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Abstract

With prospective payment of hospitals becoming more common, measuring their performance is gain-

ing in importance. However, the standard cost frontier model yields biased efficiency scores because

it ignores technological heterogeneity between hospitals. In this paper, efficiency scores are derived

from a random intercept and an extended random parameter frontier model, designed to overcome

the problem of unobserved heterogeneity in stochastic frontier analysis. Using a sample of 100 Swiss

hospitals covering the years 2004 to 2007 and applying Bayesian inference, significant heterogeneity

is found, suggesting rejection of the standard cost frontier model. Estimated inefficiency decreases

even below the 14 percent reported by Hollingsworth (2008) for European countries. Accounting for

unobserved heterogeneity would make hospitals rated below 85 percent efficiency according to the

standard model gain up to 12 percentage points, serving to highlight the importance of heterogeneity

correction in the estimation of hospital performance.
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1. Introduction

Performance-based prospective hospital payment has recently been introduced in several coun-

tries. It has greatly increased the importance of accurately measuring firm-specific performance,

defined here in terms of operating costs per casemix-adjusted patient case. The challenge for policy

makers is to pay for efficiency; however, this calls for filtering out differences that are caused by

inefficiencies rather than heterogeneities due to exogenous influences.

In response to this need, there has been a growing body of research into the determinants of cost

variability between hospitals (see Hollingsworth, 2008, Jacobs et al., 2006, and Worthington, 2004 for

overviews of the literature). Specifically, the meta-analysis by Hollingsworth (2008) finds evidence

of inefficiency in the hospitals of the United States and several European countries, amounting to a

potential for cost reduction of 18 percent and 14 percent, respectively. Compared to these estimates,

Switzerland is on the high side with Steinmann and Zweifel (2003), based on a Data Envelopment

Analysis (DEA), coming up with 30 percent. In a comparison with Germany (the land of Saxony),

Steinmann et al. (2004) once more found Swiss hospitals to be relatively inefficient. Using a Stochas-

tic Frontier Analysis (SFA), Farsi and Filippini (2006) put the potential of cost reduction to 20 percent

on average, which would translate into 7 percent of Switzerland’s total health care expenditure (55 bn

CHF) in 2007. However, these estimates do not account for heterogeneity in production technology,

which is likely to be particularly marked due to Swiss federalism.

Efficiency scores from the articles cited above are simply defined as the ratio of observed cost to a

value on the estimated single technology cost frontier (Farrell, 1957).1 In the case of SFA introduced

by Meeusen and van den Broeck (1977) and Aigner et al. (1977), this ratio is given by

Cit

CS (Xit;α, β)
= eui+vit , (1)

with Cit is the (arithmetic) cost of hospital i = 1, ...,N at time t = 1, ...,T , CS (Xit;α, β) is an estimated

minimum cost for outputs and input prices comprised in a NT × (K + 1) matrix X, α is the unknown

intercept, β is a K × 1 vector of unknown slope parameters of the cost function, ui is a random term

with positive values only reflecting inefficiency, and vit a conventional random error (see Section 2

below for details). Any difference in technology is captured in the composite error term ui + vit, which

could bias the estimates of the inefficiency scores ui (see also Greene, 2004a). This is particularly the

case for Switzerland, where hospitals have to operate in different regulatory environments, causing

1 Simple cost ratios, often used for policy purposes, are not sufficient because they neglect both economies of scale
and heterogeneity of technology.
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them to provide health care services using different technologies. Controlling for heterogeneity may

therefore lead to inefficiency estimates that are more in line with those of the United States and the

European countries.

There have been several approaches for dealing with this problem. The first is to introduce fixed

effects in the SFM or in the distribution of ui (see e.g. Worthington, 2004). Since the choice of

the dummy variables must rely on observable characteristics of the hospital, this solution is limited

to ’observable’ heterogeneity, leaving potential for ’unobservable’ heterogeneity to bias estimated

inefficiency scores. Provided panel data available, a true random effects model can be estimated (see

e.g. Farsi and Filippini, 2008, Farsi et al., 2006, Greene, 2005b, and Greene, 2004b). This is a special

case of the Random Intercept Frontier Model (RIFM) to be presented below, which enables cost

frontiers to vary between hospitals. Still, the RIFM is not without limitations because it only allows

the intercept α to be stochastic and assumes heterogeneity to be homoscedastic. Additional flexibility

is afforded by the Random Parameter Frontier Model (RPFM), a generalization of the SFM and the

RIFM, which additionally allows the slopes β vary between hospitals. Implementation of RPFM until

recently was hampered by the requirement of large computational power and panel data of sufficient

quality. Improvement on both counts have rendered them feasible in the meantime (see e.g. Widmer,

2010, Huang, 2004, Orea and Kumbhakar, 2004, and Tsionas, 2002).

In this paper, we analyze the influence of unobserved heterogeneity between Swiss hospitals us-

ing a SFM, a RIFM, and an extended RPFM for SFA. Section 2 contains additional details for these

models as well as for the Bayesian approach adopted in the model specification and parameter esti-

mation. The database of about 100 Swiss hospitals covering the years 2004 to 2007 is presented in

Section 3. Estimation results confirm the existence of unobserved heterogeneity in Swiss hospitals,

suggesting rejection of the SFM. On average, the SFM overestimates Swiss hospital inefficiency by

about 6 percent. Section 4 considers the implications of this study for hospital managers and policy

makers, and concludes.

2. Modeling Unobservable Heterogeneity

It is common practice to define heterogeneity as time-invariant cost variation that is exogenous

in the sense that it cannot be manipulated by management at least in the short run. This definition is

adopted here.2 As a benchmark, the specification of the cost function in the presence of observable

heterogeneity is presented first (Section 2.1); this provides the point of departure for the modeling of

2 On the longer run, the choice of technology can be influenced by hospital management. The presence of inferior
technology becomes a component of management inefficiency in this case.
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unobservable heterogeneity in Section 2.2, which likely is the more important component given that

the quality of (largely non-profit) hospital management is not easily measured.

2.1. The Standard Frontier Model with Observable Heterogeneity

When heterogeneity is perfectly observable, the SFM can be augmented in a way permitting to

estimate consistent efficiency scores (Pitt and Lee, 1981). Let there be repeated observations t =

1, ...,T for all hospitals i = 1, ...,N, and let heterogeneity Zi be completely reflected by a N × L

matrix of observable, time-invariant characteristics. Using a Cobb-Douglas cost function in logs for

simplicity, the cost frontier can be specified as

Cit = α + γ′Zi + β′Xit + γ′XitZi + ui + vit, i = 1, ...,N, t = 1, ...,T, (2)

ui
iid
∼ f +

N [0, σ2
u] with Cov(ui;α, Xit,Zi, vit) = 0, (3)

vit
iid
∼ fN[0, σ2

v] with Cov(vi;α, Xit,Zi, ui) = 0, (4)

with parameters defined in the Introduction section. Note that observable heterogeneity enters the

cost function in two ways. First, the intercept α is augmented by a hospital-specific term γ′Zi. This

is called separable heterogeneity because it captures cost variability that is unrelated to the hospital’s

technology, such as size of its catchment area.3 Second, the slopes β pertaining to outputs and factor

prices are individualized by γ′XitZi. This is non-separable heterogeneity reflecting differences in

technology such as the amount and vintage of capital in use.

In this model, firm-specific inefficiency ui is assumed to be time-invariant, uncorrelated with the

deterministic part of the cost function as well as with random noise vit, and to follow a one-sided

distribution supported on the interval [0,∞) such as the half normal, truncated normal, exponential,

gamma or Weibull distribution. Alternatively one could model inefficiency as a time-invariant fixed

effect (Schmidt and Sickles, 1984), which allows for correlation with production technology.4 But

because heterogeneity is assumed to be time-invariant here, this variant will not be pursued.

Given eqs. (2) to (4) as an option, cost variability in logarithms is given by

Cit −CH(Xit,Zi;α, β, γ) = ui + vit, (5)

3 Greene (2005a) permits correlation between separable heterogeneity and production technology in his true fixed
effects model.

4 The fixed effect model has at least two drawbacks: (1) it only measures relative inefficiency, (2) no time-invariant
technology parameters are allowed in the cost function.
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where CH(Xit,Zi;α, β, γ) is individualized for each hospital as shown in eq. (2). It enables the hospital

regulator to separate cost variability related to differences in technology from inefficiency ui and

random noise vit. The resulting inefficiency scores are no longer biased by heterogeneity and can be

used for performance-based reimbursement.

However, this result does not hold as soon as heterogeneity is not completely observable but has

an unobservable component Z∗i , resulting in terms γ′Z∗i and γ′XitZ∗i in the error term of eq. (2). If the

regulator uses the conventional benchmark CH of eq. (2), the residuals become

Cit −CH(Xit,Zi;α, β, γ) = γ′Z∗i + γ′XitZ∗i + ui + vit. (6)

The existence of (time-invariant) unobservable heterogeneity Z∗i now causes bias in the measure-

ment of hospital performance in two ways:

• Rather than estimating true inefficiency ui, eq. (2) will estimate an artificially augmented inef-

ficiency term ũit = ui + γ′Z∗i + γ′XitZ∗i ;

• To the extent that unobserved heterogeneity Z∗i is correlated with either observed heterogeneity

Zi or outputs and factor prices Xit estimates of technology parameters α and β are biased as well

since Cov(ũit,Zi) , 0, Cov(ũit, Xit) , 0.

With both inefficiency scores and technology parameters biased, prospective payment runs the risk of

rewarding some hospitals for being seemingly efficient while punishing others for being seemingly

inefficient.

U.S. experience with prospective payment suggests that unobservable heterogeneity could be sub-

stantial. If performance-based reimbursement took into account all relevant determinants of hospital

cost, one would expect hospitals to discard technologies giving rise to characteristics that are not paid

for and to move to the cost-efficient level. However, Keeler (1990) found that U.S. hospitals still have

a great deal of unexplained cost variability although prospective payment had been in place since

1983. One reason is that changes in hospital technology are particularly costly, causing hospitals to

be slow in adopting new technologies. Evidently, more advanced estimation techniques are neces-

sary to disentangle latent heterogeneity from inefficiency for prospective hospital payment to have the

desired efficiency-enhancing effects.5

5 As stated by Newhouse (1996), one option to overcome this problem is to use non fully prospective reimbursement
systems, that are not fully prospective.
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2.2. The Random Parameter Model with Unobservable Heterogeneity

The discussion of the preceding subsection led to the conclusion that in the case of hospitals, part

of their technological heterogeneity is unobservable for years to come. Therefore, reimbursement ar-

guably should take into account both observable and unobservable heterogeneity. One way to achieve

this is the RPFM (the RIFM allows only the intercept rather than all parameters to be random and will

not be expounded separately below). A RPFM estimates an individual cost function for each hospital,

admitting of both observable and unobservable heterogeneity (see e.g. Widmer, 2010, Greene, 2004b,

Huang, 2004, Orea and Kumbhakar, 2004, and Tsionas, 2002). To save on notation, the case of unob-

servable heterogeneity only is presented below. No ex-ante information on heterogeneity is needed,

except for the assumption that it is time-invariant and normally distributed over individual hospitals.

This is achieved by introducing a [(K +1)×1] vector of time-invariant random variable wi ∼ N[0, σ2
w]

that changes the intercept of the cost function to become αi = α + wi (separable heterogeneity) and to

the slope parameters to become βi = β + wi (non-separable heterogeneity), resulting in

Cit = (α + wi) + (β + wi)′Xit + uit + vit, or (7)

Cit = αi + β′i Xit + uit + vit. (8)

In the special case where wi captures all existing heterogeneity, the RPFM can be transformed

back into a SFM by substituting wi by γ′Zi in eq. (7).

However, this specification is somewhat restrictive because it assumes both the intercept and the

slopes of the cost function to be time-independent. This neglects the fact that new medical technology

affects the whole hospital industry in very much the same way (such as the introduction of SCAT

scanners). Denoting these changes by a vector of time dummies Mt, eq. (8) can be generalized to

read,

Cit = αit + β′itXit + uit + vit with

αit = ¯̄α + δ′Mt + wi and ᾱt = ¯̄α + δ′Mt;

βit = ¯̄β + δ′Mt + wi and β̄t = ¯̄β + δ′Mt. (9)

This specification allows to disentangle inefficiency from unobservable heterogeneity both vari-

able and time-invariant. Separable heterogeneity is captured by the random intercept αit = ¯̄α+ δ′Mt +

wi, where ¯̄α is the mean intercept over all hospitals. Non-separable heterogeneity in technology pa-

rameters is captured by a (K × 1) vector of hospital-specific parameters βit = ¯̄β + δ′Mt + wi.
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To derive individual effects, assume wi to follow a multivariate normal distribution

wi ∼ fMN [w̄,Σ] , with Σ ∼ fW

 σ2
wα

σwα,wβ

σwα,wβ
σ2

wβ

 , (10)

with w̄ equal to zero. Σ is Wishart distributed with a [(K + 1) × (K + 1)] positive definite covariance

matrix S = (σ2
wα
, σ2

wβ
, σwα,wβ

), denoting unobserved heterogeneity between hospitals. For Σ = 0 no

time-invariant heterogeneity exists and the random parameter model simplifies to a SFM with no

variation in βit and αit.

For the Bayesian estimation to be performed in Section 3, the posterior distribution for the random

parameter model needs to be derived. It is given by

p(α, ¯̄α, β, ¯̄β, δ, u,Σ, σ−2
v , σ

−2
u ; C, X,M) ∝ p( ¯̄α, ¯̄β, δ,Σ, σ−2

v , σ
−2
u )

×

N∏
i=1

T∏
t=1

1√
2πσ2

v

exp
[
−

1
2σ2

v

(
Cit − [αit + β′itXit + uit]

)2
]

×

N∏
i=1

(2π)−K/2|Σ|−1/2exp
[
−

1
2

(wi − w̄)′ Σ−1 (wi − w̄)
]

×

N∏
i=1

T∏
t=1

p(uit, σ
−2
u ), (11)

where probability distributions p( ¯̄α, ¯̄β, δ,Σ, σ−2
v , σ

−2
u ) for the priors remain to be specified in Section

3.1. The likelihood function in eq. (11) is as in Griffin and Steel (2007), normally distributed with σ2
v

as the variance of the random noise vit = Cit − [αit + β′itXit + uit] and with αit and βit as in eq. (9). The

last term of eq. (11) points to a gain in flexibility over classical maximum likelihood applications,

where a joint density function of the random noise v and the inefficiency term u is specified. Here,

only random noise enters the likelihood function, while inefficiency is estimated along with the other

parameters of the cost function.

The random intercept αit and technology parameters βit are estimated at three levels. At the first

level, the overall influences on hospital costs ( ¯̄α, ¯̄β) are determined, corresponding to the first factor

following the proportionality sign of eq. (11); the second-level estimates of time-specific effects (ᾱt,

β̄t) defined in eq. (9) and the third-level estimates of individual values (αit, βit) are derived from the

multivariate normal distribution shown in eq. (11). Finally, inefficiency p(u, σ−2
u ) given by the last

factor of eq. (11) is estimated at two levels. The first-level estimate corresponds to the population

mean. The second-level estimates yield firm-specific inefficiency scores uit.
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Note that estimates of the unknown parameters can be derived by the marginal posteriors of eq.

(11). However, it is not always possible to compute the posteriors analytically. Therefore, iterative

Monte Carlo Markov Chain (MCMC) simulation is used, which involves iterative sampling from

posterior parameter densities. Here, we use WINBUGS to derive the estimates (see Ntzoufras, 2009

for an introduction to Bayesian analysis with WINBUGS).

The model formulation of eq. (9) is quite general, containing many other variants of RPFM cited

as special cases. For example, if Mt turn out to be zero for all covariates, it reduces to the one described

by Greene (2004b) where all parameters are allowed to vary between hospitals but are constant over

time. Furthermore, if additionally only technology parameters contain heterogeneity, it reduces to

the one of Tsionas (2002), with a common intercept for all hospitals. If only the intercept controls

for heterogeneity, it corresponds to the true random effects model of Greene (2005a) where all cost

functions have the same slopes, adjusting only for separable heterogeneity. This is similar to the

applied RIFM but with heterogeneity that is constant over time. Finally, if additionally wi is zero for

all parameters, the RPFM reduces to a SFM with no heterogeneity in the cost function.

3. Empirical Application to Swiss Hospitals Using Bayesian Inference

In this section, we analyze the effect of unobserved heterogeneity on the performance of Swiss

hospitals with three SFA formulations, a Random Parameter Frontier Model (RPFM) outlined in

Section 2.2, a Random Intercept Frontier Model (RIFM) as a special case of the RPFM, and a Standard

Frontier Model (SFM).

3.1. Data and Econometric Specification of the Cost Function

The data used in this study are provided by the annual reports of the Federal Office of Public

Health. They include 333 Swiss hospitals for the time period 2004 to 2007, comprising information

on 5 university hospitals (K111), 23 central hospitals (K112), 27 large regional hospitals (K121),

46 medium regional hospitals (K122), 46 small regional hospitals (K123), 28 specialized surgery

hospitals (K231), and sundry hospitals, viz. psychiatric and rehabilitation clinics. In total, 127 of

these 333 units are private, non-subsidized hospitals.

In the interest of comparability, the sundry category was discarded. After purging the data from

missing values and outliers, an unbalanced panel of 405 observations of sufficient quality is available.

Variables are defined as follows:
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VC : Variable operational expense per year, in thousands of CHF (VC);

X1 : CMI-adjusted inpatient cases (PCASES);

X2 : Revenue from outpatients (OUTP);

X3 : Price of labor, average wage per employee (PL);

X4 : No. of beds (BEDS);

S 1 : No. of internship categories (INTERN);

S 2 : No. of specialties (SPEC);

S 3 : Dummy=1 for subsidized public hospitals (SUB);

S 4 : Share of inpatients with supplementary insurance, in percent (INSUR);

Mt : Year dummies, t=2005, 2006, 2007 (base = 2004);

Zl : Hospital group dummies, l=K111, K112, K121, K122, K231 (base = K123).

Table 1: Descriptive Statistics

Variable Mean Min Max K111 K112 K121 K122 K123 K231

VC1) 109,296 3,925 953,586 790,609 190,380 88,122 44,830 19,538 36,387
PCAS ES 7,731 497 52,143 43,046 14,651 7,093 3,796 1,545 2,741
OUT P1) 20,499 0 186,174 142,331 42,845 14,753 6,826 2,387 6,698
PL1) 101 34 188 106 103 100 100 99 108
BEDS 201 12 1,170 893 383 207 108 55 69
INT ERN 18 0 134 118 32 15 10 5 3
S PEC 35 4 86 67 50 36 33 24 18
S UB2) 87 0 100 100 100 100 88 80 37
INS UR2) 25 3 100 18 19 20 25 27 47

1) in 1,000 CHF, 1 CHF=0.8 USD (2004 exchange rates).
2) in percent, SUB=100 means that 100 percent of all hospitals are subsidized.

Summary statistics are shown in Table 1 for all six hospital groups retained. They suggest that

technological heterogeneity between Swiss hospital groups indeed influence cost. University hospitals

(K111) for example have the highest variable costs (VC = 790, 609); this can be attributed to their

high values of the two major outputs (PCAS ES = 43, 046 and OUT P = 142, 331) and possibly

the fact that they are all subsidized (S UB = 100 percent) while having a small share of patients

with supplementary insurance (INS UR = 18 percent). However, they also have the most internship

programs (INT ERN = 118) and specialties (S PEC = 67). Specialized hospitals (K231) on the other

hand are on average small hospitals with fewer internship programs (INT ERN = 3) and specialties

(S PEC = 18) but are mostly non-subsidized (S UB = 37 percent) while having a high share of

supplementary insured patients (INS UR = 47 percent).
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With these data, we can specify a cost function where variable cost (VC) depends on two output

categories (PCAS ES , OUT P), one input price for labor (PL), one capital stock (BEDS ), and four

structural variables (INT ERN, S PEC, S UB, INS UR). Although some of them could be interpreted

as observable indicators of technology (in particular, the number of specialties offered), they are

treated as a category of their own here. Intercept and technology parameters are reflected by a linear

function of dummies for different hospital groups (Z) and different time periods (M).6 The underly-

ing Cobb-Douglas cost function (subscripts i = 1, ...,N and t = 1, ...,T are dropped for simplicity)

therefore reads,

lnVC = β0 +

4∑
m=1

βmlnXm +

3∑
z=1

βzS z + u + v, with

βk, k={0, m, z} = ¯̄βk +

6∑
l=1

γl,kZl +

3∑
τ=1

δτ,kMτ + w. (12)

In order to conduct Bayesian inference from the posterior given in Section 2.2, prior distributions

need to be specified. The values for the hyperparameters are chosen in a way to imply relatively vague

but proper priors. In particular, the priors are assumed to be independent,

p( ¯̄α, ¯̄β, γ, δ,Σ, σ−2
v , σ

−2
u ) = p( ¯̄α)p( ¯̄β)p(γ)p(δ)p(Σ)p(σ−2

v )p(σ−2
u ). (13)

Here, p( ¯̄α) = fN[0, θ ¯̄α], p( ¯̄β) = fN[0, θ ¯̄β], p(γ) = fN[0, θγ], and p(δ) = fN[0, θδ] have a normal

distribution with mean zero and a diffuse prior for their corresponding precision θ. The precision of

the likelihood function has a gamma distribution p(σ−2
v ) = fG[µ, θσ−2

v
] with diffuse shape and scale

parameters. Inefficiency is assumed to be half normally distributed p(u, σ−2
u ) = f +

N [0, σ−2
u ] with σ−2

u =

fG[5, (5∗ log(e f f )2)]. This specification is in line with Griffin and Steel (2007) and Koop et al. (1997),

permitting to impose a priori information with regard to mean efficiency, e f f = exp(−u). Following

the formulation of Griffin and Steel (2007), e f f = 0.875 is assumed for prior efficiency. Finally, the

precision of the random parameters is specified as a Wishart distribution p(Σ) = fW[S ] in accordance

with eq. (9) with diffuse prior for the covariance matrix S .

To obtain posterior estimates, MCMC algorithms were run for 100,000 iterations, with the first

50,000 discarded as a burn-in phase. Different assumptions for priors and starting values converged

to roughly the same values, suggesting that convergence to the posterior distribution was achieved.

6 Note that average length of stay is not included variable. its expected value enters the casemix adjustment of
PCAS ES . Therefore, deviations from expected value can be interpreted as reflecting management inefficiency u.
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3.2. Econometric Results of the Cost Functions and their Cost Variability

Table 2 presents estimated means and standard errors of the cost function for the Standard Frontier

Model (SFM), the Random Intercept Model (RIFM), and the Random Parameter Model (RPFM). The

RPFM is presented with estimates for ¯̄α and ¯̄β. Results of second level-estimates of the technology

parameters and the intercept are shown in Table 5 of the Appendix; they point to a cost shift over time,

but without affecting the slope parameters. The three variants in Table 2 can be assessed using the DIC

information criterion (Spiegelhalter et al., 2002). The lower the DIC-value, the better the goodness of

fit of the estimated cost function, indicating that the RPFM has the best model fit, followed by RIFM,

with SFM definitely behind.

Table 2: Econometric Results

SFM RIFM RPFM

Estimate Std. Error Estimate Std. Error Estimate Std. Error

Constant 2.176 (0.279) 3.334 (0.340) 4.948 (1.109)
PCAS ES 0.674 (0.037) 0.554 (0.045) 0.485 (0.115)
OUT P 0.025 (0.004) 0.015 (0.004) 0.013 (0.011)
PL 0.254 (0.058) 0.199 (0.049) 0.384 (0.110)
BEDS 0.256 (0.039) 0.311 (0.044) −0.148 (0.127)
INT ERN 0.004 (0.000) 0.001 (0.001) 0.008 (0.006)
S PEC 0.002 (0.001) 0.001 (0.001) 0.001 (0.007)
S UB 0.141 (0.036) 0.191 (0.055) 0.231 (0.529)
INSUR 0.004 (0.001) 0.004 (0.001) 0.003 (0.007)

σ2
v 0.013 0.003 0.003

σ2
u 0.025 0.005 0.004

σ2
α − 0.021 0.001

λu 0.647 0.180 0.539
λα − 0.721 0.095
DIC −463.470 −1100.700 −1112.800

Nevertheless, the three specifications produce fairly minor variations in technology parameters.

Estimates also have the expected sign, with the only exception of BED. Being an indicator of capital

stock, it should have a negative sign, which only obtains in the RPFM.

However, the main interest of this research revolves about technological heterogeneity that may

not be accounted for in the SFM and its influence on estimated inefficiency scores. The relevant

estimates are σ2
v , σ2

u, and σ2
α, which stand for the variance of random noise, inefficiency, and separable

heterogeneity, respectively; their relative importance (expressed as a share of total error variance) is

given by λu and λα. For the SFM, total cost variability is 0.038 (σ2
v = 0.013, σ2

u = 0.025), with most

variation in the inefficiency term. According to λu = 0.647, about 65 percent of cost variability is due

to inefficiency, a share comparable to the literature cited in the Introduction section. Next, the RIFM

with σ2
v = 0.003, σ2

u = 0.005, and σ2
α = 0.021 confirms the existence of separable heterogeneity. It
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also indicates a reduction of cost variability by 23 percent (from 0.038 to 0.029), due to its ability

to capture heterogeneity in the random intercept. Variability due to inefficiency even declines by

80 percent (from 0.025 to 0.005) and from 65 percent to 18 percent in relative terms. Most of the

cost variability between Swiss hospitals can now be attributed to unobserved separable heterogeneity

(σ2
α = 0.021), accounting for 72 percent of total cost variability. Still, non-separable heterogeneity is

likely to exist, biasing coefficients and inefficiency scores.

The RPFM confirms this concern. As to bias, the capital indicator BEDS now has the expected

negative sign (although insignificant) while the coefficient of PL attains the high value suggested

by the argument that hospital costs are mainly driven by labor cost. As to cost variability, it again

decreases markedly by 72 percent (from 0.029 RIFM to 0.008 RPFM). Most of the cost variability

that cannot be attributed to casemix – equal to 0.042 and estimated by the residual sum of squares of a

single regression with VC as a dependent variable and PCASES as the independent variable – can now

be explained by the estimated cost function. Interestingly, while σ2
v = 0.003 and σ2

u = 0.004 change

little from RIFM, the variance of separable heterogeneity diminishes drastically from 0.021 to 0.001,

with its relative importance falling from 72 percent to a more plausible 9 percent. Consequently, the

relevance of inefficiency increases to 54 percent, comparable to the SFM value.

Table 3: Variance-Covariance Matrix of the Wishart Distribution

PCASES OUTP PL BEDS INTERN SPEC SUB INSUR

PCASES 0.505∗

OUTP −0.338 0.372∗

PL 0.257 −0.196 0.297∗

BEDS −0.216 0.171 −0.132 0.257∗

INTERN −0.125 0.088 −0.17 0.091 0.362∗

SPEC −0.074 0.057 −0.035 0.043 0.001 0.132∗

SUB 0.208 −0.144 0.09 −0.091 0.060 −0.018 0.279∗

INSUR 0.389 −0.318 0.267 −0.238 −0.159 −0.081 0.159 0.584∗

∗ Significant at the 95% confidence level.

Indeed, the RPFM attributes most of the cost variability to the technology parameters, as can be

seen from the covariance matrix of the Wishart distribution in Table 3. The variances on the diagonal

show that heterogeneity is strongly related to the output indicator PCAS ES and the structural variable

INS UR, in spite of the fact that PCAS ES already adjusts for heterogeneity through a casemix index.

At least in the Swiss case, this raises doubts about the relevance of the casemix index used to adjust

for cost variability in prospective payment. As to the off-diagonal entries, the negative correlation

between BEDS and PL, although insignificant, points to capital and labor being complements in the

hospital sector.
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3.3. Efficiency Scores

In many countries, public authorities finance major parts of hospital investment and decide about

the opening, closing down, and restructuring of hospitals. For these decisions, efficiency scores may

provide guidance. However, as shown in Section 3.2, accounting for heterogeneity has an impact on

the cost variability attributed to inefficiency (σ2
u, λu). Therefore, a comparison of mean efficiency

scores, their distribution, and development over time between the three models is of considerable

interest.

Efficient hospitals are on the estimated cost frontier (ûit = 0, ê f f = 1), those with inefficiency

above the frontier (ûit > 0, ê f f < 1). Since the uit are in logarithms, one has

ê f fit = exp(−ûit), (14)

with ûit simulated from a half normal distribution.

Table 4: Efficiency Values by Model Type and Year

Average Maximum Minimum Std. Dev. Skewness Kurtosis

SFM 0.89 0.96 0.73 0.04 −1.07 4.23
RIFM 0.95 0.98 0.84 0.02 −2.78 17.70
RPFM 0.95 0.98 0.90 0.01 −2.06 12.84

2007
SFM 0.87 0.94 0.75 0.04 −0.90 3.37
RIFM 0.95 0.97 0.84 0.02 −3.74 20.56
RPFM 0.95 0.97 0.90 0.01 −3.09 16.53

2006
SFM 0.88 0.95 0.75 0.04 −0.90 3.69
RIFM 0.95 0.97 0.86 0.02 −2.69 15.55
RPFM 0.96 0.97 0.94 0.01 −0.54 3.57

2005
SFM 0.90 0.96 0.73 0.04 −1.46 6.25
RIFM 0.95 0.98 0.87 0.01 −1.77 11.61
RPFM 0.95 0.98 0.91 0.01 −1.35 8.60

2004
SFM 0.91 0.96 0.78 0.03 −1.41 5.76
RIFM 0.95 0.98 0.89 0.01 −0.96 5.77
RPFM 0.95 0.97 0.92 0.01 −1.13 5.42

Starting with the top of Table 4, the first thing to note is that mean efficiency scores are 0.89

or higher, putting the potential for cost reduction at 11 percent or less. This figure is much closer

to the 14 percent reported by Hollingsworth (2008) for other European countries and cited in the

Introduction section. However, efficiency scores derived from the SFM are markedly lower than their

RIFM and RPFM counterparts. Unobserved heterogeneity therefore does lower estimated efficiency
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scores, causing the potential for cost reduction to be overstated. Over the observation period, the

average SFM score is 0.89, suggesting a cost reduction potential of 11 percent. Using the RIFM that

corrects for separable heterogeneity, one arrives at a mean score of 0.95, a value comparable to Farsi

and Filippini (2008) who estimated a true random effects model. Thus, prospective payment based on

a SFM would overestimate the potential for cost reduction by no less than 6 percent, causing financial

distress to at least some cost-efficient hospitals who happen to be stuck with inferior technology

e.g. due to old buildings. Turning to the RPFM, which distinguishes non-separable from separable

heterogeneity, one does not find a change away from RIFM mean scores. However, the minimum

value is now 0.90 rather than 0.84, accompanied by a decrease in (negative) skewness and kurtosis.

Figure 1: Efficiency Estimates of the SFM, RIFM, and RPFM, Years 2004-7
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While these differences are evident from panel A of Figure 1, a comparison of individual efficiency

scores is even more telling. Panel B of Figure 1 reveals that hospitals that would have been rated below

85 percent efficiency according to SFM gain up to 12 percentage points when the RIFM is applied

instead. Panel C shows that this gain may even reach 15 points when the more general RPFM is used.

Finally, the comparison between RIFM and RPFM in panel D of Figure 1 indicates that hospitals
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with a RIFM score below 0.92 still would benefit from a transition to RPFM, although the gain rarely

exceeds 5 percentage points. Therefore, at a given point of time and for a majority of Swiss hospitals,

it clearly matters whether or not unobservable heterogeneity is taken into account in performance

measurement.

Still, the three models might agree when it comes to development over time. Returning to Table 4,

one notices that mean SFM efficiency scores have decreased over time, from 0.91 in 2004 to 0.87 in

2007. In sharp contrast, the RIFM and RPFM measures remained constant. Under the impression of

SFM estimates, regulators would therefore have concluded that prospective payments should be cut

to squeeze increasingly important cost reductions out of the hospital sector. Yet the evidence points to

an increased importance of unobservable heterogeneity (see also the hikes in skewness and kurtosis

of RIFM and RPFM scores especially in 2007). Such an increase is credible in view of the fact that

in response to sluggish economic growth, hospital renovation projects were postponed or downsized.

Failure to control for unobservable heterogeneity thus risks to punish more and more harshly those

hospitals that are hampered by outdated technology.

4. Concluding Remarks

With prospective reimbursement of hospitals becoming increasingly common, measurement of

hospital performance has been gaining in importance. However, measurement can be biased if it

fails to account for technological heterogeneity, part of which is unobservable. This paper seeks to

shed some light on the importance of both observable and unobservable heterogeneity by estimating

a standard cost frontier model, a random intercept cost frontier model, and a random parameter cost

frontier model. Bayesian inference is applied to the data of about 100 Swiss hospitals between 2004

and 2007.

Results confirm the existence of unobserved heterogeneity causing some of the cost variability

even though inpatient cases are casemix-adjusted. This means that the standard frontier model, which

does not control for heterogeneity, is insufficient for deriving unbiased performance measures. In

the case of Switzerland, the biases may be substantial. Whereas Hollingsworth (2008) reports a

potential for cost reductions of 14 percent for Europe, Farsi et al. (2006) put it to 20 percent for

Swiss hospitals covering the years 1997 to 2002. In this paper, a comparable standard frontier model

suggests 11 percent for 2004 to 2007, dropping to 5 percent when both observable and unobservable

heterogeneity are controlled for. An element-wise comparison reveals that hospitals rated 85 percent

efficient and less (using the standard method) would gain up to 12 percentage points. Therefore,

quite a few hospitals, although highly efficient in fact, would end up in financial distress if regulators
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were to cut reimbursement rates in an attempt to enforce the cost reductions indicated by the standard

frontier model. This underlines the importance of accounting for both observable and unobservable

heterogeneity in the estimation of hospital cost frontiers.

However, this analysis is not without limitations. First, there is the risk of misspecification caus-

ing bias in the benchmark values used to characterize the posterior distribution governing Bayesian

inference. Specifically, the cost of capital is missing from the equation; but in addition, the indicator

for unit cost of labor is an aggregate over skill categories ranging from physicians to orderlies, and

just counting the categories of internships offered likely constitutes a poor measure of educational

services provided. Second, the distinction between observable and unobservable heterogeneity re-

mains somewhat arbitrary; for instance, if measures of the vintage of hospital capital stock in terms of

buildings and medical technology were available, a greater part of cost variability would be attributed

to the observable component, likely causing the estimated influence of total heterogeneity on cost to

be reduced. This point relates to a third weakness, which is that management inefficiency continues to

be measured as a residual rather than by direct indicators. Therefore, by minimizing the contribution

of this residual to cost variation, random parameter models might end up going too far in exonerating

hospital management.

This said, the evidence presented here does suggest that the standard cost frontier model is in-

sufficient for measuring hospital performance due its failure to take technological heterogeneity into

account at all. While the evidence is limited to a sample of Swiss hospitals, the reasons for hetero-

geneity are of a general nature. They also apply to other heavily regulated or public sectors such as

energy, education, and banking, underlining the importance of specifying cost frontier models that

yield unbiased efficiency scores.
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