − ∂ρ̃

∂t /ρ̃. w is specified as
Prelec’s probability weighting function (in this example α = 0.5 and β = 1).
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subproportional risk preferences and hyperbolic discounting but also its strength: higher degrees

of subproportionality are predicted to be associated with higher degrees of hyperbolicity.

Note that we predict merely a correlation between insensitivities to probabilities and de-

lays, and not a one-to-one correspondence à la Baucells and Heukamp (2012), because it allows

for many combinations of preferences: For example, an expected utility maximizer may have

genuinely hyperbolic time preferences or a probability weighter may not perceive the future as

inherently uncertain and, hence, will exhibit constant discounting. The model can, therefore,

pick up a lot of individual heterogeneity, which is beyond the means of Baucells and Heukamp

(2012)’s model. There is another advantage of our structural approach: It defines drivers of

behavior that enable the researcher to understand real-world phenomena. Furthermore, these

drivers can be experimentally manipulated and their effects tested.

In a recent experimental study, Epper, Fehr-Duda, and Bruhin (2011) provide evidence that

subjects’ departures from linear probability weighting are indeed highly significantly correlated

with the strength of decreasing discount rates. Moreover, in line with our framework, the cur-

vature of the utility function seems not to be directly related to their decline. In fact, the only

variable associated with decreasing discount rates turns out to be the degree of nonlinearity

of probability weights, which explains a large percentage of the variation in the extent of the

decline, whereas other individual characteristics, such as gender, age, experience with invest-

ment decisions and cognitive abilities have no significant impact on the degree of non-constant

discounting.

4.3 Facts #3 and #4: Process Dependence of Observed Behavior

So far, we have considered the case of uncertainty resolving in one single stage, the domain over

which atemporal risk preferences are defined. If uncertainty does not resolve in one shot but

rather sequentially over the course of time, future prospects lose their single-stage quality and

turn into multi-stage ones. In this case the question arises in which way multi-stage prospects are

transformed into single-stage ones. In Appendix A we analyze in detail two different transfor-

mation methods, reduction by probability calculus and folding back, and their interactions with

subproportional risk preferences. One of the issues concerns dynamic consistency. Dynamic

consistency requires that choices made at, or plans formed at, different times conform with one
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another (Sugden, 2004). As Loomes and Sugden (1986) argue, any theory that accommodates

the common-ratio effect must dispense either with dynamic consistency or with the compound

probability axiom, i.e. reduction by the probability calculus. Therefore, if the decision maker

cares only about the total probabilities of the final outcomes she will be dynamically inconsistent

unless she precommits herself to stick to her original plans. Folding back, on the other hand, en-

sures dynamic consistency but, as Propositions 3 and 4 will show, has substantial consequences

for revealed risk taking behavior. Therefore, as will become clear, we label adoption of folding

back as myopic. In the following, we assume ρ = 1 for ease of exposition.

Suppose that uncertainty is partially resolved at some future time t1 and fully resolved at

the payment date t, as depicted in Figure 3. Proposition 3 shows that a decision maker with

subproportional preferences prefers uncertainty to be resolved at the payment date t rather than

at some earlier time. Note that this result does not hold generally under subproportionality

in rank-dependent utility but only applies to the class of prospects studied here, i.e. prospects

that are devalued by inherent uncertainty without effects on the rank order of the outcomes (see

Dillenberger (2010) and the discussion in Appendix A).

Figure 3: Gradual Resolution of Uncertainty

3 Gradual Resolution of Uncertainty
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PROPOSITION 3 (Preference for one-shot resolution of uncertainty) Given subproportionality of w,

s ≤ 1 and folding back:

1. A myopic decision maker prefers one-shot resolution of (total) uncertainty to gradual reso-
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lution of uncertainty.

2. Her preference for one-shot resolution declines with (total) probability of the best outcome.

3. Her prospect valuation is lowest at midterm to maturity.

[Proof in Appendix B]

A special case is the valuation of allegedly certain future payoffs, which constitute simple

prospects in our framework. A myopic decision maker, applying folding back, will exhibit a

discount weight of w(st1)w(st−t1) < w(st), an incident of subadditive discounting (fact #4).

Preference for one-shot resolution of uncertainty is embodied in the characteristics of atem-

poral risk preferences and, therefore, all the insights of Segal (1990), who analyzes two-stage

prospects in an atemporal setting, still apply. The effect of gradual resolution of uncertainty on

subproportional probability weights is depicted in the left panel of Figure 4. The passage of

time does not interact with this preference as long as there is no disassociation of prospect un-

certainty from inherent uncertainty. However, revealed risk tolerance is additionally influenced

by its delay dependence, as shown in the right panel of Figure 4. Consider a prospect with

a long time horizon t. If its total uncertainty is resolved in one single stage, risk tolerance as

well as the corresponding discount weight attains its maximum value. If uncertainty resolves

gradually, both observed risk tolerance and the discount weight are smaller than in the one-shot

case. The effect gets more pronounced the finer is the partition of delay t into subintervals.

Therefore, anticipating to watch uncertainty resolve over time considerably dampens the effect

of long time horizons on risk tolerance, because the decision maker is frequently exposed to the

possibility of a disappointing outcome. The preference for one-shot resolution is strongest for

improbable prospects and declines with rising probability. Moreover, our model predicts that

partitions of the time interval of equal length will be valued particularly unfavorably. Partitions

of equal length correspond to the least degenerate multi-stage prospect and can be interpreted as

relatively most ambiguous situation, which is strongly disliked by people with subproportional

preferences (Segal, 1987b).

Illustration: Process Dependence of Probability Weights
Figure 4 demonstrates the sensitivity of subproportional probability weights to the number of
evaluation stages m, resulting from partitions of equal length (the most pronounced case). The
more frequently feedback is provided, the more pronounced is the dampening effect on revealed
risk tolerance, illustrated for the atemporal case in the left panel of Figure 4. The curve for
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m = 1 represents a typical subproportional probability weighting function when outcomes are
evaluated in one shot. If uncertainty resolves in two stages with equal probability rather than
in one shot, the prospect is effectively evaluated with the probability weighting curve m = 2,
which shows more pronounced underweighting. At m = 12, the curve looks extremely convex,
implying strong risk aversion.

This insight is directly transferable to situations where the resolution of uncertainty involves
the passage of real time. The combined effects of inherent future uncertainty and sequential eval-
uation are shown in the right panel of Figure 4. When the prospect is delayed by 12 months the
curve for m = 1 is more elevated than the atemporal curve, a manifestation of delay-dependent
risk tolerance. Compounding of weights semi-annually (m = 2) or monthly (m = 12) looks less
dramatic than in the atemporal situation, but shows the same tendency toward convex probabil-
ity weighting, i.e. an increase in risk aversion.

Figure 4: Process Dependence of Observed Probability Weights
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The two panels demonstrate the effect of sequential evaluation on observed probability weights w̃ depending on the
number of stages m. The left panel shows atemporal probability weighting functions for one-shot evaluation (m = 1)
and multi-stage evaluations (m = 2 and m = 12). The right panel does the same for a 12-month delay under the
assumption of an additional layer of uncertainty (s = 0.8). When resolution of uncertainty is delayed by 12 months,
revealed risk tolerance for m = 1 is higher than in the atemporal case. Sequential evaluation (m = 2, m = 12), however,
has the same qualitative, but less pronounced, effect as in the atemporal model.
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4.3.1 Evidence on Gradual versus One-Shot Resolution

A number of prominent papers investigated the effects of feedback frequency and precommit-

ment on people’s risk taking behavior in investment games (Gneezy and Potters, 1997; Thaler,

Tversky, Kahneman, and Schwartz, 1997; Gneezy, Kapteyn, and Potters, 2003; Bellemare, Krause,

Kröger, and Zhang, 2005; Haigh and List, 2005) and generally find that investment behavior

appears more risk averse when outcomes are evaluated more frequently.11 This finding is of-

ten interpreted as a manifestation of myopic loss aversion, a term coined by Benartzi and Thaler

(1995). In this context, myopia is defined as narrow framing of decision situations which focuses

on short-term consequences rather than on long-term ones. Loss aversion, one of the key con-

stituents of prospect theory, describes people’s tendency to be more sensitive to losses than to

gains.12 According to this interpretation, if people evaluate their portfolios frequently, the prob-

ability of observing a loss is much greater than if they do so infrequently. In this sense, myopic

loss aversion describes a mechanism similar to sequential probability weighting. Consequently,

loss-averse investors shy away from risky assets as probability weighters do.

Several authors have challenged the loss aversion argument, however. Using conventional

parameterizations of cumulative prospect theory, Blavatskyy and Pogrebna (2010) show that the

effects of myopic loss aversion may be modified by probability weighting and conclude that my-

opic loss aversion alone cannot explain the observed patterns of behavior. Langer and Weber

(2005) argue and support experimentally that, depending on the specific risk profile of the in-

vestment sequence, myopia may decrease or increase the attractiveness of a sequence. Regarding

the equity premium, De Giorgi and Legg (2012) argue that probability weighting may raise the

equity premium considerably above the level predicted by loss aversion alone. The upshot of

these arguments is that probability weighting should not be ignored when studying investment

behavior. In any case, all the studies on feedback frequency conducted so far have not controlled

for subjects’ inclinations toward probability distortions and have remained within the confines

of atemporal risk preferences.

11In these experiments subjects evaluate sequences of identical two-outcome lotteries over several periods where the
range of potential outcomes increases with the number of periods. Unlike Gul’s disappointment aversion (Palacios-
Huerta, 1999; Artsetin-Avidan and Dillenberger, 2011), our model does not deliver clear predictions for this class of
prospects.

12Recently, Köszegi and Rabin (2009) extended the concept of loss aversion to changes in beliefs about present and
future consumption. Their model also predicts decision makers to prefer information to be clumped together rather
than apart.
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For the domain of discounting, evidence of process dependence is presented in Read (2001)

and Read and Roelofsma (2003). Interestingly, sequential discounting has another implication:

People may exhibit hyperbolic discounting when the length of delay is increased, i.e. when

uncertainty resolves in a single stage, but constant discounting when two events are shifted into

the future by a common timing difference, which may induce folding back. Evidence for the

simultaneous occurrence of constant and non-constant discounting is provided by Epper, Fehr-

Duda, and Bruhin (2009) and Dohmen, Falk, Huffman, and Sunde (2012).

4.4 Fact #5: Timing Dependence of Risk Taking Behavior

The previous theoretical result rests on the assumption that prospect uncertainty is resolved si-

multaneously with inherent uncertainty. If the prospect is played out before payment takes place,

prospect uncertainty is segregated from inherent uncertainty. As long as prospect uncertainty is

unresolved both types of risks are effective, after resolution of prospect uncertainty only inher-

ent uncertainty remains to be resolved, defining two distinct stages of uncertainty resolution.

As Segal (1990) argues, folding back is particularly plausible when sufficiently long time passes

between the stages or the stages are clearly distinct.

Figure 5 depicts three distinct cases: First, the prospect is played out immediately after

prospect valuation. In this case, the decision will know the outcome after her decision and faces

only inherent uncertainty. This situation corresponds to the left panel, labeled “immediate”. The

right panel shows the other extreme, labeled “late” when the prospect is played out and paid

out at the same time t, the focus of Propositions 1 and 2. The middle panel is dedicated to the

intermediate case when prospect uncertainty is resolved at some time t1 in the future before the

payment date.

PROPOSITION 4 (Preference for late resolution of prospect uncertainty) Given subproportionality of

w, s < 1 and folding back:

1. A myopic decision maker values prospects with prospect uncertainty resolving at the time
of payment more highly than prospects with earlier resolution of prospect uncertainty.

2. The wedge between late and immediate resolution, w(pst)
w(p)w(st)

, declines with probability p.

3. The wedge between late and immediate resolution increases with time horizon t and inher-
ent uncertainty 1− s.
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Figure 5: Resolution Timing of Prospect Uncertainty

4 Resolution of Prospect Uncertainty

p

x1st

01 − st

1 − p
x2st

01 − st

pst1

x1st−t1

01 − st−t1

(1 − p)st1 x2st−t1

01 − st−t1

0

1 − st1

x1
pst

x2
(1 − p)st

01 − st

0 t1 t

immediate intermediate late

11

The figure shows three different timings of the resolution of prospect uncertainty. Uncertainty gets resolved either
immediately at t = 0 (left tree), in between the present and the time of payment (middle tree), or at the time of
payment at t > 0 (right tree).

[Proof in Appendix B]

While it is always the case that late resolution at t is preferred to any earlier resolution time

t1, we cannot ascertain that intermediate resolution at t1 > 0 is generally better than immediate

resolution at t1 = 0. Due to the ambiguity effect resulting from time partitions of equal length,

discussed above, the discount weight w(st1)w(st−t1) decreases with t1 for t1 ∈
[
0, t

2

)
and increases

for t1 ∈
( t

2 , t
]
, while risk tolerance increases throughout. Therefore, total prospect value increases

with t1 as long as both factors increase, which is always the case for t1 > t
2 . Depending on the

relative magnitudes of the effects before t
2 , prospect value may decrease after t1 = 0 for some

time. Obviously, this depends on the prospect under consideration. Table 3 summarizes the

effects of resolution timing on observed probability weights w̃ and discount weights ρ̃.

The value of a simple prospect (x, p) amounts to u(x)w(pst1)w(st−t1). In this case, the move-

ment of w(pst1)w(st−t1) determines the preference for resolution timing. It is straightforward to

show that the minimum of the utility weight w(pst1)w(st−t1) is attained at t∗1 = t
2 −

ln(p)
2 ln(s) , which

lies below t
2 . If t∗1 > 0, then immediate resolution may be preferred to some later times before

t
2 , otherwise prospect value increases monotonically in resolution time. The latter is the case for

p ≤ st. For a given prospect, this condition is more likely to be met for low inherent uncertainty

and/or short time horizons. The greater the uncertainty or the longer the time horizon, the
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comparatively less desirable becomes intermediate resolution of uncertainty.

In our view, that atemporal risk preferences induce a preference for late resolution of prospect

uncertainty constitutes the third important insight from our model, besides delay-dependent

risk tolerance and hyperbolic discounting. If myopic decision makers perceive the future as

inherently uncertain, this property follows endogenously from subproportionality and does not

constitute an independent preference as in the theoretical literature on resolution timing (Kreps

and Porteus, 1978; Chew and Epstein, 1989; Grant, Kajii, and Polak, 2000). These theories build

on the assumption that the decision maker has an intrinsic preference for early or late resolution

of uncertainty and examine the ramifications of this assumption for different models of atemporal

risk preferences.

An intrinsic preference for late resolution of uncertainty can also be interpreted as an aversion

to non-instrumental information. Information is non-instrumental when no further action can be

taken that will change the decision maker’s utility.13 Grant, Kajii, and Polak (1998) present the

following example of non-instrumental information:

“Consider, for example, the decision of whether to be tested for an incurable genetic disorder.
A director of a genetic counseling program told the New York Times that there are basically two
types of people. There are ‘want-to-knowers’ and there are ‘avoiders’. There are some people
who, even in the absence of being able to alter outcomes, find information of this sort beneficial.
The more they know, the more their anxiety level goes down. But there are others who cope by
avoiding, who would rather stay hopeful and optimistic and not have the unanswered question
answered.” (Grant, Kajii, and Polak (1998), p.234).

That there are different types of decision makers has not only been observed in the context of

health-related information but also in the domain of financial prospects, as the following section

shows.

4.4.1 Evidence of Preference for Late Resolution of Uncertainty

Several experimental studies have investigated people’s intrinsic preferences for resolution tim-

ing, frequently based on hypothetical questions. The general finding is that there are varying

percentages of people with preference for early resolution, preference for late resolution and

13There is a number of papers studying preference for instrumental information in non-expected utility models (see for
instance Wakker (1988), Schlee (1990), Safra and Sulganik (1995). Li (2011) analyzes aversion to partial information
in the context of an ambiguity averse preference model. See also the discussion of the value of information in
Dillenberger (2010).
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Table 3: Effects of Resolution Timing t1 on Decision Weights

Resolution Timing
immediate intermediate late

t1 = 0 0 < t1 < t t1 = t
w̃ w(p) < w(pst1 )

w(st1 )
< w(pst)

w(st)

ρ̃ w(st) > w(st1)w(st−t1) < w(st)

timing indifference (Chew and Ho, 1994; Ahlbrecht and Weber, 1996; Arai, 1997; Lovallo and

Kahneman, 2000; Eliaz and Schotter, 2007; von Gaudecker, van Soest, and Wengström, 2011).

However, in line with our predictions, preference for late resolution seems to be particularly pro-

nounced for positively skewed prospects, i.e. for prospects with small probabilities of the best

outcome, and increases with time delay. Epstein and Zin (1991) find preference for late resolution

of uncertainty in market data on U.S. consumption and asset returns. As in the case for prefer-

ence for one-shot resolution, none of the studies so far have controlled for nonlinear probability

weighting.

4.5 Fact #6: Risk Dependence of Discounting Behavior

Researchers have been puzzled not only by delay-dependent risk tolerance and preferences with

respect to resolution timing but also by other interactions between time and risk, encompassing

risk-dependent discounting and diminishing immediacy. As we will show below, these findings

can be naturally accommodated within our framework.

Several studies have found that decision makers appear to discount certain future outcomes

more heavily than risky ones. Let V0 denote the present value of the prospect P = (x1, p; x2)

delayed by t periods. Hence, for ρ = 1,

V0 =

(
[u(x1)− u(x2)]

w(pst)

w(st)
+ u(x2)

)
w(st) (8)

Furthermore, let Vt denote the future value of P as of t:

Vt = [u(x1)− u(x2)]w(p) + u(x2). (9)
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Discounting by w(st) yields

Vtw(st) = ([u(x1)− u(x2)]w(p) + u(x2))w(st). (10)

According to standard discounting theory, the present value V0 should be equal to the dis-

counted value of Vt, namely Vtw(st). However, because w(p) < w(pst)
w(st)

, actually Vtw(st) < V0.

Therefore, it seems as if the certain value Vt is discounted more heavily than the (at t equally

attractive) future prospect. The difference in the valuations is not caused by different rates of

time preference for risky and certain payoffs, however, but by inherent uncertainty changing the

nature of the future prospect when evaluated from the point of view of the present rather than

from the point of view of the future. Risk-dependent discounting was found in several studies.

Ahlbrecht and Weber (1997) replicated previous results of Stevenson (1992) only in matching

tasks, involving elicitation of V0 and Vt, but not in choice tasks. In their choice tasks, subjects

were asked to choose between a prospect to be played at time t and a certain payment at t.

Risk-dependent discounting was tested by varying t. The authors surmised that, as time passes,

preference for the prospect over the certain payment should become more pronounced, which

was not the case in their choice data, however. How can the absence of an effect in choice tasks

be rationalized within our framework? When risky and certain prospects are evaluated concur-

rently only atemporal risk preferences play a role in subjects’ elicited choices. Therefore, subjects’

preference ordering over risky and certain payments should remain stable when varying t - this

is exactly what Ahlbrecht and Weber found.

The same kind of risk dependence is at work when the revealed preference for a certain

smaller present payoff over an allegedly certain larger later payoff decreases substantially when

both payoffs are made (objectively) probabilistic. This finding was labeled diminishing immediacy

(Keren and Roelofsma, 1995; Weber and Chapman, 2005) and motivated Halevy (2008)’s work.

Because of the certainty effect, the additional layer of riskiness affects the later payoff much less

than the present one because, due to inherent uncertainty, it is viewed as a risky prospect already

from the outset.
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4.6 Fact #7: Sequence Dependence of Measured Risk Tolerance

An equivalent analysis can be applied to the issue of sequence dependence of prospect valuation.

In principle, there are three different methods of establishing a decision maker’s value of a

prospect P = (x1, p; x2) delayed by t periods: the time-first sequence, the risk-first sequence,

or the direct method. The time-first sequence encompasses, at the first stage, the elicitation of

the present risky prospect which is considered to be equivalent to the future one and, at the

second stage, the elicitation of the certainty equivalent of this present risky prospect. The risk-

first sequence reverses the elicitation order and assesses the certainty equivalent as of time t first

and its present value thereafter. The direct method, finally, elicits the present certainty equivalent

of the delayed prospect without any intermediate steps.

When the decision maker is required to state the prospect’s value when discounting solely for

risk, she ignores the dimension of time and reports Vt, the value of which then gets discounted

to Vtw(st). Conversely, when discounting for time first, she states the present prospect which is

equivalent to the delayed one, evaluated as
(
[u(x1)− u(x2)]

w(pst)
w(st)

+ u(x2)
)

w(st). Discounting

for risk at the second stage results in its value V0, which is equal to the present value elicited by

the direct method.

Therefore, we predict that discounting for risk first results in a lower prospect valuation

than discounting for time first. Moreover, discounting for time first is equivalent to prospect

evaluation in one single operation. In their study on sequence dependence, Öncüler and Onay

(2009) indeed found this pattern: While valuations resulting from the time-risk sequence and

the direct method are not statistically distinguishable from each other, risk-time evaluations are

significantly lower than the ones obtained from the other two methods (see also Ahlbrecht and

Weber (1997)).

5 Discussion

Most economically important decisions, may they concern health, wealth, love or education in-

volve a significant interval between the time that the relevant decision must be made and the time

that all uncertainty is completely resolved. Therefore, our theoretical models of decision making

should be able to handle these situations in a satisfactory way. Mounting evidence of significant
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interaction effects between time and risk call the descriptive validity of the standard models into

question that view discounting for risk and discounting for time as independent operations.

Our approach provides not only a unifying explanation for seven puzzling facts uncovered

by experimental research but also a novel view on perplexing real-world behaviors. For example,

people buy warranties for household appliances at exorbitant prices but are reluctant to buy ad-

equate health insurance unless forced to do so by law, even though many will agree that health

is the most valuable good in one’s life. Similarly, people seem overly risk averse when investing

in the stock market but are not willing to buy highly subsidized insurance for natural disasters

even though life and property are at stake. These examples suggest that risk tolerance, rather

than being a manifestation of stable attitudes depends on the nature of the decision at hand. The

puzzle of seemingly volatile preferences can be easily solved, however, if one accounts for the

dimension of time along which real-world decisions typically differ. If people perceive the future

as inherently uncertain our model of subproportional preferences predicts revealed risk tolerance

to vary systematically with the timing and the process of uncertainty resolution. The longer the

time horizon and the lower the frequency of feedback on uncertainty resolution the compara-

tively more risk tolerant decision makers will appear to be. Thus, the model provides a wide

range of testable predictions that will generate new insights into people’s economic behavior.

Since warranties for household appliances are typically rather short-term and products are

used on a daily basis, consumers, anticipating their disappointment in the case of breakdown,

will be easily persuaded to buy warranties. However, when deciding on health insurance they

will be much more risk tolerant because health is anticipated to deteriorate very slowly and often

does so imperceptibly for a long time. Similarly, it is hard to predict when natural disasters will

actually occur and, therefore, potential floods and earthquakes are not on people’s minds. Stock

market investors’ time horizons may also be long-term in principle but, contrary to the health and

disaster insurance cases, information on portfolio performance is easily accessible and, due to its

omnipresence in the news, hard to ignore. Frequent checking of newspapers and news tickers

will substantially counteract the otherwise risk-tolerance increasing effect of long investment

horizons. Delay- and process-dependent risk tolerance not only affects individuals’ welfare but

also society at large. People’s reluctance to take out insurance for floods and earthquakes, for

example, poses serious problems when disaster actually strikes. It is practically impossible for
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the public authorities to deny assistance once there are identified victims and their stories are

publicized in the news (Viscusi, 2010). In the context of climate policy, it takes decades or even

centuries until the stock of pollutants will be sufficiently reduced to see any gaugeable effect

of society’s abatement endeavors. If there is both great uncertainty about the effectiveness of

abatement policies and lack of feedback, the risk tolerance of a large percentage of the population

may be extremely high and, therefore, it is likely that they are opposed to supporting abatement

measures.

The ultimate driver of our results is the certainty effect, i.e. people’s tendency to give greater

weight to certain outcomes than to uncertain outcomes. This effect not only produces higher

risk tolerance for future prospects but essentially all the other interactions between time and risk

found in the experimental data. But where does the certainty effect come from? Unfortunately,

little is known empirically about the psychological mechanism producing common-ratio viola-

tions and the certainty effect. In the course of the paper, we have argued that disappointment

aversion is a likely candidate for the source of probability-dependent risk preferences. However,

it is still an open question whether emotional processes such as disappointment aversion, the psy-

chophysics of perception, or simply some error of judgment is the driving force of behavior. In

any case, when confronted with their allegedly irrational behavior in Allais-type situations many

people insist on their original choices (MacCrimmon, 1968; Slovic and Tversky, 1974). Thus, the

certainty effect does not arise from an error of judgment but seems to constitute a deeply rooted

preference.
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Appendix A: Dynamic Consistency, Myopia and Sophistication

From a normative point of view, there are two kinds of, logically distinct, problems with hyper-

bolic discounting. First, hyperbolic discounting violates stationarity, i.e. the requirement that the

discount weight over a certain delay remains constant when the delay is shifted into the future.

Second, there may be situations in which the decision maker is dynamically inconsistent, i.e.

choices made or plans formed at different times do not coincide. In order to take a closer look at

these claims and to pave the ground for Propositions 3 and 4, we use the technique of decision

trees. Choice nodes are represented by squares and chance nodes are represented by circles.

Without loss of generality, we will henceforth assume that the true discount weight ρ equals 1.

In the decision trees in Figure 6, the upper branch represents an option U, the lower branch rep-

resents an option D. In Figure 6a, the option U entails an, allegedly certain, larger outcome x, to

be paid in one period. The option D entails a smaller outcome y, payable immediately. Assume

that the decision maker prefers the smaller immediate outcome y, i.e. u(x)w(s) < u(y).

Now suppose that the decision maker faces the choice between x delayed by two periods and

y delayed by one period, i.e. both outcomes are shifted into the future by one period. Option U

in Figure 6b is associated with a value of u(x)w(s2) in this case, and option D is associated with

u(y)w(s). Due to subproportionality of probability weights w, (w(s))2 < w(s2) and hence

u(x)w(s)
u(y)

=
u(x)w(s)w(s)

u(y)w(s)
<

u(x)w(s2)

u(y)w(s)
. (11)

Therefore, the relative value of option U increases and may lead to a change of preference

in favor of the larger later outcome x. This type of preference reversal has become known as

common difference effect, a violation of stationarity, and constitutes one of the most robust empirical

findings in intertemporal choice. In the framework of our model, the same mechanism that is

responsible for common-ratio violations in risky choice produces violations of stationarity in

intertemporal choice if inherent uncertainty comes into play. The parallelism between common-

ratio violations in atemporal risky choice and violations of stationarity in intertemporal choice

was noted by Prelec and Loewenstein (1991).

Let us assume that the common-ratio effect is sufficiently strong such that the decision maker

choses option U in this decision situation, i.e. u(x)w(s2) > u(y)w(s). What happens if the
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Figure 6: Static Choice, Dynamic Choice and Precommitment
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Tree (a) depicts the choice between an amount x to be paid next period if the prospect survives, and an amount y
payable immediately, with x > y. The probability of prospect survival is denoted by s. In Tree (b) both options are
deferred by one period. In Tree (c) the decision maker does not decide immediately over the deferred options, but at
the end of the first period. Tree (d) represents the case of precommitment.
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decision maker does not decide now but rather at the end of the first period? This decision

situation is depicted in Figure 6c. From the point of view of the present, future uncertainty has

to resolve favorably for the options to be still available at the end of the first period. Therefore, the

decision maker effectively faces a genuinely dynamic two-stage problem.14 Since preferences are

defined over single-stage risks, multi-stage decision problems have to be transformed into single-

stage ones by an appropriate mechanism. An obvious candidate is reduction by the calculus of

probability. In this case, the probabilities of reaching the final outcomes are compounded and

probability weighting is applied only to the resulting compounded probabilities. This procedure

renders u(x)w(s2) for option U and u(y)w(s) for option D and, therefore, a preference for U. At

the end of the first period however, the options are valued as u(x)w(s) and u(y), respectively,

leading to a change of plan in favor of D. Unless the decision maker foresees how she will

behave in the future and precommits to maintain her original plan of choosing U, she will exhibit

dynamically inconsistent behavior. Therefore, revealed behavior over time depends on several

factors: the characteristics of atemporal risk preferences, the reduction method, and the use of

precommitment. In a recent experiment Halevy (2011) finds that half of his subjects are time

consistent, but only two thirds of them exhibit stationary choices. On the other hand, half of the

inconsistent subjects display stationary preferences.

In a carefully designed experiment Starmer, Cubitt, and Sugden (1998) show that, in the con-

text of atemporal dynamic risky choices, there is indeed a highly significant difference between

behavior in situations with and without precommitment (see also Nebout and Dubois (2012)). In

the situation without precommitment the majority of subjects, 71%, choose (in our notation) op-

tion D whereas in the (forced) precommitment case, which corresponds to the situation in Figure

6d, only a minority of 43% do so. Hence it seems to make a fundamental difference whether the

choice has to be made now or later. This inconsistency constitutes a violation of the principle of

timing independence, which requires that at each decision node the decision maker chooses the

same path as in the corresponding tree where she precommits to a certain strategy.

Several authors made a case against reduction as an appropriate mechanism of transforming

multi-stage prospects into single-stage ones. Segal (1990) argues that even if the decision maker

accepts the basic laws of probability theory she may have a preference over the number of lot-

14A decision situation is dynamic if there is at least one chance node preceding a choice node (Machina, 1989).
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teries she participates in, which invalidates reduction by probability calculus. Segal replaces the

reduction axiom by a different axiom, compound independence,15 which ensures the applicabil-

ity of folding back as transformation mechanism. Folding back means that a two-stage prospect

is evaluated recursively by replacing the second-stage prospect with its certainty equivalent and

inserting the utility of the certainty equivalent into the single-stage valuation formula. If the

decision maker puts herself into the shoes of her future self facing the decision, she will prefer

D just as in the first decision problem and then discount the value of u(y) to the present, which

yields u(y)w(s). The present value of option U amounts to u(x)w(s)w(s) in this case. If this

method is employed, the decision maker’s behavior is consistent in the sense that her preferred

option D today will also be the preferred option when she actually decides, i.e. she sticks to her

original plan of action.

There is a severe problem with folding back, however. Given the decision maker’s preferences

in the previous decision situations, the following relationship holds:

u(x)w(s)w(s) < u(y)w(s) < u(x)w(s2), (12)

which implies that the decision maker would fare better (in terms of present utility) if she chose

U instead of D at the end of the first period, i.e. if she precommitted herself to the plan yielding

the compounded final prospect value. Therefore, folding back with subproportional preferences

comes at a cost even though it is dynamically consistent. For this reason we will term sequential

evaluation of multi-stage prospects by folding back as myopic and consistency with compounded

final-stage evaluation as sophisticated.16

The decision situation with precommitment is depicted in Figure 6. Presumably, if the de-

cision is made at the end of the first period rather than immediately, the multi-stage nature of

the prospect becomes salient and folding back seems to be a natural, and prima facie perfectly

15Let A = (Z1, q1; ...; X, qi; ...; Zm, qm) be a two-stage prospect yielding m single-stage prospects Zj with probabilities
qj, j ∈ {1, ..., i − 1, i + 1, ..., m}, and X with probability qi, and let B = (Z1, q1; ...; Y, qi; ...; Zm, qm) yielding Zj with
probabilities qj, j ∈ {1, ..., i− 1, i + 1, ..., m}, and Y with probability qi. Compound independence holds if A � B⇐⇒
(X, 1) � (Y, 1) (Segal, 1990).

16We do not want to imply that myopia, as defined here, is irrational, however. Loomes and Sugden (1986) argue
that “...people seek consistently to maximize expected satisfaction, where that expectation includes the anticipation
of possible disappointment and elation. We cannot see any reason for regarding such a maximand as irrational;
nor do we think that any simple experience of satisfaction, whatever its source, can be designated either rational or
irrational” (p.280).
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rational, evaluation strategy. If the decision maker evaluates her options by folding back she will

still choose D. However, if she integrates the probabilities of survival over the two periods into a

single number, i.e. if she employs reduction by probability calculus, she ends up choosing option

U. Irrespective of transformation strategy, precommitment serves an important purpose: It either

ensures dynamic consistency (reduction) or maximum utility (folding back).

To get an impression of what kind of costs of myopic behavior may be involved consider the

following illuminating example discussed by Palacios-Huerta (1999).

Example: The Costs of Sequential Evaluation
“On a given day in June 1994, in Los Angeles, the national soccer teams from Brazil and Italy
played in the World Cup final. As most people in the world did, a well-known Brazilian professor
of economics in the United States watched the game. After the regulation time the game was
tied. After an extra thirty minutes the game remained tied. The soccer champion of the world
for the next four years then had to be decided in a five-penalty-kick shoot-out. The professor
then switched off his television set, as perhaps did many other people, especially Brazilians and
Italians....Why did he do it?” (Palacios-Huerta (1999), p.250). Palacios-Huerta argues that taking
the professor through the process of watching the penalty shoot-out increases the number of
times that some disappointment may occur and, in this sense the process itself generates a loss
of utility, the costs of emotional involvement.17

As recent theoretical developments show, nonlinear probability weighting can indeed be ra-

tionalized by anticipated emotions of elation and disappointment (Bell, 1982; Gul, 1991; Walther,

2003). For subproportional preferences, (w(s))m < w(sm) is implied and, therefore, the differ-

ence between w(sm) and (w(s))m can be interpreted as an affect premium, the costs of evaluating

an m-stage prospect sequentially rather than in one shot.18 In the soccer example above, the

professor avoids these costs by turning off the TV, i.e. by precommitment to be informed only

of the final outcome of the shoot-out. In our terminology, he acts in a sophisticated way.19 If

precommitment is possible but costly, the affect premium provides a boundary for the costs of

precommitment the decision maker is willing to incur.

In the following we apply this analysis to the valuation of two-outcome risky prospects. Let us

abstract from the passage of real time and consider atemporal two-stage problems first. Assume

that the prospect (x1, p; x2) gets resolved in two stages ((x1, r; x2), q; (x2, 1)) such that p = qr.

17A similar reasoning is presented by Loomes and Sugden (1986).
18Dillenberger (2010) analyzes this premium in a general context.
19For another example of myopia versus sophistication, in the context of casino gambling, see Barberis (2012).
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Applying folding back to the two-stage prospect ((x1, r; x2), q; (x2, 1)) renders a valuation of

[u(x1)− u(x2)]w(q)w(r) + u(x2). (13)

The value of its single-stage counterpart (x1, p; x2) = (x1, qr; x2) amounts to

[u(x1)− u(x2)]w(qr) + u(x2). (14)

Subproportionality of w implies that w(qr) > w(q)w(r), i.e. one-shot resolution of uncertainty

is always preferred to gradual resolution. If gradual resolution is involved, the decision maker

looks comparatively more risk averse than in the one-shot case. The difference between sequential

and one-shot values, the affect premium, increases with the number of stages m.

The ratio w(p)
w(q)w(r) provides a measure for the strength of the sequential evaluation effect,

which exhibits a systematic relationship with respect to probability p (note that q is constant

here):

∂
[

w(p)
w(p/q)

]
∂p

=
w(p)

pw(p/q)

(
w′(p)p
w(p)

− w′(p/q)(p/q)
w(p/q)

)
=

w(p)
pw(p/q)

(εw(p)− εw(p/q))

<0,

(15)

as p/q > p and the elasticity of w is increasing. Therefore, the wedge between one-shot evalua-

tion and sequential evaluation is largest for highly unlikely prospects and decreases with p.

As is clear from Equation 13, it plays no role which stages probabilities q and r are attached

to. In this sense, valuation by folding back is symmetrical. However, it makes a difference how

total probability p is subdivided. The value of the two-stage prospect attains its minimum for

q = r =
√

p, i.e. when the two stages are least degenerate (Segal, 1990). To see this let us examine

the derivative of w(q)w(r) w.r.t. r subject to the constraint that p = qr:

∂ [w(q)w(p/q)]
∂q

=w′(q)w(p/q) + w(q)w′(p/q)(−p/q2)

=0
(16)
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⇒ w′(q)
w(q)

q =
w′(r)
w(r)

r

⇒ q = r =
√

p
(17)

because the elasticity of w is increasing. Therefore, the common-ratio effect observed in single-

stage valuations carries over to two-stage prospects.20 These insights have important implications

for our problem of temporal prospect valuation when the resolution timing of the prospect does

not coincide with the resolution timing of inherent uncertainty or when uncertainty resolves

gradually, analyzed in Propositions 3 and 4.

A Note on Sequential Evaluation
In his Proposition 1, Dillenberger (2010) shows that, under recursivity, negative certainty in-

dependence (NCI) and a weak preference for one-shot resolution of uncertainty (PORU) are
equivalent. The NCI axiom requires the following to hold: If a prospect P = (x1, r; x2) is weakly
preferred to a degenerate prospect D = (y, 1) then mixing both with any other prospect does
not result in the mixture of the degenerate prospect D being preferred to the mixture of P. This
axiom is weaker than the standard independence axiom and does not put any restrictions on the
reverse preference relation when a degenerate prospect is originally preferred to a nondegener-
ate one. The latter case characterizes the typical Allais common-ratio paradox. NCI allows for
Allais-type preference reversals but does not imply them. Dillenberger’s Proposition 3 demon-
strates that NCI is generally incompatible with rank-dependent utility unless the probability
weighting function is linear, i.e. unless RDU collapses to EUT. An intuitive explanation for Dil-
lenberger’s Proposition 3 is that under RDU prospect valuation is sensitive to the rank order of
the outcomes and, therefore, mixtures with other prospects may affect the original rank order of
outcomes in P (and D). How does Dillenberger’s result relate to our claim that subproportional
probability weights conjointly with recursivity imply a strong preference for one-shot resolution
of uncertainty?

The crucial insight is that for the class of prospects studied in this paper changes in rank
order do not occur and, hence, NCI is satisfied. To see this, assume that the prospect (x1, p; x2),
x1 > x2 ≥ 0, gets resolved in two stages ((x1, r; x2), q; (x2, 1)) such that p = qr. In the atemporal
case, when there is no additional inherent uncertainty, the two-stage prospect continues to be a
strictly two-outcome one and the only relevant mixtures are those involving x2. Suppose that
P = (x1, r; x2) � (y, 1) = D, with x1 > y > x1 and consider the following mixtures with
(x2, 1− λ) for some λ ∈ (0, 1): P′ = (x1, λr; x2) and D′ = (y, λ; x2). The following relationships

20Segal (1987b) utilizes this result to explain the Ellsberg Paradox .
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hold:

P � D ⇒ V(P) = [u(x1)− u(x2)]w(r) + u(x2) ≥ u(y)
V(D′) = u(y)w(λ) + u(x2)(1− w(λ))

≤ ([u(x1)− u(x2)]w(r) + u(x2))w(λ) + u(x2)(1− w(λ))

= [u(x2)− u(x1)]w(r)w(λ) + u(x2)

< [u(x2)− u(x1)]w(λr) + u(x2)

= V(P′)

(18)

because w(r)w(λ) < w(λr) for any λ ∈ (0, 1) (and hence also for λ = q) due to subpropor-
tionality of w. Consequently, for mixtures with the smaller outcome x2, NCI, and therefore also
PORU, is strongly satisfied. If the mixing prospect may be any arbitrary prospect, in other words
if surprises are possible in the course of uncertainty resolution, this result does not hold gener-
ally. The only surprise that is still admissible is the occurrence of an outcome worse than x2, say
z. Define P′′ = (x1, λr; x2, λ(1− r); z) and D′′ = (y, λ; z).

V(D′′) = u(y)w(λ) + u(z)(1− w(λ))

≤ ([u(x1)− u(x2)]w(r) + u(x2))w(λ) + u(z)(1− w(λ))

= [u(x2)− u(x1)]w(r)w(λ) + [u(x2)− u(z)]w(λ) + u(z)
< [u(x2)− u(x1)]w(λr) + [u(x2)− u(z)]w(λ) + u(z)
= V(P′′)

(19)

For z = 0, this case is exactly the situation studied in this paper when inherent uncertainty comes

into play.

Appendix B: Proofs of Propositions

Proof of Proposition 1

.

1. Since w̃(0) = w(0)
w(st)

= 0, w̃(1) = w(st)
w(st)

= 1, and w̃′ = w′(pst)st

w(st)
> 0 hold, w̃ is a proper

probability weighting function.

2. Subproportionality of w̃ follows directly from subproportionality of w as for p > q:

w̃(λp)
w̃(λq)

=
w(λst p)
w(λstq)

<
w(st p)
w(stq)

=
w̃(p)
w̃(q)

(20)

3. Since w is subproportional,
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w̃(p) =
w(pst)

w(st)
>

w(ps)
w(s)

>
w(p)
w(1)

= w(p) (21)

holds for s < 1 and t > 1. Therefore, w̃ is more elevated than w. Obviously, elevation gets

progressively higher with increasing t and an equivalent effect is produced by decreasing s.

Since w̃ increases monotonically in t and w̃ ≤ 1 for any t, elevation increases at a decreasing

rate.

4. For the elasticity of w̃, εw̃(p), the following relationship holds:

εw̃(p) =
w̃′(p)p
w̃(p)

=
w′(pst)pst

w(pst)
= εw(pst) < εw(p), (22)

as the elasticity εw is increasing in its argument iff w is subproportional (Segal, 1987a).

5. In order to show that a comparatively more subproportional probability weighting function

entails a greater increase in observed risk tolerance we examine the relationship between

the underlying atemporal probability weights w and observed ones w̃. Let w1 and w2

denote two probability weighting functions, with w2 exhibiting greater subproportionality.

If w1(λ)w1(p) = w1(λpq) holds for a probability q < 1, then w2(λ)w2(p) < w2(λpq)

follows as w2 is more subproportional than w1 (Prelec, 1998). Choose r < 1 such that

w2(λ)w2(p) = w2(λpqr). For λ = st, the following relationships hold:

w̃1(p)
w1(p)

=
w1(λp)

w1(λ)w1(p)
=

w1(λp)
w1(λ)w1(p)

w1(λ)w1(p)
w1(λpq)

=
w1(λp)
w1(λpq)

. (23)

Applying the same logic to w2 yields

w̃2(p)
w2(p)

=
w2(λp)

w2(λ)w2(p)
=

w2(λp)
w2(λpqr)

>
w2(λp)
w2(λpq)

. (24)

Therefore, the relative wedge w̃2(p)
w2(p) caused by subproportionality is larger than the corre-

sponding one for w1. �
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Proof of Proposition 2

1. ρ̃(0) = w(s0)ρ0 = 1. Since w′ > 0 holds, ∂w(st)
∂t < 0 and, therefore, ρ̃′ < 0. Finally,

lim
t→∞

ρ̃(t) = 0 (in terms of discount rates: lim
t→∞

η̃(t) = η).

2. Discount rates are generally defined as the rates of decline of the respective discount func-

tions, i.e. η = − ρ′(t)
ρ(t) and η̃(t) = − ρ̃′(t)

ρ̃(t) . Therefore,

η̃(t) = − ρ̃′(t)
ρ̃(t)

= −w′(st)st ln(s) exp(−ηt)− w(st) exp(−ηt)η
w(st) exp(−ηt)

= −
(

w′(st)st

w(st)
ln(s)− η

)
= − ln(s)εw(st) + η

> η

(25)

since ln(s) < 0, w > 0, w′ > 0. Note that w′(st)
w(st)

st corresponds to the elasticity of the proba-

bility weighting function w evaluated at st, εw(st).

3. Since the elasticity of a subproportional function is increasing in its argument, the elasticity

of w(st) is decreasing in t. Thus,

η̃′(t) = − ln(s)
∂εw(st)

∂t
< 0. (26)

4. In order to derive the effect of increasing uncertainty, i.e. decreasing s, we examine the

sensitivity of ρ̃(t+1)
ρ̃(t)ρ̃(1) = w(st+1)

w(s)w(st)
, which measures the departure from constant discounting

between periods t + 1 and t, with respect to changing s:
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∂
∂s

[
w(st+1)

w(s)w(st)

]
= 1

[w(s)w(st)]2

[
(1 + t)stw(s)w(st)w′(st+1)− tst−1w(s)w(st+1)w′(st)− w(st)w(st+1)w′(s)

]
= 1

s[w(s)w(st)]2

[
(1 + t)st+1w(s)w(st)w′(st+1)− tstw(s)w(st+1)w′(st)− sw(st)w(st+1)w′(s)

]
= w(st+1)

sw(s)w(st)

[
(1+t)st+1w′(st+1)

w(st+1)
− tstw′(st)

w(st)
− sw′(s)

w(s)

]
= w(st+1)

sw(s)w(st)

[
(1 + t)εw(st+1)− tεw(st)− εw(s)

]
< 0.

As st+1 < st < s, εw(st+1) < εw(st) < εw(s) and, hence, the sum of the elasticities in the

final line of the derivation is negative. Therefore, increasing uncertainty, i.e. decreasing s,

entails a greater departure from constant discounting and, consequently, a higher degree of

hyperbolicity.

5. In order to examine the effect of the degree of subproportionality on hyperbolicity, the

strength of decline, suppose that the probability weighting function w2 is comparatively

more subproportional than w1, as defined in Prelec (1998), and that the following indiffer-

ence relations hold for two decision makers 1 and 2 at periods 0 and 1:

u1(y) = u1(x)w1(s)ρ for 0 < y < x,

u2(y′) = u2(x′)w2(s)ρ for 0 < y′ < x′ .
(27)

Due to subproportionality, the following relation holds for decision maker 1 in period t:

1 =
u1(x)w1(s)ρ

u1(y)
<

u1(x)w1(st+1)ρt+1

u1(y)w1(st)ρt . (28)

Therefore, the subjective probability of prospect survival has to be reduced by compound-

ing s over an additional time period ∆t to re-establish indifference:

u1(y)w1(st)ρt = u1(x)w1(st+1+∆t)ρt+1. (29)

It follows from the definition of comparative subproportionality that this adjustment of the

survival probability by ∆t is not sufficient to re-establish indifference with respect to w2,
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i.e.

u2(y′)w2(st)ρt < u2(x′)w2(st+1+∆t)ρt+1. � (30)

Proof of Proposition 3

1. Consider the tree in Figure 3. Here, both prospect uncertainty and inherent uncertainty are

assumed to resolve simultaneously in two stages, partially at t1 and finally at t. Applying

folding back, the resulting two-stage prospect is evaluated as

[u(x1)− u(x2)]w(pt1/tst1)w(p(t−t1)/tst−t1) + u(x2)w(st1)w(st−t1). (31)

Subproportionality implies that w(pt1/tst1)w(p(t−t1)/tst−t1) < w(pst) and w(st1)w(st−t1) <

w(st).

2. Follows directly from the derivation in Equation 15 in Appendix A.

3. Using the result of the derivation in Equation 16 in Appendix A, both utility weights attain

their respective minima at t1 = t
2 when partial probabilities are equal. �

Proof of Proposition 4

1. Consider the graphs in Fig. 5. The tree on the right-hand side represents the subjective pay-

off probabilities if prospect uncertainty is resolved at the time of payment t. As discussed,

this prospect is evaluated as
(
[u(x1)− u(x2)]

w(pst)
w(st)

+ u(x2)
)

w(st). If, however, prospect

uncertainty is resolved immediately after prospect valuation the decision maker will know

whether she is supposed to receive x1 or x2 at t. Therefore, after resolution of prospect

uncertainty both possible outcomes are only affected by inherent uncertainty and get de-

valued by w(st). This situation is shown on the left-hand side of Figure 5. Hence, the value

of the prospect immediately before the prospect is played out amounts to

[u(x1)− u(x2)]w(p)w(st) + u(x2)w(st)

= ([u(x1)− u(x2)]w(p) + u(x2))w(st).
(32)
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As w(pst) > w(p)w(st) is implied by subproportionality of w, prospects with resolution at

the date of payment t are valued more highly than prospects with immediate resolution.

In fact, in case of immediate resolution of prospect uncertainty, observed risk tolerance

coincides with true risk tolerance and the present value of the prospect is only affected by

(hyperbolic) discounting.

What happens if prospect uncertainty is not resolved immediately but rather at some later

time t1, 0 < t1 < t? After t1, only inherent uncertainty remains to be resolved. In this case,

the prospect’s present value amounts to

(
[u(x1)− u(x2)]

w(pst1)

w(st1)
+ u(x2)

)
w(st1)w(st−t1). (33)

Subproportionality implies w(p) < w(pst1 )

w(st1 )
< w(pst)

w(st)
and, therefore, observed risk tolerance

is highest for resolution at payoff time t. Moreover, the late-resolution discount weight

w(st) = w(st1 st−t1) is also greater than w(st1)w(st−t1) for any earlier t1, implying that late

resolution is always preferred.

2. Examining the derivative of w(pst)
w(p) with respect to p yields

∂
[

w(pst)
w(p)

]
∂p

=
w(pst)

pw(p)

(
w′(pst)pst

w(pst)
− w′(p)p

w(p)

)
=

w(pst)

pw(p)
(εw(pst)− εw(p))

<0,

(34)

as p > pst and the elasticity is increasing. Therefore, the wedge between late evaluation

and immediate evaluation decreases with p.

3. The derivative of w(pst)
w(st)

with respect to t yields

∂
[

w(pst)
w(st)

]
∂t

=
ln(s)w(pst)

w(st)

(
w′(pst)pst

w(pst)
− w′(st)st

w(st)

)
=

ln(s)w(pst)

w(st)
(εw(pst)− εw(st))

>0,

(35)
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as ln(s) < 0, st > pst and the elasticity is increasing. Therefore, the wedge between late

and immediate evaluation increases with time horizon t and, equivalently, with inherent

uncertainty 1− s. �

5.1 Miscellaneous Remarks

On the Necessity of Subproportionality
Clearly, subproportionality is sufficient to produce all the results of Propositions 1 and 2 (as well
as of all the following propositions). But is subproportionality, aside from inherent uncertainty
1− s > 0, also necessary? For statements that refer to the present it is necessary that preferences
exhibit the certainty effect, i.e. that w(p)w(q) < w(pq) for any p, q < 1, which is implied by but
does not imply subproportionality. Therefore, the result that risk tolerance is higher for future
prospects than for present ones does not depend on subproportionality, only on the certainty
effect. However, for statements pertaining to relationships between behaviors at different times
in the future, for instance, that risk tolerance is increasing in t or that discount weights decline
hyperbolically, subproportionality is necessary (for a proof with respect to observed discount
weights see Saito (2011)). For example, preferences that are not generally subproportional but
exhibit the certainty effect, such as the discontinuous weighting function w(p) = γp for p < 1
and w(1) = 1 defined for 0 < γ < 1, will show an increase in risk tolerance relative to the present
as well as quasi-hyperbolic discounting.

Special Cases: Simple and Degenerate Prospects
In our framework a simple prospect (x, p) with one non-zero outcome gets transformed into a
prospect (x, pst) when it is played out and paid out at t. A degenerate prospect (x, 1) delayed
by t is perceived as (x, st). Subproportionality implies w(1)

w(st)
> w(p)

w(pst)
for t > 0 and, therefore,

allegedly certain prospects appear to get discounted more heavily than nondegenerate ones, and
the effect is more pronounced for low-probability prospects. Note that observations on simple
prospects alone do not allow to separate probability weights from discount weights. For this
purpose, nondegenerate two-outcome prospects are needed.

Application: Constant-Sensitivity Discounting
Ebert and Prelec (2007) argue that time discounting is driven by two distinct forces, impatience
and time sensitivity. The authors provide an axiomatic foundation of a constant-sensitivity dis-
count function ρ(t) = exp(−(θt)α), where α measures time sensitivity and θ measures impa-
tience.21 θ marks the boundary between the near and far future: Times shorter than 1/θ are in
the near future, while times greater than 1/θ are in the far future. So greater impatience leads to
more immediate discounting. The time-sensitivity parameter α, on the other hand, decreases dis-
counting for near-future outcomes and increases discounting for far-future ones. This function
fits experimental data remarkably well.

In our framework, the discount function is defined as ρ̃(t) = w(st) for ρ = 1. Inserting
Prelec (1998)’s specification of the probability weighting function w yields ρ̃(t) = exp(−(θt)α),
with impatience defined as θ = − ln(s). The subproportionality parameter α < 1, therefore,
represents an index for time insensitivity: a 1% increase in delay implies an α% reduction in the

21A flexible specification is presented in Bleichrodt, Rohde, and Wakker (2009). See also Prelec (2004).
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log-discounted-present-value of the reward. Hence, our model provides a natural link between
subproportional probability weighting functions and constant-sensitivity discount functions.
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