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Abstract

When firms decide to invest in R&D, they have to choose not only the amount of
resources to invest, but also which research projects to develop. This paper investi-
gates the market portfolio of research projects. Contrary to most of the literature,
which focuses only on the level of investment in innovation, this model captures
both the variety of research projects undertaken and the amount of duplication of
research. A characterization of the equilibrium market portfolio is provided. It is
shown that an increase in the number of firms increases the variety of developed
projects and increases the amount of duplication of research. An increase in the
intensity of competition among firms leads to an increase in the variety of developed
projects and a decrease in the amount of duplication of research. A characteriza-
tion of the socially optimal portfolio is provided. It is shown under which conditions
the market invests suboptimally in the variety and duplication of research projects.
Market underinvestment in the variety of R&D projects is demonstrated for a large
class of product market models.
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1 Introduction

In 1998, the U.S. Department of Justice blocked the proposed merger of Lockheed Martin

and Northrop Grumman, the largest proposed merger in the U.S. at the time. The merger

would have reduced the number of firms supplying aircraft and electronic systems to the

Department of Defense from three (including Boeing) to only two. According to Robinson

(1999) and Rubinfeld and Hoven (2001), one of the main reasons why the Department of

Justice, supported by the Department of Defense, opposed the merger was the concern

that the merger would have had negative effects on innovation. However, the issue was not

so much with the amount of funds invested in innovation, the bulk of which comes from

the Department of Defense anyway.1 Rather, the principal concern was that reducing the

number of firms in the industry would reduce the diversity of approaches to innovation.

Existing literature on competition and innovation, in the long tradition of Schumpeter

and Arrow, focuses for the most part on the level of investment in innovation. One of the

main messages of this paper is that studying solely the level of investment in innovation

is insufficient. What matters is not only the level of investment, but also the composition

of the research portfolios of firms in the market. The level of investment in innovation

does not determine the variety of approaches to innovation nor the amount of duplicative

research that the firms undertake. However, both of these issues are relevant for society

and for the firms which are pursuing the innovation.

This paper develops a model in which the questions of variety and duplication of re-

search can be analyzed explicitly. There are N symmetric firms competing in a market. In

the first stage, the firms can invest in innovation. There is a set of heterogeneous research

projects and firms simultaneously choose the subset they wish to develop. The innovation

is assumed to be drastic2 and the discovery procedure is stochastic. All approaches are

ex ante equally likely to be successful, but ex post only one approach will be successful.

The approaches differ only in the cost needed to pursue them. There are no spillovers or

patents. Each firm which invested in the successful approach receives the innovation while

each firm that did not invest in the successful project receives nothing from its research.

In the second stage, the firms compete on the product market either with or without the

innovation.

Since all approaches are ex ante equally likely to be successful, the firms have an

incentive to develop only the cheapest projects. However, the number of firms developing

any given project also determines the number of firms which will compete on the product

1See Rubinfeld and Hoven (2001), p. 88.
2Innovation is drastic if whenever at least one firm innovates, firms without the innovation cannot

compete. This is a standard assumption in the literature, introduced by Arrow (1962) see also Gilbert
(2006). This assumption is not needed for the characterization of the equilibrium and is relaxed in Section
7.
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market with the new technology. Thus, when choosing which projects to develop the

firms face a trade off — cheaper approaches cost less to develop but will in equilibrium

attract more competitors. From society’s point of view, higher variety of research projects

being developed is desirable because it increases the probability that the innovation will

be discovered. On the other hand, more duplication of research projects is also desirable

because it implies stronger product market competition ex post and lower deadweight loss.

The market R&D portfolio is a function which captures how many firms are investing in

each of the possible projects, and the variety of approaches is the fraction of projects

which are developed by at least one firm.

I show that an equilibrium of the investment game always exists and that it is in general

not unique. However, each equilibrium induces the same market R&D portfolio and

furthermore each outcome of the investment game which induces the equilibrium market

R&D portfolio is itself an equilibrium. Thus, the equilibrium market R&D portfolio is

uniquely determined in equilibrium. Since the R&D portfolio captures both the variety of

approaches to innovation and the extent of duplication of each research approach it is the

main object of analysis in the paper. I provide a simple characterization of the equilibrium

R&D portfolio and show that it follows a step function — with more expensive approaches

being developed by fewer firms.

The characterization of the R&D portfolio is then used to derive comparative statics. I

show that a decrease in the number of firms weakly decreases the variety of approaches to

innovation and also weakly decreases the amount of duplication. Hence, a merger leads to

a weakly decreasing variety of approaches to innovation. A policy implication drawn from

this analysis is that the competition authorities should take into account the negative

effects of a merger on the variety of approaches to innovation, in part giving theoretical

foundation to the concern expressed in the Lockheed-Northrop case.

Next, I consider the effects of a change in the intensity of competition between firms,

while keeping the number of firms constant. In the tradition of papers such as Schmidt

(1997) and Schmutzler (2010), I define an increase in the intensity of competition as any

exogenous change which decreases firm profits. An increase in the intensity of competition

is shown to increase the variety of approaches to innovation and to decrease the amount

of duplication in equilibrium. Thus, an increase in the intensity of product market com-

petition leads to more specialized R&D portfolios. This illustrates why an increase in the

intensity of competition can both increase and decrease the amount of resources invested

in R&D — if the reduction in duplication of research efforts is greater than the increase in

variety of research efforts, the total amount invested in R&D will decrease. If the opposite

is true, the total amount invested in R&D will increase.

I provide a characterization of the socially optimal R&D portfolio and compare it with
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the market R&D portfolio. I derive the condition under which the market investment in

the variety of research approaches is optimal, too low or too high. Similarly, I derive the

condition under which the market duplication of research approaches is optimal, too low

or too high. I show that in a large class of homogeneous goods models, the market will

always underinvest in the variety of approaches to process innovation. This result implies

that if a government want to give R&D subsidies, these subsidies should be targeted at

research approaches with high development costs and high potential payoffs.

The main body of the paper assumes that the innovation is drastic, firms are sym-

metric, have unlimited budgets and use only pure strategies. I consider the effects of

relaxing these assumptions in turn and show that the equilibrium structure is in general

robust. In particular, the assumption that the innovation is drastic is not needed at all

for the characterization of equilibrium. It is only the comparative statics that become

more complex if the innovation is non-drastic.

The outline of the paper is as follows. In Section 2, a brief overview of the related

literature is provided. Section 3 describes the model. The equilibrium is characterized in

Section 4. Comparative statics are analyzed in Section 5. The socially optimal portfolio

and its relation to the market portfolio are analyzed in Section 6. In Section 7, I relax

a number of assumptions made in the main body of the paper. Section 8 concludes. All

mathematical proofs are relegated to the appendix.

2 Related literature

This paper contributes to the literature on the relationship between market structure

and the incentives of the firms to invest in innovation. The focus of this literature is

on the amount of resources that firms invest in R&D. Depending on the specifics of the

model used, the literature finds that the competition in the marketplace can increase,

decrease or have non-monotone effects on the amount invested in R&D. For surveys of

this vast literature see Gilbert (2006), Sena (2004) and van Cayseele (1998). Vives (2008)

and Schmutzler (2010) provide comprehensive studies for a range of market competition

models and demand structures. Important contributions to this literature have been

made from the endogenous growth literature, particularly from the models of step-by-step

innovations (see for example Aghion et al. (2001) and Aghion et al. (2005)). This paper

contributes to this literature by providing a model where not only the amount invested in

innovation matters but also the composition of projects in which the firms invest. This

approach allows us to consider how the variety and duplication of approaches to research

change as the market structure changes, and how it relates to the socially optimal amount

of variety and duplication of research, which is not possible with models which focus only
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on the amount of investment.

While most papers in the theoretical literature on competition and innovation focus

on the level of investment in innovation, several papers have considered the question

how competing firms choose some aspect of the research strategy. Bhattacharya and

Mookherjee (1986) and Klette and de Meza (1986) consider a model where undertaking

research is like drawing a random variable. The maximum realization of the random

variables determines the winner of the race (winner takes all) but also both private and

social payoff. Firms choose a parameter of the density function, which determines the

variance and in some scenarios the correlation of the research output. This parameter

is interpreted as a research strategy of the firm. Dasgupta and Maskin (1987) consider

a similar model. Results obtained by these models depend on the assumptions made

about the distribution of research outcomes, but in a large class of cases, firms undertake

excessive risk (because firms care who wins the race, while society only cares about the

best research output; however see also Cabral (1994) and Kwon (2010) who find that the

market is biased against risky research). At the same time, if reducing correlation is costly,

firms will choose research strategies that are too correlated, since firms will not internalize

the benefit low correlation confers to its opponent when its own research output is low.

In this setting, the firms can choose only one research project (i.e., each firm chooses

one parameter of the density function), hence these models cannot examine the variety

of research projects. At the same time, in these papers the choice of correlation of the

outcomes is interpreted as a measure of duplication. In this paper, duplication of research

is literal — the firms can choose to pursue the same project.

Chatterjee and Evans (2004) present a dynamic model where two firms are searching

for an innovation in a model of “buried treasure” (see also Fershtman and Rubinstein

(1997)). There are two possible research projects and only one can yield the innovation,

with the winner take all feature. However, developing the “right” project yields the inno-

vation with some exogenously given probability. They find that the amount of correlation

between research of the two firms can be too high or too low depending on the nature of

asymmetry between the two research paths. Akcigit and Liu (2013) also consider a setup

with two firms and two possible avenues for research, one is more profitable (in expec-

tation) but may result in a dead-end and another which always yields a less profitable

innovation if it is researched long enough. As opposed to Chatterjee and Evans (2004)

they assume that firms cannot observe which research path their competitor is pursuing

and they find that firms duplicate dead-end research and at the same time leave the risky

research path too early. In contrast to this paper, this strand of literature assumes that

firms can research only one project at a time, so the question of the choice of variety of

research projects and the amount of duplicative research does not arise. This is, however,
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the main focus of the present paper.

Most closely related to the present paper is the literature on multiproject innovation,

which has been studied by Sah and Stiglitz (1987) and in the related work by Reynolds

and Isaac (1992) and Farrell et al. (2003). Sah and Stiglitz (1987) assume that all projects

are identical. The probability of success of any individual project depends only on the

effort invested in this project and is independent of anything that might be happening

with other projects. Using this setting and the Bertrand model of product market, Sah

and Stiglitz (1987) show that the number of projects is invariant to the number of firms

in the market, a result they refer to as the “strong invariance result.” Reynolds and Isaac

(1992) and Farrell et al. (2003) explore this setting further and show that the invariance

result is sensitive to type of product market competition. In particular, they show that

the invariance result does not hold under Cournot competition.

The main difference between this paper and the literature in tradition of Sah and

Stiglitz (1987) is that here projects are assumed to be heterogeneous and that more than

one firm can invest in the same project. Hence, firms need to decide which projects to

develop and have to do so in a strategic manner, keeping in mind which projects their

competitors are developing. In this paper, R&D portfolio is the main object of interest,

while in the Sah and Stiglitz (1987) tradition it does not appear at all. There, projects

are identical and it is immaterial which projects firms or their opponents develop. Thus,

the model of Sah and Stiglitz (1987) does not capture the effects of variety of projects or

the duplication of projects which is the main focus of analysis here.

3 A model of stochastic multiproject innovation

There are N symmetric firms3 that compete in the pre-innovation market and that can

invest in innovation. There is a continuum of research projects Ω, but only one project

ĵ ∈ Ω leads to the innovation.4 We can normalize the set of possible projects to the unit

interval, that is Ω = [0, 1). I assume that all projects from the set [0, 1) are successful with

equal probability. Furthermore, each project has a fixed cost of development. Investing

less than this cost means that firm will fail to develop the project and investing more will

not improve the probability of the project being successful. In essence, the innovation

mechanism is a lottery — developing different projects is akin to buying lottery tickets,

the more lottery tickets you have the higher the probability you will win, but offering

to pay more for a ticket will not increase its chances of winning. This fixed cost, fixed

probability mechanism is similar to the one developed in Quirmbach (1993), the difference

3Asymmetric firms are studied in Section 7.3.
4The stochastic mechanism used to model innovation is adapted from Acemoglu and Zilibotti (1997).
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being that here firms can invest in multiple projects.

The projects are assumed to differ in terms of the investment cost needed to develop

them. Denote the cost of developing project j ∈ [0, 1) as C(j). Suppose that projects are

ordered so that if j > j′ then C(j) > C(j′). Then we can view C as a function such that

C : [0, 1) → R+. I assume that C is continuous, differentiable and strictly increasing.

The fact that the function C is increasing is simply a matter of ordering the projects

j in the right way, strictness is assumed so that marginal reasoning will yield unique

results. Continuity is assumed to make the problem more tractable. Furthermore, assume

limj→1C(j) =∞. Since rewards from innovation are finite, this assumption ensures that

firms will not want to invest in all possible projects. No exogenous restrictions are placed

on the research budgets of firms, except in Section 7.5, which studies the consequences of

limited research budgets and costly financing of research.

There are two possible levels of technology — old and new. The new technology is

available only to the firms which invested in the successful innovation project, while the

old technology is available to all firms. Let n ≤ N be the number of firms which developed

the new technology. Denote with R(n,N) the payoff of a firm with the new technology,

where n is the number of firms with the new technology and N is the total number of

firms. Analogously, denote with r(n,N) the profits of a firm with the old technology. The

difference between process and product innovations is not explicitly modelled. As long as

the product market payoffs can be expressed in terms of the reward functions, the present

model can be used to study both types of innovation.

Next, I list all assumptions that will be used in the paper. However, note that only

Assumption 1 is used throughout, while the others are used for particular results.

Assumption 1 (Non-increasing reward to subsequent innovators).

For all n ∈ {1, . . . , N − 1} it holds:

R(n,N)− r(n− 1, N) ≥ R(n+ 1, N)− r(n,N).

This assumption implies that the gain from innovation does not increase as the number

of innovators increases. It captures the intuition that a firm prefers that its competitors do

not innovate. Thus innovations are strategic substitutes. While intuitive, this assumption

needs to be checked for each model of product market competition. The consequences of

relaxing this assumption will be considered in Section 7.2.

For some results, I assume that the innovation is drastic, in the sense that if there

is at least one firm which has successfully developed the innovation, all firms which do

not have the innovation cannot compete. That is, the laggards receive a payoff of zero

and do not exert competitive pressure on the firms which has successfully innovated. For
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process innovations, this implies that the price of a monopolist with the innovation is

below the marginal cost of any firm without the innovation. For product innovation this

implies that the old product is made obsolete and it cannot be sold on the market. This

assumption will be relaxed in a Section 7.1, where the equilibrium will be characterized

for non-drastic innovations. In the notation used here we have:

Assumption 2 (Drastic innovation).

For all n,N and N ′ such that 1 ≤ n ≤ N ≤ N ′ it holds: (i) r(n,N) = 0 and

(ii) R(n,N) = R(n,N ′).

Expression (i) ensures that laggards have zero profits while (ii) ensures that laggards

do not exert competitive pressure on the innovators. Under Assumption 2, R(n,N) is

constant for any N , so from now on just R(n) will be used to indicate the payoff of

an innovator when there are n innovators. Furthermore, if Assumption 2 holds then

Assumption 1 simplifies to the following two conditions: R(n) ≥ R(n + 1) for all n ≥ 1

andR(1)−r(0, N) ≥ R(2). The first expression states that the payoff per innovator weakly

decreases as the number of innovators increases. The second expression states that the

incentives of a prospective monopolist are greater than those of a single innovator when

two firms innovate.

Assumption 3. For every N it holds: r(0, N) ≥ r(0, N + 1).

This assumption states that as the number of firms which are active in the pre-

innovation market increases, the profits of each individual firm do not increase. The

intuition is simple: the additional firm will either not be competitive and have no effect

on the profits of other firms, or it will put competitive pressure on other firms and decrease

their profits, but it cannot increase their profits.

Next, denote with W (n) the social welfare when there are n firms which have success-

fully innovated. That is, W (0) denotes the welfare without the innovation, W (1) denotes

the welfare when there is only one firm with the innovation, and so on.

Assumption 4 (Non-increasing welfare returns).

For every n ∈ {1, . . . , N − 1} it holds W (n)−W (n− 1) ≥ W (n+ 1)−W (n).

Each firm is assumed to be risk neutral and to maximize its expected profits. Profit

maximization requires that firms either invest zero in a project or exactly the amount that

is required to open the project. If a firm has invested a positive amount but less than

C(j), the project j would not be open and the investment would be wasted. Alternatively,

if the firm invested more than C(j), it would receive neither higher profits from project

j nor would the probability of project j being successful increase. Thus, we can identify

the strategy of a firm simply by the set of the projects in which it invests. Denote the
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strategy of a firm i with Ii ⊆ Ω = [0, 1) and call it the investment plan of firm i. In

principle, Ii could be any measurable subset of the unit interval. To simplify exposition,

assume that the set Ii consists only of a countable number of intervals, each closed from

below and open from above.5 Formally, the strategy space of firm i is the set Ii where:

Ii := {Ii ⊂ [0, 1) : Ii = ∪∞k=1[ak, bk) and 0 ≤ ak < bk < 1 for all k}.

In particular, note that this assumption ensures that the investment plan will not

contain any isolated zero-mass points.

Let I = [I1, . . . , IN ] be a vector of investment plans of all N firms. Define the function

indicating the number of firms investing in a project, given a vector of investment plans

I, as n(j, I) : [0, 1)→ N0 as:

n(j, I) =
N∑
i=1

1
(
j ∈ Ii

)
,

where 1(·) is the indicator function.

Let Ici := [0, 1) \ Ii. The expected profit of a firm i is then

πi(I) = −
∫
Ii

C(j)dj +

∫
Ii

R(n(j, I))dj +

∫
Ici

r(n(j, I), N)dj. (1)

The first part of the equation above represents the investment costs of firm i, the

second part gives the expected profits from the new technology, while the third part

gives the expected profits from the old technology. By Assumption 2, r(n(j, I), N) = 0

whenever n(j, I) > 0. However, it will be positive whenever n(j, I) = 0, which will occur

in equilibrium with positive probability.6

When N = 1, that is, when there is a monopolist in the market, the above becomes

a pure maximization problem. When there are more firms in the market we have to

consider the effects of strategic interaction among firms. Specifically, n(j, I) depends on

the actions of other firms and thus the expected profit of one firm depends on the actions

of other firms.

Finally, assume that investment in innovation is profitable. That is R(1)− r(0, N) >

C(0). This assumption guarantees positive investments in the equilibrium. If this assump-

5Since adding or removing zero-mass points does not change the payoff of any of the firms, allowing Ii
to be general would mean that all statements regarding the properties of the equilibrium would have to
be qualified by “almost everywhere”. This assumption is purely of technical nature and does not affect
the mechanics of the model. More importantly, note that for any measurable investment plan Ii which
does not satisfy the assumption above, there always exists plan I ′i which does satisfy the assumption and
only differs from Ii by zero-mass points, hence delivers the same payoff to all firms.

6Furthermore, the magnitude of r(0, N) will determine the strength of the Arrow replacement effect,
which is crucial for the equilibrium variety of research projects.
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tion was not met, even the monopolist’s return on the investment in the cheapest project

would not justify its cost. Since C(j) is strictly increasing and rewards are non-increasing

in n, then no project could be profitable. Thus, if this assumption failed there would be

a simple equilibrium in which firms did not invest at all.

4 Equilibrium

The vector of investment plans summarizes all decisions of all firms that are relevant for

this problem. A vector of investment plans I∗ is an equilibrium if no firm can increase

its expected profit by unilaterally choosing an alternative investment plan I ′i. That is I∗

is an equilibrium if, for any firm i, there does not exist an investment plan I ′i such that

πi(I
′
i, I
∗
−i) > πi(I

∗).

Proposition 1 (Existence, non-uniqueness and equivalence of equilibria).

Suppose that Assumption 1 holds. Then:

1. An equilibrium always exists.

2. If I∗ is an equilibrium and 0 < n(j, I∗) < N for some j ∈ [0, 1), then infinitely

many equilibria exist.

3. If there are multiple equilibria they all result in the same market portfolio of research

projects. That is, if I∗1 and I∗2 are equilibrium investment plans, then n(j, I∗1 ) =

n(j, I∗2 ) for all j ∈ [0, 1). Furthermore, if I∗1 is an equilibrium then any investment

plan I∗3 such that n(j, I∗1 ) = n(j, I∗3 ) for all j ∈ [0, 1) is also an equilibrium.

While an equilibrium in pure actions7 will always exist, typically there will also exist

infinitely many equilibria. The proof of statement 2 in Proposition 1 (see the Appendix

A.1) reveals the nature of the multiplicity. In equilibrium, identities of firms investing

in any given project are in general not determined, only the number of firms investing is

determined. Only when either all firms invest in a project or no firm invests in a project,

we can infer the behavior of individual firms. Thus, when 0 < n(j, I∗) < N for some

j ∈ [0, 1), there are projects for which the identities of firms investing are not determined

and as there is an infinite number of ways to assign investments to firms, there must be

infinitely many equilibria.

Statement 3 of Proposition 1 clarifies this point further. It states that every equilib-

rium induces the same market portfolio of research projects — that is in every equilibrium

the set of developed projects will be the same and the number of firms investing in each

7Symmetric mixed strategy equilibria with two firms are characterized in Section 7.4.
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project will be the same. Thus, while there is a multiplicity of equilibria, the equilibrium

market portfolio is unique. Since firms are identical, welfare does not depend on the

identity of firms doing research. From the social welfare perspective, any two equilibria

are equivalent.

Furthermore, not only do all equilibria induce the same market portfolio of research

projects, but any investment that induces the equilibrium portfolio is itself an equilibrium.

The intuition for this result is straightforward — the profitability of any research project

depends only on the cost of the project and the number of competitors who are investing in

the same project. In particular, it does not depend on any other investment that the firm

or its competitors may be making. Hence, if in an equilibrium all profitable investments

are exhausted and no unprofitable investments are made, then any other investment plan

that prescribes the same investment portfolio in the same manner exhausts all profitable

investments and has no superfluous investments.

Statement 3 of Proposition 1 implies that if I∗ is an equilibrium then the function

n(j, I∗) fully characterizes the equilibrium portfolio of research projects. Since n(j, ·) is

the same for any equilibrium, we can denote the function characterizing the equilibrium

portfolio of research projects as n∗(j). Using the equilibrium constructed in the proof of

statement one of Proposition 1 and applying Assumption 2 yields the following result.

Proposition 2 (Characterization of equilibrium portfolio).

Suppose that Assumptions 1 and 2 hold. Denote with m the maximum number of firms

investing in any project:

m = max
{1,...,N}

n

s.t. R(n)− r(n− 1, N)− C(0) > 0

and with αk for k ∈ {1, 2, . . . ,m} the most expensive project in which k firms can profitably

invest. That is:

R(1)− r(0, N)− C(α1) =0

R(2)− C(α2) =0

...

R(m)− C(αm) =0.

Let αm+1 = 0 and α0 = 1. Then the equilibrium portfolio n∗(j) is given by

n∗(j) = k if j ∈ [αk+1, αk).

An illustration of the equilibrium market portfolio for N = 3 and a process innovation
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Figure 1: Equilibrium market portfolio.

in a Cournot market (which is an example from Section 5.3) is provided in Figure 1. Here,

m = 3 represents the maximum number of firms that can profitably invest in any project.

Since project 0 is by assumption the cheapest to develop, then m firms will invest in this

project. Each point αk is constructed so that, at the margin, if k firms invested the profit

from investment would be zero. Since C(j) is assumed to be strictly increasing, then at

any point j > αk strictly fewer than k firms can profitably invest. Since rewards are finite

and costs to innovation approach infinity as j → 1, values α1, α2, . . . , αm always exist.

Furthermore, since C(j) is increasing and by Assumption 1 the rewards to innovation are

non-increasing it is easy to see that α1 ≥ α2 ≥ · · · ≥ αm.8 From this observation it follows

directly that the function n∗(j) is weakly decreasing.

The set of all projects the market invests in is [0, α1). Thus, I will refer to α1 as the

variety of research projects undertaken. I will say that the variety of research projects

increases if α1 increases. The probability that the market develops an innovation is equal

to α1. Hence an increase in the variety of research projects implies an increase in the

probability that the market will develop an innovation. The function n∗(j) captures the

number of firms investing in any given project j in equilibrium. Hence, I will refer to the

number n∗(j) as the market amount of duplication of project j.

8Note that the inequality is weak (since the inequality in Assumption 1 is weak), so that it might
happen for some k ≤ m that αk = αk+1. In this case, define [αk+1, αk) = ∅. Thus there will be no
project that exactly k firms will develop.
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5 Comparative statics

In this section, I will study how the market portfolio of research projects changes as

the market structure changes. In particular, I will look at how a change in the number

of active firms in the market and the intensity of competition among them affects the

market portfolio of research projects. As can be seen from Proposition 2, the equilibrium

portfolio is characterized by the maximum number of firms m investing in any project

and the k-firm frontiers αk, for k ∈ {1, . . . ,m}. I will analyze how a change in N and a

change in the intensity of competition affect these variables.

5.1 Change in the number of firms

Consider first the case where the number of active firms in the market changes, while all

other characteristics of the market remain the same.

Proposition 3 (Increase in the number of firms).

Suppose that Assumptions 1, 2, and 3 hold. Let the number of firms in the pre-innovation

market increase from N to N ′ so that the equilibrium investment plan changes from I to

I ′. In equilibrium, the variety of projects developed and the probability of developing an

innovation weakly increases, that is α1 ≤ α′1. The maximum number of firms investing

also increases, that is m ≤ m′.

The increase in the variety of developed projects is driven solely by the Arrow re-

placement effect.9 In this setting, the firm investing near α1 replaces r(0, N) with R(1).

As r(0, N) ≤ r(0, N + 1), the Arrow replacement effect is weaker when there are N + 1

firms in the market. Consequently, firms attempt to escape the competition by investing

in more expensive research projects than before and the variety of developed projects

increases. This is equivalent to saying that the probability of discovering an innovation

increases.

One implication of this result is that a merger in an imperfectly competitive industry

will lead to a loss of variety of approaches to innovation that will be undertaken in post-

merger (see Figure 2). Thus, competition authorities should take this loss of variety of

approaches to innovation into account when reviewing merger cases, especially if innova-

tion is important in the industry, as it was in the proposed Lockheed-Northrop merger.10

Since the loss of the variety of approaches to innovation is driven by the Arrow replace-

ment effect, the magnitude of the loss of variety will be proportional to the increase in

9If a firm innovates, it replaces its pre-innovation without the innovation with the post-innovation
profits. Thus, the larger the pre-innovation profits of firms, the weaker its incentive to innovate. This is
known as the Arrow replacement effect. See (Arrow, 1962, p. 620) and (Gilbert, 2006, p. 165).

10See Robinson (1999) and Rubinfeld and Hoven (2001).
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Figure 2: Merger in a 3-firm Cournot market.

profits (in the market without the innovation) due to the merger.

An increase in the number of active firms weakens the Arrow replacement effect both

in this model and in the usual level-of-investment models. The difference arises in the

effect on the ex post profits of firms. Here the firms are free to choose in which projects to

invest. The number of firms investing in any given project, and hence the ex post number

of competitors, is endogenously determined. In this setting, an additional firm ex ante

does not translate into more competitors ex post. Thus the Schumpeter effect11 in this

model does not change as the number of ex ante active firms changes. This leads to the

clear effect of an increase in the number of firms on the variety of projects developed, as

only one firm will invest in the most expensive projects.

Consider in this context the invariance result of Sah and Stiglitz (1987), which states

that the number of research projects is invariant to the number of firms in the market. The

invariance can only hold if r(0, N) = r(0, N + 1), that is, only if the Arrow replacement

effect is constant. Clearly this will hold under homogeneous goods Bertrand competition

as Sah and Stiglitz (1987) have originally assumed, since r(0, N) = 0 for any N ≥ 2.

Conversely, it will not hold (in general) under Cournot competition as r(0, N) will be

decreasing in N , which is in line with the results derived in Reynolds and Isaac (1992)

and Farrell et al. (2003).

11Following Vives (2008), denote the reduction in innovation incentives due to lower ex post payoffs as
the Schumpeter effect.
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5.2 Change in the intensity of competition

The competitive structure of the market is not only determined by the number of firms

which are active in the market, but also by the intensity of competition among firms. Sup-

pose that there are two sets of reward functions {R, r} and {R′, r′} such that R(n) > R′(n)

for every n > 1, R(1) = R′(1) and r(0, N) > r′(0, N). Then we can interpret the move

from {R, r} to {R′, r′} as an increase in the intensity of competition. Most standard

examples of an increase in the intensity of competition correspond to this definition. In

particular, in Section 5.3 I will consider a move from Cournot to Bertrand type of compe-

tition, but models of differentiated Cournot/Bertrand also correspond to this definition.

The next result considers the effect of an increase in the intensity of competition on the

market R&D portfolio.

Proposition 4 (Increase in the intensity of competition).

Suppose that Assumptions 1 and 2 hold. Let N ≥ 2 and suppose the intensity of compe-

tition increases so that the equilibrium investment plan changes from I to I ′. Then the

variety of research projects undertaken and the probability of discovering the innovation

increase. That is α1 < α′1. The amount of duplication of research decreases. That is for

each j such that n(j, I) ≥ 2 we have n(j, I) ≥ n(j, I ′) with n(j, I) > n(j, I ′) for at least

some projects.
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Figure 3: An illustration of an increase in intensity of competition.

An increase in the intensity of competition decreases the profits firms receive if no

firm successfully innovates, thereby weakening the Arrow replacement effect and leading

to an increase in the variety of developed research projects. On the other hand, it also
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decreases payoffs to firms if there are multiple innovators, leading to a (weakly) decreasing

number of firms investing in duplicative research projects. An increase in the intensity of

competition “flattens out” the equilibrium research portfolio, reducing the duplication of

costs (see Figure 3). However, it is not clear that an increase in the intensity of competition

will lead to higher social welfare. On the one hand, duplication of costs is reduced and the

variety of research projects is increased. However, less duplication of costs also implies

fewer firms (though competing more vigorously!) in the product market leading to a

possible efficiency loss. Which effect prevails will depend on the exact specification of the

product market competition and the demand function.

An increase in the number of firms is sometimes used as an increase in the intensity

of competition. The preceding results highlight the difference between an increase in

the number of firms and an increase in the intensity of competition as defined here. An

increase in the intensity of competition reduces firm profits whenever there are multiple

firms competing. That is, it reduces firm profits both ex ante and ex post. The number

of firms, due to the endogeneity of the ex post market structure, affects firm profits only

ex ante. Thus, the Schumpeter effect is present only in the case of an increase in the

intensity of competition and not in the case of an increase in the number of firms.

5.3 Example: Process innovation in a Cournot market

As an illustrative example, consider a simple Cournot model with homogeneous products,

linear costs and linear demand. Suppose that there are three firms facing inverse demand

of the form

P (q1, q2, q3) = 1− (q1 + q2 + q3)

where qi is the quantity supplied by the firm i. Denote with c̄ the marginal cost of

production with the old technology and with c the marginal cost of production with the

new technology, where c ≤ c̄ ≤ 1. That is, firms have the possibility to develop a process

innovation which reduces their production cost from c̄ to c. The innovation is drastic if

c̄ ≥ 1 + c

2
, (2)

where the right hand side of the inequality is the price which would be obtained if there

was a monopolist with marginal cost c in the market. Suppose that the costs of research

are given by

C(j) = b

√
j

1− j
, j ∈ [0, 1),
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where b > 0 is a slope parameter. Observe that this choice of cost function implies

C(0) = 0 so that m = N , that is at least some of the innovation projects are developed

by all the firms in the market.

Using standard methods, the profits in Cournot markets with n firms and marginal

costs c are given by Π(n, c) = (1− c)2/(n+ 1)2. From this equation it is possible to derive

the ex post payoffs:

r(0, 3) =
(1− c̄)2

16
, R(1) =

(1− c)2

4
,

R(2) =
(1− c)2

9
, R(3) =

(1− c)2

16
.

In order to be able to apply Proposition 2, we have to check if Assumptions 1 and 2

hold. Assumption 2 holds whenever Equation (2) is satisfied. In addition, Assumption

1 holds whenever c ≤ c̄ ≤ 1, which is assumed.12 Hence, Proposition 2 can be used to

characterize the equilibrium R&D portfolio.

Applying Proposition 2 yields the following k-firm frontiers for k ∈ {1, 2, 3}:

α3 =
R(3)2

b2 +R(3)2
,

α2 =
R(2)2

b2 +R(2)2
,

α1 =
(R(1)− r(0, 3))2

b2 + (R(1)− r(0, 3))2
.

All projects in the interval [0, α3) are developed by all three firms while the projects in the

interval [α3, α2) are developed by two firms. Projects in the interval [α2, α1) are developed

by just one firm while the projects in the interval [α1, 1) are not developed at all. Thus,

if the successful project is from the interval [0, α1), the market will successfully develop

the innovation and all firms which invested in the successful project will compete with

the production costs c. However, if the successful project is from the interval [α1, 1) the

market will not develop the innovation and all firms will compete with the production

costs c̄.

12If Assumption 2 is satisfied then the sufficient condition for Assumption 1 to hold is

(1− c)2

4
− (1− c̄)2

16
≥ (1− c)2

9
.

If c̄ = 1, the inequality is satisfied. If c̄ < 1, the expression simplifies to(
1− c
1− c̄

)2

≥ 9

20
,

which is always satisfied since the left-hand expression is always greater than 1.
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Figure 1 (in Section 4) illustrates the equilibrium market portfolio in the case where

b = 0.05, c̄ = 3/4 and c = 1/2.

Merger of two firms

Suppose now that two of the three firms merge, leaving everything else unchanged. That

is, suppose that the merger affects only the number of firms which are active in the market.

Denote with {r′, R′} payoffs after the merger and with {r, R} payoffs without the merger.

Clearly, {r, R} are the same as before. The new payoff functions are given by:

r′(0, 2) =
(1− c̄)2

9
,

R′(1) =
(1− c)2

4
,

R′(2) =
(1− c)2

9
.

It is immediately clear that r′(0, 2) > r(0, 3) while R′(1) = R(1) and R′(2) = R(2).

The intuition behind this is that the merger increases profits in the market when all firms

are active, because there are fewer competitors, hence r′(0, 2) > r(0, 3). However, due to

the drastic nature of innovation, post-innovation profits only depend on the number of

firms which successfully innovated, hence R′(1) = R(1) and R′(2) = R(2). Since after the

merger there are only two firms in the market, the maximum number of firms investing

in any project is at most 2.

Applying Proposition 2 yields m′ = 2 < m = 3, α′2 = α2 but α′1 < α1. This is in line

with results derived in Proposition 3. Figure 2 (in Section 5.1) graphically illustrates the

change in the market portfolio of research projects after the merger.

From Cournot to Bertrand competition

Consider again the scenario with three firms and suppose that the type of competition

changes from Cournot to Bertrand. This change can be interpreted as an increase in

the intensity of competition among the firms. How will the market portfolio of research

projects change? Applying Proposition 4, the variety of research projects developed will

increase while the duplication of research projects will decrease.

From above we know that with three firms engaged in a Cournot competition, the

market portfolio will be characterized by the maximum number of firms investing m and

the firm-frontiers α3, α2, and α1. The equilibrium values of the market under Bertrand

competition are denoted with a prime. When there are multiple symmetric firms com-

peting in a homogeneous goods Bertrand market, in equilibrium firms set prices equal

to marginal cost of production and earn zero profits. Hence, the payoff functions will be
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r′(0, 3) = 0 and R′(2) = R′(3) = 0. The monopolist earns the same profits in both cases,

that is R′(1) = R(1) = (1− c)2/4.
Since Assumptions 1 and 2 clearly hold, Proposition 2 can be applied. It immediately

follows that m′ = 1, hence n(j) < n′(j) for all j < α2. This drastic change in the amount

of duplication is due to the fact that firms make no profits if there is a competitor, so

firms choose to do no duplication at all. Simple calculations show that α′1 > α1. Figure 3

(in section 5.2) illustrates the change in the market portfolio of research projects due to

the change of competition from Cournot to Bertrand.

6 Optimal portfolio

There are several reasons to suspect that a market R&D portfolio will not be optimal.

For example, when the innovator cannot appropriate the entire surplus because a part of

the surplus is captured by the consumers, the incentive to innovate may be too low. On

the other hand, if innovation enables firms to become more competitive in the market

and steal business from their competitors, the incentive to innovate may be too high.13

However, as this paper argues, looking solely at the levels of investment in innovation is

misleading. Rather, the question to be posed is whether the market invests in the optimal

variety of projects and whether it optimally duplicates projects. That is, the question is

how the market R&D portfolio compares to the socially optimal portfolio.

The approach here is to ask what is the R&D portfolio that maximizes the expected

social welfare. Firms are assumed to behave as before, that is to maximize profits. In

particular, firms do not share the results of research, so some duplication of research

will be optimal, as duplication of the successful project implies higher product market

efficiency ex post.

Denote with W (n) social welfare generated by the product market if there are n firms

with the new technology, for every n ≤ N . That is, W (0) is welfare if no firm has

successfully innovated and W (N) is welfare if all firms have the new technology. We

can decompose welfare into consumer surplus and producer surplus, that is W (n) =

CS(n) + nR(n) if n ≥ 1 and W (0) = CS(0) +Nr(0, N).

Analogously to Proposition 2, the optimal portfolio is characterized:

Proposition 5 (Characterization of the optimal portfolio).

Suppose that Assumption 4 holds. Denote with mo the optimal number of firms developing

the least expensive project:

mo = max
{1,...,N}

n

13For an example of the under- and over-investment in innovation due to the two effects outlined here
see Bester and Petrakis (1993).
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s.t. W (n)−W (n− 1)− C(0) > 0

and with αok for k ∈ {1, 2, . . . ,m} the most expensive project in which at most k firms can

optimally invest. That is:

W (1)−W (0)− C(αo1) =

W (2)−W (1)− C(αo2) =

...

W (mo)−W (mo − 1)− C(αom) = 0.

Let α0
m+1 = 0 and αo0 = 1. Then the optimal portfolio no(j) is given by

no(j) = k if j ∈ [αok+1, α
o
k).

6.1 Market investment in variety

It is now possible to directly compare the market R&D portfolio with the optimal portfolio.

In this way it is possible to identify if and how the market portfolio differs from the

optimum and to suggest a way in which a policy intervention can improve the market

outcome.

The net externality from investing in marginal variety (a research project that is not

developed by any other firm) is given by:

σ = −(N − 1)r(0, N) + [CS(1)− CS(0)] .

The expression outside of the bracket captures the negative externality imposed on the

competitors of the firms making the marginal investment. They lose the profits they

would obtain if no firm invested in the marginal project and the marginal project turned

out to be successful. The expression inside the bracket captures the positive externality

imposed on the customers — who receive the surplus associated with one firm innovating

as opposed to the surplus associated without innovation. Corollary 1 states that the

optimality of investment variety depends on the sign of the net externality imposed by

the marginal variety.

Corollary 1 (Market investment in variety).

Suppose that assumptions 1, 2 and 4 hold. Then the market will underinvest in the variety

of R&D projects if and only if σ > 0. The market will invest in the optimal variety of

R&D projects if and only if σ = 0. The market will overinvest in the variety of R&D

projects if and only if σ < 0.
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In principle the sign of σ should be checked for each model. However, as will be shown

later, in a large class of homogeneous goods models the assumption that the innovation

is drastic implies that CS(1) ≥ W (0) ≥ CS(0) + (N − 1)r(0, N). Thus, the market

will in this case underinvest in the variety of R&D projects. The intuition for this is as

follows. A process innovation is drastic if the monopolist’s price is below the marginal

cost of production without the innovation. Hence, consumer surplus with a monopolist

(i.e., CS(1)), which is equal to the difference between the reservation price and the price

paid, is greater than total welfare without the innovation (i.e., W (0)), which is equal to

the difference between the reservation price and the cost of production.

To illustrate the market underinvestment in variety, consider a simple homogeneous

product market similar to the one analysed in Mankiw and Whinston (1986). Suppose

that the inverse market demand function is given by P (Q), where Q is the aggregate

output in the market and P ′(Q) < 0 for all Q. There are N symmetric firms, each of

which possesses a technology given by the cost function c̄(q), where c̄(0) = 0, c̄′(·) ≥ 0

for all q ≥ 0. Firms can invest in R&D to develop a drastic process innovation, in which

case their technology is given by the cost function c(q), where c(0) = 0, c′(·) ≥ 0 for all

q ≥ 0. A process innovation is drastic if a monopolist facing the cost function c(q) chooses

a price which is below the marginal cost of production of a firm with the old technology.

Formally, an innovating monopolist would choose a quantity q1 such that P (q1) < c̄′(0).

Proposition 6 (Underinvestment in homogeneous product markets).

Suppose that Assumptions 1, 2 and 4 hold. Then a homogeneous product market with a

potential drastic process innovation always underinvests in the variety of R&D projects.

As the case of homogeneous product market illustrates, a decentralized market will

tend to underinvest in drastic innovations. It should be noted that the critical assumption

in this example is not the type of the product market competition. Rather, the assumption

that the innovation is drastic drives the result, in line with the observation that the market

underinvestment will be greater for higher quality innovations.

Proposition 6 offers insights relevant to research policy. Suppose that society cannot

affect the market structure or the behaviour of firms in the market but can offer subsidies

for research. The market will tend to underinvest in the variety of drastic innovation

by failing to develop high-cost projects which should optimally be developed. Thus, the

research subsidies should be directed toward research projects with (1) high costs; and

(2) and high potential payoffs.
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6.2 Market investment in duplication

Typically, the market R&D portfolio will involve some duplication of research projects.

As this is duplication of identical projects, it does not increase the probability that an

innovation will be discovered. However, duplication is not entirely wasteful either. If

multiple firms develop the same project and this project turns to be the successful one,

then there will be more competitors on the product market. So for the cost of duplicating

research the society receives the (weakly) higher product market efficiency. The efficient

duplication of R&D projects is captured by the optimal portfolio.

In equilibrium, a firm duplicating a research project imposes both negative externali-

ties on its competitors (in the form of business stealing effect) and positive externalities

on the consumers (in the form of the efficiency effect). Define the net externalities effect

of the k-th duplication as:

δ(k) =
[
(k − 1)

(
R(k)−R(k − 1)

)]
+
[
CS(k)− CS(k − 1)

]
.

The first bracket captures the negative externalities generated by the investment of the

k-th innovator, which are the reduction of profits of k − 1 firms from R(k − 1) to R(k).

The second bracket captures the positive externalities which accrue to the consumers, and

which are captured by the difference between CS(k) and CS(k−1), the consumer surplus

when there are k competitors and k− 1 competitors on the product market, respectively.

Corollary 2 (Market investment in duplication).

Suppose that Assumptions 1, 2 and 4 hold. Denote with m the maximum number of firms

investing in the market equilibrium and with mo the maximal number of firms investing

in the optimal equilibrium. For 2 ≤ k ≤ min{m,mo} , denote with αk the k-firm frontiers

in the market portfolio and with αok the k-firm frontiers in the optimal portfolio.

If δ(k) < 0 then αok < αk and the market overinvests in duplication of all projects

j ∈ (αok, αk). If δ(k) > 0 then αk < αok and the market underinvests in duplication of

all projects j ∈ (αk, α
o
k). If δ(k) = 0 then αok = αk and the market optimally invests in

duplication of all projects in the neighbourhood of αk.

If m ≥ mo and δ(k) ≥ 0 for all k ∈ {2, . . . ,mo}, then the market (weakly) overinvests

in duplication of all R&D projects. Conversely, if m ≤ mo and δ(k) ≤ 0 for all k ∈
{2, . . . ,m}, then the market (weakly) underinvests in duplication of all R&D projects.

If the net externalities are negative (δ(k) < 0), then it would be optimal to reduce

the equilibrium number of firms investing in projects (αok, αk) from k to k − 1. If the

externalities are positive then the number of firms should be increased in the interval

(αk, α
o
k).
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From the perspective of a fixed project j, the question of whether the amount of

duplication is optimal or not is essentially equivalent to the question whether the free

entry in an industry with fixed costs is optimal or not. Here, the question is of an entry

in a ‘potential’ industry, fixed costs are the cost of developing this specific project C(j),

and the number of firms that can enter is limited by the number of firms which are active

in the pre-innovation market. Keeping in mind the upper bound on the number of firms

imposed by N , the results derived in Mankiw and Whinston (1986) apply in this setting as

well. For the homogeneous product market and ignoring the integer constraint, Mankiw

and Whinston find that the free-entry equilibrium number of firms is not less than the

socially optimal number of firms (i.e., there is no underinvestment in duplication in our

terminology), and furthermore if the equilibrium price is above the marginal costs, then

the equilibrium number of firms is strictly greater than the optimal number (i.e. there

is overinvestment in duplication).14 That is, Mankiw and Whinston identify conditions

under which an industry equilibrium would tend toward excessive entry. In the context

of the present model, this implies that there should be a tendency toward overinvestment

in duplication of R&D projects. Taking into account the integer constraint weakens

this result somewhat — Mankiw and Whinston establish that the free-entry equilibrium

number of firms is not lower than the optimal number of firms less one.15 In the notation

of this paper, that would be n∗(j) ≥ no(j) − 1 for appropriate project j. This suggests

that while there might be underinvestment in the duplication of R&D projects, it will be

bounded from below.

6.3 Market and optimal portfolios in a Cournot model

Consider again the Cournot example from Section 5.3. Social welfare generated in this

product market by firms supplying total quantity Q is given by:

WQ =

∫ Q

0

P (s)ds−Qc =

∫ Q

0

(1− s)ds−Qc = Q

(
1− Q

2
− c
)
, (3)

where c is the constant marginal cost of production. Using standard results, the total

quantity supplied in a Cournot market with n firms is given by

Q(n, c) =
n(1− c)
n+ 1

.

Assumptions 1 and 2 hold and simple calculations show that Assumption 4 holds as

well. Hence Propositions 5 and 6 can be applied. Proposition 6 immediately informs us

14Proposition 1 in Mankiw and Whinston (1986).
15Proposition 2 in Mankiw and Whinston (1986).
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Figure 4: Optimal and market portfolios of research projects.

that there will be underinvestment in the variety of research projects. Figure 4 illustrates

the difference between the optimal and the market portfolio in this market.

7 Extensions and robustness checks

This section relaxes several assumptions made in the model. For simplicity, in all following

sections except 7.1, I will assume that there are only two firms in the market.

7.1 Non-drastic innovations

The assumption that innovation is drastic significantly simplifies the analysis, as it allows

us to ignore all firms which have failed to innovate whenever at least one firm has inno-

vated. However, there are many innovations which are incremental and which give only

a slight advantage to the innovating firm over its rivals. This section relaxes Assumption

2 and provides a more general characterization of the market equilibrium portfolio.

First observe that Proposition 1 does not rely on Assumption 2. Hence, an equilibrium

of the investment game exists and except in trivial cases an infinite number of equilibria

exists. However, the equilibrium market portfolio is unique and any investment plan that

generates the equilibrium market portfolio is itself an equilibrium of the investment game.

The next result characterizes the equilibrium market portfolio.

Proposition 2a (Characterization of equilibrium portfolio).

Suppose that Assumption 1 holds. Denote with m the maximum number of firms investing
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in any project:

m = max
{1,...,N}

n

s.t. R(n,N)− r(n− 1, N)− C(0) > 0

and with αk for k ∈ {1, 2, . . . ,m} the most expensive project in which k firms can profitably

invest. That is:

R(1, N)− r(0, N)− C(α1) =

R(2, N)− r(1, N)− C(α2) =

...

R(m,N)− r(m− 1, N)− C(αm) = 0.

Let αm+1 = 0 and α0 = 1. Then the equilibrium portfolio n∗(j) is given by

n∗(j) = k if j ∈ [αk+1, αk).

The basic form of the equilibrium portfolio is the same as in the case with the dras-

tic innovation — it is still a step function with a declining number of firms investing as

projects become more expensive. There are two differences however. First, the payoffs

with the innovation R(·, N) are now functions of N , because the firms without the in-

novation can put competitive pressure on the firms with the innovation. Second, firms

without the innovation can now obtain positive profits, which decreases the incentive to

duplicate research.

As a consequence, the comparative statics results become ambiguous if Assumption

2 does not hold. Consider an increase in the intensity of competition, so that the payoff

functions strictly decrease from {r, R} to {r′, R′}. If Assumption 2 holds, then Proposition

4 holds and the increase in the intensity of competition will result in an increase in the

variety of projects undertaken. If Assumption 2 does not hold, the variety of projects

undertaken will increase only if

r(0, N)− r′(0, N) > R(1, N)−R′(1, N),

or, in words, only if competition reduces profits without the innovation more than it does

for the single innovator. An analogous condition is required for any other n-firm frontier

as well as for the increase in the number of firms.

Figure 5 illustrates the Cournot duopoly example from Section 5.1 with drastic and

with non-drastic innovation (i.e., the marginal cost of production after the innovation was

increased by a small amount so that the example no longer satisfies Assumption 2). Figure
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5 illustrates how the essential structure of the model does not depend on Assumption 2.
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Figure 5: Drastic versus non-drastic innovation.

7.2 Innovations as strategic complements

Consider a case with two firms in the industry and relax Assumption 1. Assumption 1

will not hold if innovations are sufficiently strong complements, for example in the case

of research spillovers. If Assumption 1 does not hold then it must be true that:

R(2, 2)− r(1, 2) > R(1, 2)− r(0, 2).

Assumption 2 is immaterial for the following discussion and it is not assumed to hold.

Analogous to the use of k-firm frontiers before, let:

α1 = C−1
(
R(1, 2)− r(0, 2)

)
,

α2 = C−1
(
R(2, 2)− r(1, 2)

)
,

where C−1(·) is the inverse of the function C(·). Since C(·) is a strictly increasing func-

tion, we have α2 > α1. This introduces ambiguity in the number of firms that will, in

equilibrium, invest in the interval [α1, α2). A single firm cannot profitably invest in any

project in this interval, while two firms can. Hence, in equilibrium, it must hold that in

any project in this interval, either no firm invests or both do. In the interval [0, α1) both

firms will invest, while in the interval [α2, 1) neither firm will invest. If Assumption 1

does not hold, there will be an infinity of equilibrium market portfolios. In this sense,
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Assumption 1 is essential for the model.

As a somewhat stylized example, motivated by the idea of absorptive capacity, consider

the Cournot duopoly from Section 5.1, and suppose that there are spillovers from research

and that a firm can implement the spillovers only if it has itself made the innovation. That

is, let the marginal costs of production without innovation be 0.75, with innovation when

there is only a single innovator 0.5, and with innovation when there are two innovators

0.25. In this specific example, this results in payoff functions which violate Assumption

1. Figure 6 illustrates the equilibrium market portfolio of research projects.
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Figure 6: Violating Assumption 1.

7.3 Asymmetric firms

Suppose that two firms are producing homogeneous goods with different technologies, so

that one firm has lower marginal costs of production than the other. Call the more efficient

firm the leader and denote its marginal production cost with c̄lead. Call the less efficient

firm the laggard and denote its marginal production cost with c̄lag. Suppose that the

firms are symmetric in all other aspects and furthermore suppose that firms can invest in

the development of a new production technology which would lower the production costs

of whichever firm develops it to c, such that c̄lag > c̄lead > c. Suppose that Assumptions

1 and 2 hold.

First observe that if neither firm develops the innovation, firms will continue competing

with the old technology and the leader’s profits rlead(0, 2) will be greater than the laggard’s

profits rlag(0, 2). However, since the innovation is drastic, the profits post-innovation

will be the same for both firms Rlead(1) = Rlag(1) and Rlead(2) = Rlag(2). To simplify
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exposition, assume C(0) < R(2). Analogously to before, denote the k-firm frontiers as

α1,lag = C−1
(
R(1)− rlag(0, 2)

)
,

α1,lead = C−1
(
R(1)− rlead(0, 2)

)
,

α2 = C−1
(
R(2)

)
,

where α1,lag is the most expensive project in which the laggard would invest and α1,lead

is the most expensive project in which the leader would invest. It is straightforward to

see that α2 ≤ α1,lead < α1,lag. In equilibrium, both firms will invest in the interval [0, α2),

for any project in the interval [α2, α1,lead) either the leader or the laggard will invest (but

only one will), and only the laggard will invest in the interval [α1,lead, α1,lag), while no firm

will invest in the interval [α1,lag, 1). Hence this model predicts that the laggard firms will

be more likely to invest in the most expensive projects. Furthermore, if one is willing to

assume that where both firms can invest they do so symmetrically, the laggard will be

more likely to develop drastic innovations.
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Figure 7: Asymetric firms.

As an illustrative example, consider again the Cournot duopoly from Section 5.3 and

suppose that the pre-innovation costs of production of the leader are 0.75 while the pre-

innovation costs of production of the laggard are 0.85. Leave the post-innovation costs of

production unchanged. Figure 7 illustrates the equilibrium market portfolio of research

projects.
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7.4 Mixed strategies

Consider now the original setting, but suppose that firms are using mixed strategies. As

a simplifying assumption, I will consider only the following pure strategy space

Im = {0} ∪
{

[0, j) : j ∈ (0, 1)
}

and I will look only at symmetric mixed strategy equilibria (SMSE). Since now the pure

strategy of a firm is restricted to choosing an interval [0, j), it can be identified with the

upper bound of the interval j. Denote with fi(j) the density that the firm i chooses the

interval [0, j) and with Fi(j) the related cumulative distribution function.

Proposition 7 (Characterization of SMSE). Suppose N = 2 and the Assumptions 1 and

2 hold. Then a mixed strategy equilibrium is characterized by the cumulative distribution

function:

F (j) =



0 if
C(j)−R(2)

R(1)− r(0, 2)−R(2)
< 0

C(j)−R(2)

R(1)− r(0, 2)−R(2)
if

C(j)−R(2)

R(1)− r(0, 2)−R(2)
∈ [0, 1]

1 if
C(j)−R(2)

R(1)− r(0, 2)−R(2)
> 1

for j ∈ [0, 1).

Suppose that R(2) − C(0) > 0. In pure actions, by Proposition 2 it holds: m = 2,

C(α1) = R(1) − r(0, N) and C(α2) = R(2). Thus, both firms will invest in the interval

[0, α1), only one firm will invest in the interval [α1, α2) and no firm will invest in [α2, 0).

Now consider SMSE. By Proposition 7, for j ∈ [0, α1) it holds F (j) = 0, thus both firms

invest in this interval with probability 1. For j ∈ (α1, α2) it holds 0 < F (j) < 1, thus

firms invest with some probability less then one. If j ∈ [α2, 0), then F (j) = 1, so that

firms do not invest in this interval. Similar results hold if R(2) − C(0) ≤ 0. Thus, the

basic structure of the model is the same in both pure and mixed strategy equilibria. In

particular the k-firm frontiers are the same. Furthermore, comparative statics results

regarding variety of projects undertaken remain qualitatively the same, as anything that

affects the one-firm frontier has qualitatively the same effect both in pure action and

in mixed strategy equilibria. Figure 8 illustrates the difference between the (expected)

equilibrium market portfolios for the Cournot duopoly example from Section 5.1. The

mixed strategy equilibrium is “smoother” than the pure strategy equilibrium. The reason

for this is that the integer problem is not present in the mixed strategy setting. In pure

strategy equilibrium, some projects have higher expected profits than others (i.e. project
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α2+ε is more profitable than α1−ε for some small positive ε). In mixed strategy equilibria,

all projects in the interval where the mixing occurs have the same expected profits.
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Figure 8: Symmetric mixed strategy equilibrium.

7.5 Limited budget and costly financing

This section considers the case where firms face an exogenous constraint on their research

budgets. This constraint can take the form of a budget constraint, or it can (equivalently)

take the form of costly financing for research. The main result is that a binding budget

constraint or a costly source of financing imposes a positive opportunity cost on invest-

ments in research projects, but that the main mechanics of the model remain unchanged.

First, suppose that there are two firms in a market and that each firm has a budget

B and suppose that the budget is binding, in the sense that firms would want to invest

more in research if they had more resources.16 Then the following result is obtained:

Proposition 8 (Equilibrium in a game with limited budget).

Suppose that Assumptions 1 and 2 hold, and that there are two firms with a budget B.

Then, an equilibrium always exists, the induced equilibrium market portfolio is unique and

any investment plan which induces a portfolio identical to the market equilibrium portfolio

is itself an equilibrium. Furthermore, there exists a unique β > 0 such that:

1. the maximum number of firms investing in any project mb is given by

mb = max
{1,2}

n s.t. R(n)− r(n− 1, N)− C(0) > β.

16Formally, if m = 2 then 2B < 2
∫ α2

0
C(j)dj +

∫ α1

α2
C(j)dj and if m = 1 then 2B <

∫ α1

0
C(j)dj.

30



2. Firm frontiers are determined by

R(1)− r(0, N)− C(αb1) =

R(mb)− r(mb − 1, N)− C(αbm) = β.

3. Let αbm+1 = 0 and αb0 = 1. The total expenditure is

m

∫ αb
m

0

C(j)dj + (m− 1)

∫ αb
m−1

αb
m

C(j)dj = 2B.

Then the equilibrium portfolio nb(j) is given by

nb(j) = k if j ∈ [αbk+1, α
b
k).

As can be seen from conditions 1. and 2., the basic form of the market equilibrium

portfolio will remain unchanged. The only difference is that the budget constraint will

impose positive opportunity cost β on the choice of research projects, as opposed to the

unconstrained equilibrium where the opportunity costs was 0. In the scenario where firms

can borrow unlimited funds at some positive price, the equilibrium characterized above

still holds, but now β is exogenously given and as a function of the cost of financing.

8 Conclusion

Economists have long studied how the level of investment in innovation changes as the

intensity of competition in the market changes. This paper starts with the observation

that studying solely the level of investment in innovation is incomplete. As an alternative,

a model where firms explicitly choose their investment projects from a set of heterogeneous

projects is developed and the equilibrium is characterized.

It is shown that, while the effect of an increase in competition on the total level of

investment in innovation is ambiguous, the increase in competition increases the variety

of approaches to innovation and increases the probability that an innovation is discovered.

The policy recommendation drawn from this conclusion is that competition authorities

should take into account this negative effect on the investment in innovation when re-

viewing merger cases.

Comparing the equilibrium market portfolio with the optimal equilibrium portfolio, it

is shown that the market will tend to underinvest in drastic innovation. This underinvest-

ment will be more severe the higher the potential benefit from innovation and the lower

the overall intensity of competition in the industry. This suggests that R&D subsidies
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should be targeted at high cost and high potential benefit projects (so-called blue sky

projects) — especially in the industries with few firms and low intensity of competition.

Appendix A Proofs

A.1 Proof of Proposition 1

I prove each of the three statements contained in Proposition 1 in turn.

Lemma 1 (Existence). An equilibrium in pure actions always exists.

I provide a constructive proof of Lemma 1 in three steps. Step 1 constructs the

candidate equilibrium. Step 2 proves that no firm can increase its expected profits by

making additional investments. Step 3 proves that no firm can increase its expected

profits by reducing investments. Finally, notice that any deviation from the investment

plan I∗ can be written as a collection of investments and divestments and by Steps 2 and

3, each such investment and divestment decreases expected profits and hence any such

collection must decrease expected profits. Thus, no firm can profitably deviate from the

investment plan I∗ and then, by definition, I∗ is an equilibrium.

Step 1. Constructing the candidate equilibrium.

Given a game, define m such that

m = max
{1,...,N}

n

s.t. R(n,N)− r(n− 1, N)− C(0) > 0

Since by assumption R(1, N)−r(0, N)−C(0) > 0, a solution to this maximization problem

always exists.

Next, calculate each α1, α2, . . . , αm such that the following condition holds:

R(1, N)− r(0, N)− C(α1) =

R(2, N)− r(1, N)− C(α2) =

R(3, N)− r(2, N)− C(α3) =

...

R(m,N)− r(m− 1, N)− C(αm) = 0.

Since rewards are finite and costs of innovation approach infinity as j → 1, values

α1, α2, . . . , αm always exist. Furthermore, since C(j) is increasing and by Assumption

1 the reward of innovation are non-increasing it is easy to see that α1 ≥ α2 ≥ · · · ≥ αm.
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Observe that N ≥ m. For each i ∈ {1, . . . ,m}, let I∗i = [0, αi). For each i ∈
{m+ 1, . . . , N} let I∗i = ∅. I will demonstrate that I∗ is an equilibrium.

Step 2. Suppose that I∗ is constructed as above. Then no firm can increase its expected

profits by making additional investments.

Proof. First observe that since ∀j ∈ (α1, 1), by construction R(1, N)−r(0, N)−C(j) < 0,

no firm has an incentive to invest beyond the technology frontier. I will consider separately

the firms which in I∗ have some investment and those firms which do not.

First, fix a firm i′ ∈ {1, . . . ,m} and take any feasible investment interval L ⊆ [αi′ , α1).

It must be that min(L) ∈ [αk, αk−1)
17 for some k ≤ i′ and k ≥ 2 and sup(L) ∈ (αk′ , αk′−1]

for some k′ ≤ i′ and k′ ≥ 2, with k′ ≤ k.

First consider the case where k′ = k. Then L ⊆ [αk, αk−1). Observe that R(k,N) −
r(k− 1, N)−C(αk) = 0 and n(j, I∗) = k− 1 for all j ∈ [αk, αk−1) by construction. Since

C(·) is assumed to be strictly increasing, then R(k,N) − r(k − 1, N) − C(j) < 0 for all

j ∈ (min(L), sup(L)). Hence,

−
∫
L

C(j)dj +

∫
L

R(k,N)dj −
∫
L

r(k − 1, N)dj < 0

and the firm i′ has no incentive to invest in the interval L.

Next consider the case where k′ < k. Then we can write L = [min(L), αk−1) ∪
[αk−1, αk−2)∪ · · · ∪ [αk′ , sup(L)). Denote these subintervals as Lk−1, Lk−2, . . . , Lk

′−1. Ob-

serve that by construction, the following statements hold:

R(k,N)− r(k − 1, N)− C(αk) = 0 and n(j, I∗) = k − 1 for all j ∈ Lk−1

R(k − 1, N)− r(k − 2, N)− C(αk−1) = 0 and n(j, I∗) = k − 2 for all j ∈ Lk−2

...

R(k′, N)− r(k′ − 1, N)− C(αk′) = 0 and n(j, I∗) = k′ − 1 for all j ∈ Lk′−1

Since C(·) is assumed to be strictly increasing, the following statements hold:

R(k,N)− r(k − 1, N)− C(j) < 0 for all j ∈ Lk−1

R(k − 1, N)− r(k − 2, N)− C(j) < 0 for all j ∈ Lk−2

...

R(k′, N)− r(k′ − 1, N)− C(j) < 0 for all j ∈ Lk′−1

17If αk = αk−1, let L = {αk} and min(L) = αk.
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But then it holds∫
L

R(n(j, I∗) + 1, N)− r(n(j, I∗), N)− C(j)dj =

=

(∫
Lk−1

R(k,N)− r(k − 1, N)− C(j)dj

)
+

(∫
Lk−2

R(k − 1, N)− r(k − 2, N)− C(j)dj

)
+· · ·

· · ·+
(∫

Lk′−1

R(k′, N)− r(k′ − 1, N)− C(j)dj

)
< 0

and the firm i′ has no incentive to invest in the interval L.

Next, fix a firm i′ ∈ {m + 1, . . . , N} and take any feasible investment interval L ⊆
[0, α1). Observe that we can write L as a union of two sets, L = L′∪L′′ where L′ ⊆ [0, αm)

and L′′ ⊆ [αm, α1). By the same argument as above, it holds that any investment in the

set L′′ cannot be profitable. Consider now an investment in the set L′. By construction,

m is the maximum number of firms that can profitably invest in the project j = 0. Since

C(j) is strictly increasing it is also the maximum number of firms that can invest in any

project. By construction, there are m firms investing in all projects in [0, αm) and as a

result the firm i′ cannot profitably invest in the set L′. Thus, the investment in the set L

cannot be profitable.

Step 3. Suppose that I∗ is constructed as above. Then no firm can increase its expected

profits by decreasing investments.

Proof. First observe that all firms i > m have zero investments by construction and

hence cannot decrease their investments. Fix a firm i′ ∈ {1, . . . ,m} and take any feasible

investment interval L ⊆ [0, αi′). We can write L as a union of two sets, L = L′∪L′′ where

L′ ⊆ [0, αm) and L′′ ⊆ [αm, αi′). I will consider the profitability of disinvestments from

sets L′ and L′′ in turn.

Consider first a disinvestment from the set L′. By construction R(m,N) − r(m −
1, N)− C(αm) = 0. Since C(j) is strictly increasing R(m,N)− r(m− 1, N)− C(j) > 0

for all j ∈ [0, αm). It follows that∫
L′
R(m,N)− r(m− 1, N)− C(j)dj > 0.

and the firm has no incentive to divest from the set L′.

Next, consider a disinvestment from the set L′′. It must be that min(L′′) ∈ [αk, αk−1)

for some k ≥ i′ with k ≤ m+ 1 and αm+1 = 0 and sup(L′′) ∈ (αk′ , αk′−1] for some k′ ≥ i′

and k′ ≤ k.
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First consider the case where k′ = k. Then L′′ ⊆ [αk, αk−1). Observe that R(k −
1, N)− r(k− 1, N)−C(j) > 0 and n(j, I∗) = k− 1 for all j ∈ (αk, αk−1) by construction.

Hence, ∫
L′′
R(k − 1, N)− r(k − 2, N)− C(j)dj > 0.

and the firm i′ has no incentive to divest from the interval L′′.

Next consider the case where k′ < k. Then we can write L′′ = [min(L′′), αk−1) ∪
[αk−1, αk−2) ∪ · · · ∪ [αk′ , sup(L′′)). Denote these subintervals as Lk−1, Lk−2, . . . , Lk

′−1.

Observe that by construction, the following statements hold:

R(k − 1, N)− r(k − 2, N)− C(j) > 0 and n(j, I∗) = k − 1 for all j ∈ Lk−1

R(k − 2, N)− r(k − 3, N)− C(j) > 0 and n(j, I∗) = k − 2 for all j ∈ Lk−2

...

R(k′ − 1, N)− r(k′ − 2, N)− C(j) > 0 and n(j, I∗) = k′ − 1 for all j ∈ Lk′−1

But then it holds∫
L′′
R(n(j, I∗), N)− r(n(j, I∗)− 1, N)− C(j)dj =

=

∫
Lk−1

R(k − 1, N)− r(k − 2, N)− C(j)dj +

∫
Lk−2

R(k − 2, N)− r(k − 3, N)−C(j)dj+

+ · · ·+
∫
Lk′−1

R(k′ − 1, N)− r(k′ − 2, N)−C(j)dj > 0

and the firm i′ has no incentive to divest from the interval L′′.

As firms do not have an incentive to divest from intervals L′ and L′′ they also have no

incentive to invest from the interval L.

Lemma 2. If I∗ is an equilibrium and 0 < n(j, I∗) < N for some j ∈ [0, 1), then infinitely

many equilibria exist.

Proof. Let I∗ be an equilibrium and fix some j ∈ [0, 1) such that 0 < n(j, I∗) < N . Then

there exist firms i and i′ such that j ∈ Ii and j 6∈ Ii′ . Then there must exist some ε > 0

such that [j, j + ε) ∩ Ii = [j, j + ε) and [j, j + ε) ∩ Ii′ = ∅.
Consider an investment plan Î such that Îi′′ = I∗i′′ , for all i′′ 6= i, i′. For i and i′ let

Îi = I∗i \ [j, j + ε) and Îi′ = I∗i′ ∪ [j, j + ε). In words, only transfer the ownership of

investment in projects [j, j+ ε) from firm i to firm i′ and leave everything else unchanged.

I will demonstrate that Î is also an equilibrium and hence, since there is an infinite number

of ways to choose ε, there exists an infinity of equilibria.
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Suppose that Î is not an equilibrium. Then, there exists a firm that can profitably

change its investment plan. This means that there exists an interval L ⊂ [0, 1) and a

firm il such that firm can increase its expected profits by either investing in the interval

L or divesting from the interval L. Consider first those firms i′′ 6= i, i′. By construction

n(j, I∗) = n(j, Î) for all j ∈ [0, 1). From Equation 1, it is clear that strategic effects only

influence the expected profit through n(j, I). Thus, if a firm can profitably deviate from

Î it can also profitably deviate from I∗.

Next, consider firms i and i′. Since their investment plans are unchanged in the set

[0, j)∪ [j+ε, 1) by an argument identical to the one above, if they could profitably deviate

in this set from Î, they could also profitably deviate from I∗. Now consider the set [j, j+ε].

Firm i′ can deviate in this set only by not investing. Suppose that there exists an interval

L′ ⊆ [j, j + ε], such that not investing in this set increases the expected profits of firm i′.

Then it must be the case that∫
L′
R(n(j, Î), N)− r(n(j, Î)− 1, N)− C(j)dj < 0.

But in this case, firm i could profitably deviate from I∗ by not investing in the interval L′.

Next, firm i can deviate in the set [j, j + ε] only by investing. Suppose that there exists

an interval L′ ⊆ [j, j + ε], such that investing in this set increases the expected profits of

firm i. Then it must be the case that∫
L′
R(n(j, Î) + 1, N)− r(n(j, Î), N)− C(j)dj > 0.

But in this case, firm i′ could profitably deviate from I∗ by investing in the interval L′.

Thus, in each case, a profitable deviation from Î implies a profitable deviation from

I∗ which contradicts the initial assumption that I∗ is an equilibrium.

Lemma 3. If there are multiple equilibria they all result in the same market portfolio of

investment in innovation. That is, if I∗1 and I∗2 are equilibrium investment plans, then

n(j, I∗1 ) = n(j, I∗2 ) for all j ∈ [0, 1). If I∗1 is an equilibrium then any investment plan I∗3

such that n(j, I∗1 ) = n(j, I∗3 ) for all j ∈ [0, 1) is also an equilibrium.

I prove this Lemma in two steps, each proving one part of the Lemma.

Step 1. If there are multiple equilibria they all result in the same market portfolio of

investment in innovation. That is, if I∗1 and I∗2 are equilibrium investment plans, then

n(j, I∗1 ) = n(j, I∗2 ) for all j ∈ [0, 1).

Proof. Suppose not. Then, there exists a point j ∈ [0, 1) such that n(j, I∗1 ) 6= n(j, I∗2 ).

Suppose, without loss of generality, that n(j, I∗1 ) > n(j, I∗2 ). Fix a firm i and a point
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ε > 0 such that it holds [j, j + ε) ∩ I∗1,i = [j, j + ε) and [j, j + ε) ∩ I∗2,i = ∅ and n(l, I∗1 ) =

const , n(l, I∗2 ) = const,∀l ∈ [j, j + ε). Such a firm and a point always exist.

(1) Suppose R(n(j, I∗1 ), N) − r(n(j, I∗1 ) − 1, N) ≥ C(j + ε). Then there exists an

ε′ > 0 such that R(n(j, I∗1 ), N)− r(n(j, I∗1 )− 1, N) > C(l) for all l ∈ [j + ε− ε′, j + ε). By

Assumption 1 it holds R(n(j, I∗2 )+1, N)−r(n(j, I∗2 ), N) > C(l) for all l ∈ [j+ε−ε′, j+ε).

Then it holds ∫ j+ε

j+ε−ε′
R(n(l, I∗2 ) + 1, N)− r(n(l, I∗2 ), N)− C(l)dl > 0.

Then I∗2 cannot be an equilibrium as firm i could increase its expected profits by investing

in the interval [j + ε− ε′, j + ε).

(2) Suppose R(n(j, I∗1 ), N)− r(n(j, I∗1 )− 1, N) < C(j+ ε). Then there exists an ε′ > 0

such that R(n(j, I∗1 ), N)− r(n(j, I∗1 )− 1, N) < C(l) for all l ∈ [j + ε− ε′, j + ε). Then it

holds ∫ j+ε

j+ε−ε′
R(n(l, I∗2 ), N)− r(n(l, I∗2 )− 1, N)− C(l)dl < 0.

Then I∗1 cannot be an equilibrium as firm i could increase its expected profits by not

investing in the interval [j + ε− ε′, j + ε).

Step 2. If I∗1 is an equilibrium then any investment plan I∗3 such that n(j, I∗1 ) = n(j, I∗3 )

for all j ∈ [0, 1) is also an equilibrium.

Proof. Suppose not. Then in the investment plan I∗3 exists a firm i and an interval L such

that firm i would be better off by either investing in the interval L or by divesting from

interval L.

(1) Suppose that the firm i can profitably invest in the interval L. Then there exists

L′ ⊆ L such that R(n(j, I∗3 )+1)−r(n(j, I∗3 ), N) > C(l) for all l ∈ L′. But then there exists

a firm i′′ and a set L′′ ⊆ L′ such that L′′ ∩ I∗1,i′′ = ∅. Then I∗1 cannot be an equilibrium as

the firm i′′ could profitably deviate by investing in the interval L′′.

(2) Suppose that the firm i can profitably divest from the interval L. Then there

exists L′ ⊆ L such that R(n(j, I∗3 ), N)− r(n(j, I∗3 − 1), N) < C(l) for all l ∈ L′. But then

there exists a firm i′′ and a set L′′ ⊆ L′ such that L′′ ∩ I∗1,i′′ = L′′. Then I∗1 cannot be an

equilibrium as the firm i′′ could profitably deviate by divesting from the interval L′′.

A.2 Proof of Proposition 2

Proof. Observe that by Assumption 2, for all n ≥ 1 we have r(n,N) = 0. Let I∗ be the

equilibrium constructed in the proof of Lemma 1. If n∗(j) as constructed in Proposition 2

is equal to n(j, I∗) for all j ∈ [0, 1), then by statement 3 in Proposition 1 it characterizes

the equilibrium market portfolio of research projects.
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I here show that n∗(j) = n(j, I∗). First, as noted in the proof of Lemma 1, observe

that α1 ≥ α2 ≥ · · · ≥ αm. First suppose that j ∈ [α1, 1) Then it must be that j ≥ αk

for all k ∈ {1, . . . ,m}. Hence n∗(j) = 0. By construction, n(l, I∗) = 0 for all l ∈ [α1, 1).

Next, suppose that j ∈ [0, α1). Then

n∗(j) = max
1,...,m

k

s.t. j < αk

Let k̂ = n∗(j). It holds that j < αk̂ ≤ αk̂−1 ≤ · · · ≤ α1. By construction, each firm i such

that i ∈ {1, . . . , k̂} invests in j. Hence, n(j, I∗) = k̂.

A.3 Proof of Proposition 3

Proof. Two statements need to be proven. First that the maximum number of firms

investing weakly increases. Second that the variety of projects developed weakly increases,

hence the probability of developing an innovation also weakly increases. Let the number of

firms in the pre-innovation market increase from N to N ′. Denote the maximum number

of firms investing in two cases as m and m′ and the one-firm frontiers as α1 and α′1.

By Proposition 2 we have m = max
{1,...,N}

n such that R(n) − r(n − 1, N) − C(0) >

0. Observe that m ∈ {1, . . . , N} ⊆ {1, . . . , N ′}. If n = 1, by assumption 3 we have

R(n) − r(n − 1, N ′) − C(0) ≥ R(n) − r(n − 1, N) − C(0). If n > 1, by assumption 2 we

have R(n) − r(n − 1, N ′) − C(0) = R(n) − r(n − 1, N) − C(0). Hence m is chosen from

a subset from which m′ is chosen and it satisfies a stricter condition. Thus m′ cannot be

lower than m.

By Proposition 2 the variety of projects developed in the two equilibria is equal to

the sets [0, α1) and [0, α′1) and the probability of successfully developing an innovation

is equal to α1 and α′1). Thus we need to show that α1 ≤ α′1. By Proposition 2 we

have R(1) − r(0, N) = C(α1) and R(1) − r(0, N ′) = C(α′1). By assumption 3 we have

r(n− 1, N ′) ≤ r(n− 1, N) hence C(α′1) ≥ C(α1). Since C(j) is assumed to be increasing

this implies α′1 ≥ α1.

A.4 Proof of Proposition 4

Proof. suppose the intensity of competition increases from (R, r) to (R′, r′). Denote the

respective equilibrium investment plans as I and I ′. Then the following holds by direct
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application of Proposition 2:

m′

= m if R′(m,N)− C(0) > 0

< m otherwise

α′k < αk ∀k ∈ {2, . . . ,m′}

α′1 > α1

and

n(j, I ′) ≤ n(j, I) for all j ∈ [0, α1)

n(j, I ′) > n(j, I) for all j ∈ [α1, α
′
1)

n(j, I ′) = n(j, I) = 0 for all j ∈ [α′1, 1).

Since α′1 > α1 the variety of research projects undertaken and the probability of

discovering an innovation increase. Since α′k < αk ∀k ∈ {2, . . . ,m′} there are some

projects which are developed by fewer firms than with less intense competition. Hence

the amount of duplication of research decreases.

A.5 Proof of Proposition 5

Proof. The portfolio given in Proposition 5 can always be constructed. I show that it is

optimal. Suppose not. Then, there exists a project j ∈ [0, 1) such that investing either

more or less than no(j) marginally increases the expected welfare. There are two cases:

(1) there exists a possibility to profitably increase investment in some project and (2)

there exists a possibility to profitably decrease investment in some project.

(1) Suppose that there exists a possibility to profitably increase investment in some

project j. Then there exists some n such that n0(j) < n ≤ N and

W (n)− nC(j) > W (n0(j))− n0(j)C(j).

Then we can write n∑
k=no(j)+1

W (k)−W (k − 1)− C(j)

+W (n0(j))− n0(j)C(j) > W (n0(j))− n0(j)C(j)

n∑
k=no(j)+1

W (k)−W (k − 1)− C(j) > 0.
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Suppose no(j) = mo. Then, ∀k > no(j) it holds:(
W (k)−W (k − 1)− C(0)

)
+
(
C(0)− C(j)

)
≤ 0

the first bracketed expression is by construction not positive while the second is not

positive since the function C(·) is increasing. A sum of non-positive elements cannot be

positive. A contradiction.

Suppose now that no(j) < mo. By construction it holds

W (n0(j) + 1)−W (n0(j))− C(αon0(j)+1) = 0

and for every k > n0(j) by assumption holds

W (k)−W (k − 1)− C(αon0(j)+1) ≤ 0

By construction j > αon0(j)+1, so that C(j) > C(αon0(j)+1). Plugging it into the expression

above, it follows

W (k)−W (k − 1)− C(j) ≤ 0 ∀kn0(j).

Again, a sum of non-positive elements cannot be positive. A contradiction.

(2) Suppose that there exists a possibility to profitably decrease investment in some

project j. Then there exists some n such that 0 ≤ n < n0(j) and

W (n)− nC(j) > W (n0(j))− n0(j)C(j).

Then we can write

W (n)− nC(j) > W (n)− nC(j) +

 no(j)∑
k=n+1

W (k)−W (k − 1)− C(j)



0 >

no(j)∑
k=n+1

W (k)−W (k − 1)− C(j).

By construction W (no(j))−W (no(j)− 1)−C(j) > 0 and by assumption it holds for any

k < no(j) that

W (no(j))−W (no(j)− 1)− C(j) > 0

A sum of positive elements has to be positive. A contradiction.
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A.6 Proof of Corollary 1

Using the notation of Propositions 2 and 4 the variety of R&D projects in the market

portfolio is [0, α1] and the variety of R&D projects in the optimal portfolio is [0, αo1]. Thus

the market will underinvest in the variety of R&D projects if and only if α1 < αo1. Since

C(·) is increasing this is equivalent to C(α1) < C(αo1). By Propositions 2 and 4 it then

holds R(1)− r(0, N) < W (1)−W (0). Decomposing W (1) into CS(1) + R(1) and W (0)

into CS(0) +Nr(0, N) yields the desired result. Overinvestment and optimal investment

cases are proven analogously.

A.7 Proof of Proposition 6

Since assumptions 1, 2 and 4 hold, by Corollary 1 this market will underinvest in the

variety of R&D projects if and only if CS(1) − W (0) + r(0, N) > 0. Denote with q1

the quantity supplied by a monopolist with the innovation and with q0 the quantity

supplied by a single firm if no innovation is developed. Since the innovation is drastic

P (q1) < P (Nq0) or equivalently q1 > Nq0. Since we can write the consumer surplus

as the difference between total utility and the total expense paid by consumers it holds

CS(1) =
∫ q1
0
P (s)ds − P (q1)q1. Welfare is total utility less the total cost of production,

so it holds W (0) =
∫ Nq0
0

P (s)ds−Nc̄(q0). Then this market will underinvest if and only

if: ∫ q1

0

P (s)ds− P (q1)q1 −
[∫ Nq0

0

P (s)ds−Nc̄(q0)
]

+ r(0, N) > 0.

Subtracting the integrals and rearranging terms gives:∫ q1

Nq0

P (s)ds− P (q1)q1 +Nc̄(q0) + r(0, N) > 0.

By assumption P ′(·) < 0 so that
∫ q1
Nq0

P (s)ds ≥ (q1 − Nq0)P (q1). The inequality above

will hold whenever the following inequality holds:

(q1 −Nq0)P (q1)− P (q1)q1 +Nc̄(q0) + r(0, N) > 0.

Rearranging gives:

Nc̄(q0)−Nq0P (q1) + r(0, N) > 0.

By assumption c̄′(·) ≥ 0 so that c̄(q0) =
∫ q0
0
c̄′(s)ds ≥ (q0 − 0)c̄′(0). The inequality above

will hold whenever the following inequality holds:

Nq0(c̄
′(0)− P (q1)) + r(0, N) > 0.
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Since r(0, N) ≥ 0 by rationality of firms and c̄′(0) > P (q1) by definition of a drastic

process innovation, the above inequality always holds.

A.8 Proof of Corollary 2

Consider first the case where αok < αk. Since C(·) is increasing then it holds C(αok) <

C(αk). Since assumptions 1, 2 and 4 hold, then Propositions 2 and 5 hold. Applying

them yields W (k) −W (k − 1) < R(k) and decomposing the expression for C(·) yields

kR(k) + CS(k)− (k − 1)R(k − 1)− CS(k − 1) < R(k). Rearranging gives:

δ(k) =
[
(k − 1)

(
R(k)−R(k − 1)

)]
+
[
CS(k)− CS(k − 1)

]
< 0.

Hence αok < αk if and only if δ(k) < 0. The other cases follow by substituting the

inequality sign.

A.9 Proof of Proposition 2a

Observe that the proof of Proposition 1 does not require Assumption 2. Proof of Propo-

sition 2a exactly mirrors the proof of Proposition 2, except without setting r(n,N) = 0

for all n ≥ 1. In essence, Proposition 2 is a special case of Proposition 2a.

A.10 Proof of Proposition 7

Observe that the function F (j), by the assumptions made on the function C(j), is both

increasing and differentiable. denote with f(j) its probability density function.

Suppose, without loss of generality, that the firm 2 invests according to the function F

and the firm 1 chooses some pure action x1. Then the profit of the firm 1 can be expressed

as:

π1(x1, F2) =−
∫ x1

0

C(j)dj +

∫ x1

0

[∫ x2

0

R(2)dj +

∫ x1

x2

R(1)dj +

∫ 1

x1

r(0, 2)dj

]
f(x2)dx2+

+

∫ 1

x1

[∫ x1

0

R(2)dj +

∫ x2

x1

r(1, 2)dj +

∫ 1

x2

r(0, 2)dj

]
f(x2)dx2.
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Deriving:

dπ1(x1, F2)

dx1
=− C(x1) +

[∫ x1

0

R(2)dj +

∫ x1

x1

R(1)dj +

∫ 1

x1

r(0, 2)dj

]
f(x1)−

−
[∫ x1

0

R(2)dj +

∫ x1

x1

R(1)dj +

∫ 1

x1

r(0, 2)dj

]
f(x1)+

+

∫ x1

0

[R(1)− r(0, 2)] f(x2)dx2 +

∫ 1

x1

R(2)f(x2)dx2

and simplifying:

dπ1(x1, F2)

dx1
= −C(x1) + [R(1)− r(0, 2)]F (x1) +R(2) (1− F (x1)) .

Observe that, for x1 such that C(j)−R(2)
R(1)−r(0,2)−R(2)

< 0 it follows that dπ1(x1,F2)
dx1

> 0, for x1

such that C(j)−R(2)
R(1)−r(0,2)−R(2)

∈ [0, 1] it follows that dπ1(x1,F2)
dx1

= 0, and for x1 such that
C(j)−R(2)

R(1)−r(0,2)−R(2)
> 1 it follows that dπ1(x1,F2)

dx1
< 0. Hence, firm 1 is maximizing its ex-

pected profit by choosing any action x1 in the support of the function f(x). Thus (f, f)

is a profile of equilibrium mixed strategies.

A.11 Proof of Proposition 8

Lemma 4. An equilibrium inducing portfolio equivalent to the one characterized in the

Proposition can always be constructed.

Proof. Either m = 2 or m = 1. If m = 1, then it holds
∫ αb

1

0
C(j)dj = 2B. Then there

exists a point x such that 0 < x < αb1 and
∫ x
0
C(j)dj = B and

∫ αb
1

x
C(j)dj = B. Let one

firm invest in the interval [0, x) and the other firm in the interval [x, αb1). This investment

plan generates a portfolio equivalent to the one characterized.

If m = 2, then it holds 2
∫ αb

2

0
C(j)dj +

∫ αb
1

αb
2
C(j)dj = 2B. Then there exists a point x

such that αb2 ≤ x ≤ αb1 and
∫ x
0
C(j)dj = B and

∫ αb
2

0
C(j)dj+

∫ αb
1

x
C(j)dj = B. Let one firm

invest in the interval [0, x) and the other firm in the set [0, αb2)∪ [x, αb1). This investment

plan generates a portfolio equivalent to the one characterized.

Lemma 5. β always exists and is unique.

Proof. Define functions ψ1(β) : [0, β1]→ R+, ψ2(β) : [0, β2]→ R+ such that

ψ1(β) =

∫ C−1
(
R(1)−r(0,2)−β

)
0

C(j)dj

ψ2(β) =

∫ C−1
(
R(2)−β

)
0

C(j)dj +

∫ C−1
(
R(1)−r(0,2)−β

)
0

C(j)dj
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with β1 = R(1)− r(0, 2)−C(0) and β2 = R(2)−C(0). Since C(·) is continuous, strictly

increasing and defined on an interval, its inverse is continuous and strictly increasing as

well. Hence both ψ1(β) and ψ1(β) are continuous and strictly decreasing. Furthermore,

by Assumption 1 it holds β1 ≥ β2.

Either (i) ψ1(β2) ≥ 2B or (ii) ψ1(β2) < 2B. If (i) is true, ψ1(β2) ≥ 2B and ψ1(β1) =

0 < 2B. By the Intermediate Value Theorem there exists some β∗ ∈ [β2, β1) such that

ψ1(β∗) = 2B and furthermore β∗ is unique since ψ1(β) is strictly decreasing. Observe that

β∗ ∈ [R(2)−C(0), β1), hence R(1)− r(0, 2)−C(0) > β∗ and R(2)−C(0) ≤ β∗. Thus, by

the condition 1. of Proposition 8 we have mb = 1. By the condition 2. the firm frontier is

αb1 = C−1
(
R(1)− r(0, 2)− β∗

)
. Finally, the condition 3. holds since

∫ αb
1

0
C(j)dj = 2B by

construction. Hence, β∗ uniquely satisfies all three conditions of the Proposition 8.

If (ii) is true, then ψ2(β2) < 2B and ψ2(0) > 2B, by the assumption of the binding

budget constraint. By the Intermediate Value Theorem there exists some β∗ ∈ (0, β2) such

that ψ2(β∗) = 2B and furthermore β∗ is unique since ψ2(β) is strictly decreasing. Observe

that β∗ ∈ (0, β2), hence R(2)−C(0) > β∗. Thus, by the condition 1. of Proposition 8 we

have mb = 2. By the condition 2. the firm frontiers are αb1 = C−1
(
R(1)−r(0, 2)−β∗

)
and

αb2 = C−1
(
R(2)−β∗

)
. Finally, the condition 3. holds since

∫ αb
2

0
C(j)dj+

∫ αb
1

0
C(j)dj = 2B

by construction. Hence, β∗ uniquely satisfies all three conditions of the Proposition 8.

Lemma 6. The investment plan constructed in Lemma 4 is an equilibrium and any in-

vestment plan inducing the same portfolio is an equilibrium as well.

Proof. The proof is analogous to the proof of Proposition 1, with the opportunity cost

equal to β as opposed to 0.

Lemma 7. The portfolio constructed in Proposition 8 and the portfolio induced in Lemma

4 are equivalent.

Proof. The proof is analogous to the proof of Proposition 2.
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