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Cournot Games with Biconcave Demand

Abstract. Biconcavity is a simple condition on inverse demand that corresponds

to the ordinary concept of concavity after simultaneous parameterized transforma-

tions of price and quantity. The notion is employed here in the framework of the

homogeneous-good Cournot model with potentially heterogeneous firms. The analysis

leads to unified conditions, respectively, for the existence of a pure-strategy equilib-

rium via nonincreasing best-response selections, for existence via quasiconcavity, and

for uniqueness of the equilibrium. The usefulness of the generalizations is illustrated

in cases where inverse demand is either “nearly linear” or isoelastic. It is also shown

that commonly made assumptions regarding large outputs are often redundant.

Keywords. Cournot games; existence and uniqueness of a pure-strategy Nash equi-

librium; generalized concavity; supermodularity.

JEL-Codes. C72 - Noncooperative games; L13 - Oligopoly and other imperfect

markets; C62 - Existence and stability conditions of equilibrium.



1. PRELIMINARIES

1.1. Introduction

This paper employs expanded notions of concavity to review the main conditions

for existence and uniqueness of a pure-strategy Nash equilibrium in Cournot’s (1838)

homogeneous-good oligopoly with potentially heterogeneous firms.1 Central to the

approach is a family of monotone transformations given by ϕα(x) = xα/α if α 6= 0

and by ϕα(x) = ln(x) if α = 0. An inverse demand function P = P (Q) is then

called (α, β)-biconcave if P becomes concave (in the interval where inverse demand is

positive) after transforming the price scale by ϕα and, simultaneously, the quantity

scale by ϕβ, where α, β ∈ R.2

Many of the concavity assumptions used in the literature can be expressed con-

veniently in terms of biconcavity. See Figure 1 for an overview. Concavity of inverse

demand, as assumed by Szidarovszky and Yakowitz (1977, 1982), corresponds to

(1, 1)-biconcavity. Selten (1970) and Murphy et al. (1982), respectively, impose con-

cavity conditions on industry revenues that correspond to strict and non-strict vari-

ants of (1,−1)-biconcavity. Novshek’s (1985) marginal revenue condition corresponds

to (1, 0)-biconcavity. Amir’s (1996) log-concavity of inverse demand corresponds to

(0, 1)-biconcavity. Finally, Deneckere and Kovenock (1999) use a condition that corre-

sponds to a strict variant of 1/P being convex, i.e., to (−1, 1)-biconcavity.3 Thus, the

notion of biconcavity provides a simple framework for organizing the main conditions

in the literature.4

1For the symmetric case, see McManus (1962, 1964), Roberts and Sonnenschein (1976), and
Amir and Lambson (2000). Kukushkin (1993) allows for heterogeneous capacity constraints in an
otherwise symmetric setting.

2Thus, P is (α, β)-biconcave if ϕα ◦ P ◦ ϕ−1β is concave, where ϕ−1β is the inverse of ϕβ .
3Still another condition requires P to be log-concave in ln(Q), which corresponds to (0, 0)-

biconcavity. Until very recently, however, that condition has been more familiar in other contexts,
such as imperfect competition (Caplin and Nalebuff, 1991a) or monopoly pricing (van den Berg,
2007).

4Given this perspective, it is natural to seek unified conditions. However, having a well-rounded
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Figure 1: Special cases of biconcavity

The analysis reviews conditions in three areas. A first topic is equilibrium ex-

istence via nonincreasing best-response selections. In this case, the literature offers

two main conditions, due to Novshek (1985) and Amir (1996), respectively. A par-

tial consolidation of these conditions may be achieved by considering cross-partials

of monotone transformations of the profit function.5 The present paper considers

instead monotone transformations of the revenue function. This has some advan-

tages. Specifically, cross-partial conditions may be replaced by simpler biconcavity

conditions, and costs may be general (i.e., nondecreasing and lower semi-continuous)

rather than linear. Moreover, exploiting the intuitive interpretation of biconcavity,

theory is desirable also because the Cournot model features prominently as an example for some
broader classes of games, such as games with strategic complementarities (Milgrom and Roberts,
1990; Vives, 1990), surplus sharing games (Watts, 1996), and aggregative games with strategic
substitutes (Corchón, 1994; Dubey et al., 2006; Jensen, 2006, 2010).

5For a discussion of the scope and limitations of this approach, see Amir (2005).
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assumptions for large outputs will be shown to be redundant.

The second topic of the paper is equilibrium existence via quasiconcavity or even

concavity of the profit functions, in the tradition of Friedman (1971) and Okuguchi

(1976). While this approach does impose restrictions on costs, it generates alternative

conditions for existence in the case where monotone best-response selections cannot be

ascertained. Again, a number of results in the literature can be subsumed. Moreover,

straightforward variants of the conditions considered, with weak inequalities replaced

by strict ones, turn out to be very useful both for the discussion of specific examples

and for the later analysis of uniqueness.

The third and final topic is, consequently, the uniqueness of the pure-strategy

equilibrium, both in games admitting nonincreasing best-response selections and in

games with quasiconcave profit functions. Intuitively, the assumption of biconcavity

is employed here to ensure the famous “necessary and sufficient” conditions that result

from the index approach to uniqueness (Kolstad and Mathiesen, 1987). For conve-

nience, however, the formal analysis will be based upon Selten’s (1970) “backward

mapping” approach and its subsequent developments by Szidarovszky and Yakowitz

(1977) and Gaudet and Salant (1991).6 Maybe interestingly, the analysis identifies a

single additional condition,

(α + β)P ′ − C ′′i < 0 (i = 1, ..., N), (1)

that implies the uniqueness of the pure-strategy equilibrium in the smooth model with

or without capacity constraints (here Ci denotes, of course, firm i’s cost function). In

fact, as will become clear, condition (1) and its weak-form variant jointly consolidate

an entire “catalog” of uniqueness conditions that have been proposed over the past

decades.

6Useful descriptions can be found in Friedman (1982) and in Bischi et al. (2010).
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Quite obviously, the present analysis draws heavily upon a strand of literature

that has emphasized the role of expanded notions of concavity for economic the-

ory in general, and for the analysis of imperfect competition in particular. Most

notably, Caplin and Nalebuff (1991a) defined ρ-concavity via parameterized transfor-

mations of the quantity variable, and thereby introduced the notion of generalized

concavity (together with the Prékopa-Borell theorem) to the economics literature.7

More closely related to the present analysis is the paper by Anderson and Renault

(2003), who apply generalized concavity to derive efficiency and surplus bounds in

the Cournot framework. Further applications include, for example, price discrimina-

tion (Cowan, 2007, 2012; Aguirre et al., 2010), auctions (Mares and Swinkels, 2011a,

2011b), hazard-rate conditions (Ewerhart, 2012), public goods (Myatt and Wallace,

2009), taxation (Moyes, 2003), and density estimation (Koenker and Mizera, 2010).

In contrast to all those contributions, however, the present analysis employs simul-

taneous parameterized transformations of price and quantity. To the best of my

knowledge, this particular concept has not been applied before.

The rest of the paper is structured as follows. The following two subsections

introduce the notion of biconcavity and the set-up. Section 2 derives conditions

for existence via nonincreasing best-response selections. Conditions for quasiconcave

payoffs are stated in Section 3. Section 4 deals with uniqueness. Section 5 concludes.

All proofs can be found in an Appendix.

1.2. Biconcavity

This subsection introduces the notion of biconcavity more formally, and derives

some of its elementary properties.8

7See also Caplin and Nalebuff (1991b).
8The definition with simultaneous parameterized transformations captures an extension briefly

mentioned in Avriel (1972). Subsequent studies, such as Ben-Tal (1977) and Moyes (2003), allow
for more general transformations (e.g., continuous and increasing), but do not deal explicitly with
parameterized transformations.
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Consider the parameterized family of transformations {ϕα}α∈R defined in the In-

troduction. Given arbitrary parameters α, β ∈ R, an (inverse demand) function

P = P (Q) ≥ 0, possibly unbounded at Q = 0, will be called (α, β)-biconcave [(α, β)-

biconvex ] if the domain IP = {Q > 0 : P (Q) > 0} is an interval and ϕα(P (Q)) is a

concave [convex] function of ϕβ(Q) over the domain where Q ∈ IP . Clearly, the condi-

tion on IP holds trivially when P is nonincreasing, which will be assumed essentially

everywhere in the paper.

The following useful result extends a well-known ranking property of ρ-concavity

(cf. Caplin and Nalebuff, 1991a) to the case of simultaneous parameterized transfor-

mations.

Theorem 1.1. Let α′, β′ ∈ R with α′ ≤ α and β′ ≤ β. If P is nonincreasing and

(α, β)-biconcave, then P is also (α′, β′)-biconcave.

Thus, returning to the graphical representation of biconcavity (see Figure 1), the

condition of (α, β)-biconcavity implies also all biconcavity conditions corresponding

to points southwest of (α, β). For example, (1, 1)-biconcavity is more stringent than

(1, 0)-biconcavity, which in turn is more stringent than (0, 0)-biconcavity. The prop-

erty captured by Theorem 1.1 is clearly intuitive because a lower value of either α or

β makes it easier for the transformed function to be concave. It is essential here, how-

ever, that P is nonincreasing. Without this assumption, the ranking result regarding

β would not hold in general.9

The following immediate property of biconcavity translates conditions on direct

demand D = D(p) ≥ 0, possibly unbounded at p = 0, into conditions on inverse

demand (and vice versa), in the spirit of Deneckere and Kovenock (1999).

Lemma 1.2. Let P = P (Q) and D = D(p) be continuous and nonincreasing,

9Indeed, if inverse demand were to be upward-sloping, e.g., due to general equilibrium effects,
then applying a concave transformation to the quantity scale would make the transformed function
more convex rather than more concave.
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with D(P (Q)) = Q over IP . Then P is (α, β)-biconcave if and only if D is (β, α)-

biconcave.

For example, (0, 1)-biconcavity of direct demand corresponds to (1, 0)-biconcavity of

inverse demand, etc.

Finally, it is often convenient to work with the following second-order characteri-

zation of biconcavity.

Lemma 1.3. Assume that P is nonincreasing, and twice differentiable on IP . Then

P is (α, β)-biconcave if and only if ∆P
α,β ≤ 0 holds on IP , where

∆P
α,β(Q) = (α− 1)QP ′(Q)2 +QP (Q)P ′′(Q) + (1− β)P (Q)P ′(Q). (2)

Intuitively, the criterion captured by Lemma 1.3 puts a bound on a weighted sum of

the elasticity, eP = −QP ′/P , and the curvature, eP ′ = −QP ′′/P ′, of inverse demand.

Indeed, if P ′ < 0, then condition (2) is easily seen to be equivalent to the inequality

(α− 1)eP + eP ′ ≤ 1− β.

The lemma above is straightforward to apply. E.g., linear inverse demand, P (Q) =

max{1−Q; 0}, is (α, β)-biconcave if and only if α ≤ 1 and β ≤ 1. For another example,

isoelastic inverse demand, defined through P (Q) = Q−η for η > 0, is (α, β)-biconcave

if and only if αη + β ≤ 0. Further examples will be given in Section 2.

1.3. Set-up

The following set-up will be used throughout the paper. There is an industry

composed of N ≥ 2 firms. Each firm i = 1, ..., N produces a quantity qi ∈ Ti of

the homogeneous good, where Ti ⊆ R+ denotes the set of output levels that are

technologically feasible for firm i. Aggregate output Q =
∑N

i=1 qi determines inverse

demand P (Q) ≥ 0.10 Firm i’s profit is Πi(qi, Q−i) = R(qi, Q−i) − Ci(qi), where

10In all what follows, P may be infinite at Q = 0 provided that limQ→0QP (Q) = 0.

7



Q−i =
∑
j 6=i

qj is the joint output of firm i’s competitors, R = R(qi, Q−i) ≡ qiP (qi+Q−i)

is the revenue function, and Ci = Ci(qi) is firm i’s cost function. Firm i’s best-response

correspondence r̂i is given by

r̂i(Q−i) = {qi ∈ Ti : Πi(qi, Q−i) ≥ Πi(q̃i, Q−i) for all q̃i ∈ Ti}, (3)

where Q−i ≥ 0. Should r̂i(Q−i) be a singleton for a range of Q−i ≥ 0, then the best-

response function that maps Q−i to the unique element of r̂i(Q−i) will be denoted by

ri = ri(Q−i). A pure-strategy Nash equilibrium is a vector (q1, ..., qN) ∈ T1 × ...× TN

such that qi ∈ r̂i(Q−i) for i = 1, ..., N .

2. EXISTENCE VIA NONINCREASING BEST-RESPONSE SELECTIONS

2.1. Existence theorem

This section deals with the issue of existence in the most general case, i.e., when

firms are not necessarily symmetric and profit functions are not necessarily quasicon-

cave. Novshek (1985) observed for this case that, if marginal revenues are nonincreas-

ing in rivals’ aggregate output, then a firm’s best-response correspondence satisfies

a downward monotonicity property that can be exploited to prove existence.11 Fol-

lowing this route, the first existence result of the present paper employs conditions

that ensure that a firm’s smallest best response is well-defined and nonincreasing in

rivals’ aggregate output. The monotonicity property is established here using the or-

dinal variant of supermodularity (Milgrom and Shannon, 1994). More specifically, the

proof of the theorem below extends Amir’s (1996) argument for log-concave inverse

demand functions by showing that an entire family of biconcavity conditions implies

the crucial dual single-crossing condition for general cost specifications.

11See also Novshek (1984) and Bamon and Frayssé (1985). The original argument has been
developed into a convenient fixed point theorem by Kukushkin (1994). In fact, this is the result that
will be used in the proof. Existence theorems for more general classes of aggregative games can be
found, in particular, in Dubey et al. (2006) and Jensen (2006, 2010).
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The following theorem is the first main existence result of the present paper.

Theorem 2.1. Assume that P is continuous, nonincreasing, non-constant, and

(α, 1−α)-biconcave for some α ∈ [0, 1]. Assume also that Ti is nonempty and closed,

and that Ci is lower semi-continuous and nondecreasing, for i = 1, ..., N . Then, a

pure-strategy Nash equilibrium exists.

2.2. Discussion

Theorem 2.1 embeds the two main approaches to existence that require neither

symmetry nor quasiconcave payoffs. Indeed, the second-order characterization of

(α, 1− α)-biconcavity reduces to Novshek’s (1985) marginal revenue condition

P ′(Q) +QP ′′(Q) ≤ 0 (Q ∈ IP ) (4)

at α = 1, and to Amir’s (1996) log-concavity assumption

P (Q)P ′′(Q)− P ′(Q)2 ≤ 0 (Q ∈ IP ) (5)

at α = 0. In Figure 1, the family of biconcavity conditions employed in Theorem

2.1 corresponds to a straight line connecting the points (1, 0) and (0, 1). Thus, as

discussed in the Introduction, the theorem above may be seen as convexifying the two

main approaches to existence for general cost specifications.12

The additional generality achieved by Theorem 2.1 might even be of some applied

value, as the following example with “nearly linear” demand suggests.

Example 2.2. Consider P (Q) = max{(1 − Qδ)1/γ; 0}, where γ ≈ 1 and δ ≈ 1. To

use the second-order characterization of biconcavity, one calculates

∆P
α,β(Q) =

δ

γ2
Qδ−1(1−Qδ)

2−2γ
γ
{

(α− γ)δQδ + (β − δ)γ(1−Qδ)
}
. (6)

12Obviously, Theorem 2.1 also accounts for the fact that convexity of choice sets is not essential
for equilibrium existence via monotone best-response selections (cf. Dubey et al., 2006).
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Since the expression in the curly brackets is linear in Qδ, it suffices to check the sign

of ∆P
α,β(Q) for Q→ 0 and for Q→ 1. It follows that P is (α, β)-biconcave if and only

if α ≤ γ and β ≤ δ.

The point of this example is that if γ and δ are marginally smaller than unity, then

inverse demand becomes practically indistinguishable from the linear specification,

yet neither (4) nor (5) holds. In contrast, all biconcavity conditions corresponding to

values of α with 1− δ ≤ α ≤ γ are satisfied.

2.3. Large outputs

Theorem 2.1 does away with the commonly made assumption that output levels

above some threshold are suboptimal. To see why this is possible, consider an inverse

demand function P that is (α, β)-biconcave for some α, β ∈ R. If P is nonincreasing

and non-constant, the same is true for the transformed function, so the graph with

transformed scales has a negative slope somewhere. Provided α > 0 and β ≥ 0,

concavity implies that the market price reaches zero at some finite Q0 > 0. Hence,

a firm has never a strict incentive to operate at an output level of Q0 or higher. It

is shown in the Appendix that a similar bound exists when α = 0 and β > 0. Thus,

the game is effectively compact provided α ≥ 0 and β ≥ 0 with α + β > 0, which

strictly includes the cases considered in Theorem 2.1. In particular, assumptions for

large outputs made in Novshek (1985) and Amir (1996) are seen to be redundant.13

2.4. Other values of α and β

It is immediate from Figure 1 that Theorem 2.1 applies more generally provided

P is (α, β)-biconcave, where α ≥ 0, β ≥ 0, and α + β ≥ 1. However, if any of these

three constraints is marginally relaxed, keeping the respective other two, then best-

response correspondences need not allow a nonincreasing selection, and an equilibrium

13Biconcavity has also implications for small output levels. Given the same restrictions on the
values of α and β as before, the biconcavity assumption implies limQ→0QP (Q) = 0.

10



may fail to exist. The following example establishes this fact for the case in which

the constraint α + β ≥ 1 is relaxed.

Example 2.3. Consider P (Q) = max{(1−Qδ)1/γ; 0} for γ > 0, δ > 0, and γ + δ <

1. Let costs be zero. Then, because P is (γ, δ)-biconcave and P ′ < 0, profits are

strongly pseudoconcave in the range where qi + Q−i ∈ (0, 1); see Section 3. The

monopoly output is QM ≡ ri(0) = ( γ
γ+δ

)1/δ. Implicit differentiation of the first-order

condition at Q−i = 0 shows that r′i(0) = 1−γ−δ
γ+δ

> 0, so that ri is indeed locally

upward-sloping. Moreover, QM is a “potentially optimal output” in the sense of

Novshek (1985, Theorem 4), whereas the marginal revenue condition fails at QM , i.e.,

P ′(QM) + QMP ′′(QM) > 0. Therefore, an equilibrium may fail to exist for general

(i.e., nondecreasing, lower semi-continuous) cost specifications.

Similar examples of non-existence may be constructed if one of the other two con-

straints is relaxed.14 Thus, for general cost specifications, the parameter restrictions

in Theorem 2.1 are indeed just as tight as possible.

3. EXISTENCE VIA QUASICONCAVE PROFITS

3.1. Another existence theorem

This section considers environments in which a firm’s profit function is quasicon-

cave in own output. The property is of interest, in particular, because it ensures the

existence of a pure-strategy equilibrium when profit functions are continuous and ef-

fective choice sets are non-empty compact intervals. Since quasiconcavity is, however,

neither necessary nor sufficient for the availability of a nonincreasing best-response

14Here is a brief outline of these examples. When the constraint α ≥ 0 is relaxed, consider
P (Q) = (1 + Qδ)1/γ with γ < 0, |γ| small, δ ≥ 1, and zero costs. Then, r′i(Q−i) > 0 for large Q−i.
Similarly, when the constraint β ≥ 0 is relaxed, consider P (Q) = max{(Qδ − 1)1/γ ; 0} with γ ≥ 1,
δ < 0, |δ| small, and constant marginal costs ci ≥ 0. Then, r′i(0) > 0 when ci is large. Note also
that, as a consequence of Theorem 1.1, there are no other cases to be considered.

11



selection, the analysis leads to conditions for existence that differ from (but overlap

with) the conditions considered in the previous section.

For convenience, the subsequent discussion will focus on the smooth case, as cap-

tured by the following assumption.

Assumption 3.1. P is continuous and nonincreasing on R+, as well as twice con-

tinuously differentiable on IP ; for any i = 1, ..., N , either Ti = R+ or Ti = [0, ki] with

0 ≤ ki <∞, and Ci is nondecreasing and twice continuously differentiable over Ti.
15

The next assumption captures the effective compactness of the Cournot game.

Assumption 3.2. There is some finite Q > 0 such that for any i = 1, ..., N , any

qi ∈ Ti, qi > Q, and any Q−i ≥ 0, there is some q̃i ≤ Q such that Πi(q̃i, Q−i) ≥

Πi(qi, Q−i).

Of course, this assumption is required only if at least one firm has unbounded capacity

and inverse demand is everywhere positive. Even then, as explained in Section 2, the

assumption will often be redundant.

The following result provides biconcavity conditions sufficient for a firm’s profit

function to be quasiconcave in own output. Thereby, a second main existence result

is obtained.16

Theorem 3.3. Impose Assumptions 3.1 and 3.2. Let α ≤ 1, β ≤ 1 such that (i)

∆P
α,β ≤ 0, and (ii) (α + β)P ′ − C ′′i ≤ 0 for any i = 1, ..., N . Then, a pure-strategy

Nash equilibrium exists.

This theorem subsumes a variety of existence conditions. Indeed, taking Assumptions

3.1 and 3.2 for granted, any of the conditions sufficient for quasiconcavity listed in

15In particular, at qi = 0, the first two directional derivatives of Ci exist and are finite, and
similarly at qi = ki if Ti is bounded. As before, P may be unbounded at Q = 0 provided that
limQ→0QP (Q) = 0.

16Here and in the sequel, obvious constraints on Q, qi, and Q−i will be omitted. E.g., the use of
the derivative of P is meant to indicate a restriction to Q ∈ IP , etc.

12



Table I is covered by Theorem 3.3.17

3.2. Strong pseudoconcavity

By strengthening the assumptions of Theorem 3.3 somewhat, one may ensure

that profit functions are strictly quasiconcave or even strongly pseudoconcave in the

relevant domain.18

Theorem 3.4. Impose the conditions of the previous theorem and assume, in addi-

tion, that either condition (i) holds strictly with α+β < 2, or that condition (ii) holds

strictly. Then, for any Q−i ≥ 0 with P (Q−i) > 0, the function Πi(., Q−i) is strictly

quasiconcave over the interval where P (qi+Q−i) > 0, and even strongly pseudoconcave

over the interval where qi +Q−i ∈ IP .

It follows that, under the assumptions of the theorem, ri(Q−i) is well-defined whenever

P (Q−i) > 0. Moreover, the first-order condition holding with equality at some qi ∈ Ti

with qi +Q−i ∈ IP is sufficient for a unique global maximum at qi, where the second-

order condition at qi is then satisfied with strict inequality.

4. UNIQUENESS

4.1. Conditions for uniqueness

This section derives biconcavity conditions sufficient for the existence of a unique

pure-strategy Nash equilibrium. The assumptions of smoothness and effective com-

pactness from the previous section will be kept. Note, however, that smoothness is

17As a technical innovation, the proof of Theorem 3.3 uses ∂Πi/∂qi > 0 =⇒ ∂2Πi/∂q
2
i ≤ 0 as a

condition sufficient for quasiconcavity over an open interval. While intuitive, this condition does not
appear to be widely known, so that a self-contained proof will be given in the Appendix. To be sure,
we also remind the reader that ∂Πi/∂qi = 0 =⇒ ∂2Πi/∂q

2
i ≤ 0 does not guarantee quasiconcavity.

18A twice continuously differentiable function f = f(x) is strongly pseudoconcave over an open
interval X if and only if f ′(x) = 0 implies f ′′(x) < 0. When X has a non-empty boundary, then
strong pseudoconcavity requires in addition that, if the (right or left) directional derivative is zero at
a boundary point, then f decreases quadratically in a neighborhood in the direction of the derivative.
See Diewert et al. (1981) for further details.
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no longer assumed for convenience only.19 The following additional assumption will

be imposed.

Assumption 4.1. For any (q1, ..., qN) ∈ T1 × ...× TN with P (Q) = 0, there is some

i = 1, ..., N such that Ci(qi) > Ci(0).

The sole purpose of this assumption is it to exclude the possibility of pathological

equilibria in which the market price is zero, yet any individual firm is unable to

generate a positive price by reducing its output. The following result is the main

uniqueness theorem of the present paper.

Theorem 4.2. Impose Assumptions 3.1, 3.2, and 4.1. Assume that P is (α, β)-

biconcave with 0 ≤ α ≤ 1 and α + β ≤ 1. Assume also that

(α + β)P ′ − C ′′i < 0. (i = 1, ..., N) (7)

Then, there is precisely one pure-strategy Nash equilibrium. Moreover, condition (7)

may be replaced by a weak inequality (simultaneously for all i = 1, ..., N) provided that

∆P
α,β < 0 and α + β < 1.

It is important to acknowledge that, under the conditions of the theorem, necessarily

P ′ − C ′′i < 0.20 In particular, this excludes trivial multiplicity with inactive firms, as

described by Amir (2002).

4.2. Discussion

The theorem above offers a unifying perspective on numerous sufficient criteria

for uniqueness in the literature. Table II provides an overview. Indeed, taking again

19Differentiability of inverse demand is needed, in fact, to avoid multiple equilibria. See Szi-
darovszky and Yakowitz (1982), amongst others.

20For example, when condition (7) holds weakly only, then ∆P
α,β < 0 implies P ′ < 0 over IP , so

that P ′−C ′′i < 0 follows from (α+ β)P ′−C ′′i ≤ 0 and α+ β < 1. A similar argument applies when
condition (7) holds strictly.
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Assumptions 3.1 and 3.2 for granted, one may check by careful inspection that any

of the listed conditions is essentially covered by the theorem.21

Theorem 4.2 also adds some flexibility to existing conditions, as the following

example illustrates.

Example 4.3. Consider isoelastic inverse demand P (Q) = Q−η, with 0 < η < 1,

and assume finite capacities ki > 0, for i = 1, ..., N . Note that the condition for

small output levels holds, i.e., limQ→0QP (Q) = 0. Given that P is (α, β)-biconcave

if and only if αη + β ≤ 0, the tightest condition available from Theorem 4.2 is

(1− η)P ′−C ′′i < 0. Thus, cost functions may be strictly concave, whereas applicable

conditions from Table II would all require convex costs.22

5. CONCLUSION

This paper has used expanded notions of concavity to review conditions for exis-

tence and uniqueness of a pure-strategy Nash equilibrium in the homogeneous-good

Cournot model. While a number of potentially useful generalizations and simplifica-

tions have been obtained, the most immediate benefit of the approach is probably its

unifying character. In particular, conditions on inverse and direct demand have been

21The conditions of Theorem 4.2 may differ, however, in the formalization of strictness. I.e.,
P ′ < 0 replaces the assumption that P is strictly decreasing, C ′′i > 0 replaces the assumption that
Ci is strictly convex, etc. There are also three conditions that require elaboration. To start with,
Szidarovszky and Okuguchi (1997) interpret the standard lottery contest as a Cournot game with
unit-elastic inverse demand. Even though the condition for small outputs is not met, uniqueness
follows from the proof of Theorem 4.2 for (α, β) = (0, 0), because Q = 0 is not an equilibrium.
Grandmont’s (1993) assumptions imply (α, β)-biconcavity with α and β small in absolute terms, but
possibly negative. That result is also covered because positive marginal costs relax the biconcavity
assumption needed in the proof of Theorem 4.2. Finally, Jensen’s (2006) analysis of Cournot games
with strict strategic substitutes roughly corresponds to the case discussed in Section 2 of the present
paper. If qiP

′′ + C ′′i > 0 is assumed in addition to ∆P
α,1−α ≤ 0, where α ∈ [0, 1], then profits are

strongly pseudoconcave in the relevant domain. Adding the second-order condition yields P ′−C ′′i < 0
along the best response, which suffices to complete the proof of Theorem 4.2 in this case.

22This type of example might prove useful in applications of quantity competition in which the
assumption of strategic substitutes would be too restrictive, as in Bulow et al. (1985), while increasing
returns to scale cannot be ruled out a priori.
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integrated in a natural way, which addresses a concluding request in Deneckere and

Kovenock (1999). Further consolidation is desirable, of course. For example, the the-

orem of Nishimura and Friedman (1981) has not been reviewed here. McLennan et al.

(2011) manage to subsume that result and Novshek’s (1985) existence theorem in the

duopoly case, yet the general relationship still seems to be unexplored. Moreover, as

the discussion in Section 4 has shown, there is a lack of conditions (on the primitives

of the model) that imply uniqueness even if profit functions are not quasiconcave.

Last but not least, further applications of biconcavity appear desirable, both within

the framework of the Cournot model and beyond.
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APPENDIX: PROOFS

Proof of Theorem 1.1. For x, x̂ > 0, λ ∈ [0, 1], and ρ ∈ R, write Mρ(x, x̂, λ) =

ϕ−1
ρ ((1− λ)ϕρ(x) + λϕρ(x̂)), where ϕ−1

ρ is the inverse of ϕρ. Then, by definition, P is

(α, β)-biconcave if and only if Mα(P (Q), P (Q̂), λ) ≤ P (Mβ(Q, Q̂, λ)) for all Q, Q̂ ∈ IP

and all λ ∈ [0, 1]. By Hölder’s inequality (cf. Hardy et al., 1934), the generalized mean

Mρ(x, x̂, λ) is nondecreasing in ρ. Thus, the condition of (α, β)-biconcavity becomes

more stringent as α increases, and if P is nonincreasing, also as β increases. �

Proof of Lemma 1.2. If P is (α, β)-biconcave, then the function that maps ϕβ(Q)

to ϕα(P (Q)) is concave (in the interval where Q ∈ IP ). Since P is strictly declining

on IP , also the function that maps ϕα(P (Q)) to ϕβ(Q) is concave. Substituting P (Q)

by p, and Q by D(p), shows that D is (β, α)-biconcave. The converse is similar. �

Proof of Lemma 1.3. The function that maps ϕβ(Q) to ϕα(P (Q)) is concave over

the interval where Q ∈ IP if and only if

dϕα(P (Q))

dϕβ(Q)
=
ϕ′α(P (Q))P ′(Q)

ϕ′β(Q)
(8)

is nonincreasing over IP . Differentiating (8) with respect to Q leads to (2). �

Proof of Theorem 2.1. By Lemma A.1 below, w.l.o.g., Ti ⊆ [0, Q] for i = 1, ..., N ,

where Q > 0 is finite. Since Πi(., Q−i) is u.s.c., the minimum best response, min r̂i,

is well-defined. Take Q̂−i > Q−i, and suppose q̂i ≡ min r̂i(Q̂−i) > min r̂i(Q−i) ≡ qi.

Since qi ∈ r̂i(Q−i), it follows that Πi(qi, Q−i) ≥ Πi(q̂i, Q−i). Moreover, P (q̂i+Q̂−i) > 0

because q̂i > 0 is a minimum best response. Thus, by Lemma A.2, Πi(qi, Q̂−i) ≥

Πi(q̂i, Q̂−i), contradicting qi < q̂i. Thus, min r̂i is nonincreasing. But r̂i is u.h.c.

because Πi(qi, Q−i) is both u.s.c. in qi for any Q−i, and continuous in Q−i for any

qi ∈ Ti. Existence follows now from Kukushkin (1994). �

The lemma below is used to verify the effective compactness of the Cournot game.
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Lemma A.1. Assume that P is nonincreasing, non-constant, and (α, β)-biconcave

for α ≥ 0, β ≥ 0 such that α+β > 0. Then there is a finite Q > 0 such that R(., Q−i)

is nonincreasing in the interval [Q;∞) for any Q−i ≥ 0.

Proof. The case α > 0 has been dealt with in Section 2. Consider now α = 0. One

may clearly assume w.l.o.g. that P > 0. Then, for almost any Q ≥ 0,

∂ lnR(qi, Q−i)

∂ϕβ(qi)
=
∂ lnP (Q)

∂ϕβ(Q)

∂ϕβ(Q)

∂ϕβ(qi)
+

∂ ln qi
∂ϕβ(qi)

. (9)

Since P is nonincreasing and non-constant, ∂ lnP (Q)
∂ϕβ(Q)

|Q=Q# ≡ s < 0 for some Q# ≥ 0.

But P is (0, β)-biconcave, hence ∂ lnP (Q)
∂ϕβ(Q)

≤ s for almost any Q ≥ Q#. Note also that

∂ϕβ(Q)

∂ϕβ(qi)
= (1+ Q−i

qi
)β ≥ 1, and that ∂ ln qi

∂ϕβ(qi)
= q−βi < |s| for all sufficiently large qi. Thus,

(9) is negative for almost any sufficiently large qi, regardless of Q−i. �

The following lemma establishes the dual single-crossing property of Cournot profits.

φα(R) 

φα
-1 

φ
α (R

(q
i ,Q

-i )) 

φ
α (R

(q
i ,Q

-i )) 

φ
α (R

(q
i ,Q

-i )) 

φ
α (R

(q
i ,Q

-i )) 

R(qi,Q-i) 

R(qi,Q-i) 

R(qi,Q-i) 

R(qi,Q-i) 
J 

J 

R 

Figure 2: Extending Amir’s (1996) key argument.
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Lemma A.2. Let P be nonincreasing and (α, 1 − α)-biconcave for some α ∈ [0, 1].

Assume also that Ci is nondecreasing. Then, for any q̂i > qi and Q̂−i > Q−i such that

P (q̂i+Q̂−i) > 0 and Πi(qi, Q−i) ≥ Πi(q̂i, Q−i), it follows that Πi(qi, Q̂−i) ≥ Πi(q̂i, Q̂−i).

Proof. Suppose Πi(qi, Q̂−i) < Πi(q̂i, Q̂−i). Then, R(qi, Q̂−i) < R(q̂i, Q̂−i), and the

interval Ĵ = [ϕα(R(qi, Q̂−i)), ϕα(R(q̂i, Q̂−i))] is non-degenerate. By Lemma A.3 below,

J = [ϕα(R(qi, Q−i)), ϕα(R(q̂i, Q−i))] is at least as wide as Ĵ . Moreover, the left

endpoint of J weakly exceeds the left endpoint of Ĵ , as in Figure 2. Applying the

convex inverse ϕ−1
α to J and Ĵ yields R(q̂i, Q−i)−R(qi, Q−i) ≥ R(q̂i, Q̂−i)−R(qi, Q̂−i).

Hence, Πi(q̂i, Q−i)− Πi(qi, Q−i) ≥ Πi(q̂i, Q̂−i)− Πi(qi, Q̂−i) > 0, a contradiction. �

The next lemma extends an argument in Novshek (1985) and enters the proof above.

Lemma A.3. Let P be nonincreasing and (α, 1−α)-biconcave for some α ≥ 0. Then

for any q̂i > qi and Q̂−i > Q−i such that P (q̂i + Q̂−i) > 0,

ϕα(R(q̂i, Q−i))− ϕα(R(qi, Q−i)) ≥ ϕα(R(q̂i, Q̂−i))− ϕα(R(qi, Q̂−i)). (10)

Proof. By Lemma A.4 below, P (qi + Q̃−i) is (α, 1 − α)-biconcave in qi, for any

Q̃−i ∈ [Q−i, Q̂−i]. Therefore, for almost any Q̃−i ∈ [Q−i, Q̂−i], the inequality

∂ϕα(P (qi + Q̃−i))

∂ϕ1−α(qi)
≥ ∂ϕα(P (q̂i + Q̃−i))

∂ϕ1−α(q̂i)
(11)

is well-defined and holds. Using (8) and the functional form of ϕα,

∂ϕα(P (qi + Q̃−i))

∂ϕ1−α(qi)
=
ϕ′α(P (qi + Q̃−i))P

′(qi + Q̃−i)

ϕ′1−α(qi)
=
∂ϕα(R(qi, Q̃−i))

∂Q̃−i
. (12)

Integrating over the interval [Q−i, Q̂−i] yields

ϕα(R(qi, Q̂−i))− ϕα(R(qi, Q−i)) =

∫ Q̂−i

Q−i

∂ϕα(R(qi, Q̃−i))

∂Q̃−i
dQ̃−i. (13)

Since (12) and (13) hold likewise with qi replaced by q̂i, inequality (10) follows. �
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The next lemma, used in the proof above, generalizes a result in Murphy et al. (1982).

Lemma A.4. Assume that P is (α, 1− α)-biconcave and nonincreasing, for α ≥ 0.

Then P (qi +Q−i) is (α, 1− α)-biconcave in qi, for any Q−i ≥ 0.

Proof. Suppose ϕα(P (Q)) is concave and nonincreasing in ϕ1−α(Q) over the domain

where Q ∈ IP . Using Lemma 1.3, ϕ1−α(Q) ≡ ϕ1−α(qi + Q−i) is easily seen to be

convex in ϕ1−α(qi) if Q−i ≥ 0. Hence, ϕα(P (qi +Q−i)) is concave in ϕ1−α(qi) over the

domain where Q ∈ IP . �

Proof of Theorem 3.3. To apply Lemma A.5 below, suppose ∂Πi(qi, Q−i)/∂qi > 0,

where Q ∈ IP . Then, inequality (14) holds. Using β ≤ 1 and qi/Q ≤ 1 yields

qiP
′′(Q) + P ′(Q)(2 − α − β) ≤ 0. Adding P ′(Q)(α + β) − C ′′i (qi) ≤ 0, one obtains

∂2Πi(qi, Q−i)/∂q
2
i ≤ 0. Thus, Πi(., Q−i) is quasiconcave over the domain where Q ∈

IP . Since C ′i ≥ 0, and by continuity, Πi(., Q−i) is quasiconcave over the whole of Ti.

Existence now follows from Assumptions 3.1 and 3.2 (cf. Friedman, 1971). �

The proof of the following lemma is adapted from Diewert et al. (1981).

Lemma A.5. Assume that f = f(x) is twice continuously differentiable on an open

interval X ⊆ R. Then f is quasiconcave over X if f ′(x) > 0 implies f ′′(x) ≤ 0.

Proof. Suppose f is not quasiconcave. Then, there are x1 < x∗ < x2 such that

f(x∗) < min{f(x1), f(x2)}. Take some x̃1 ∈ (x1, x∗) with f ′(x̃1) < 0, and some

x̃2 ∈ (x∗, x2) with f ′(x̃2) > 0. Denote by x0 the largest element in the interval

(x̃1, x̃2) such that f ′(x0) = 0. By Taylor’s theorem, there is some x∗ ∈ (x0, x̃2)

with f(x̃2) = f(x0) + f ′(x0)(x̃2 − x0) + (1/2)f ′′(x∗)(x̃2 − x0)2. Using f ′(x0) = 0 and

f(x̃2) > f(x0) shows f ′′(x∗) > 0. Yet x0 < x∗ < x̃2 implies f ′(x∗) > 0. �

The following lemma is needed for Theorems 3.3, 3.4, and 4.2.

Lemma A.6. Let Q ∈ IP , and assume that ∆P
α,β(Q) ≤ 0, where α ≤ 1 and β ∈ R.
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Then, qiP
′(Q) + P (Q) ≥ 0 implies

qiP
′′(Q) + P ′(Q) ≤ (α− qi

Q
(1− β))P ′(Q). (14)

Proof. To obtain (14), one multiplies qiP
′(Q) + P (Q) ≥ 0 through with (1 −

α)P ′(Q) ≤ 0, and subsequently adds (qi/Q)∆P
α,β(Q) ≤ 0. �

Proof of Theorem 3.4. Assume first ∆P
α,β < 0 with α+β < 2. Let qi ∈ Ti such that

Q ∈ IP , and suppose ∂Πi(qi, Q−i)/∂qi = 0. Then, for qi > 0, the proof of Theorem

3.3 shows that ∂2Πi(qi, Q−i)/∂q
2
i < 0. For qi = 0, the second-order condition is

2P ′(Q−i)−C ′′i (0) < 0, which follows from (α+ β)P ′−C ′′i ≤ 0 and α+ β < 2 because

∆P
α,β < 0 implies P ′ < 0 over IP . Thus, Πi(., Q−i) is strong pseudoconcave over the

range where Q ∈ IP , and by continuity, strictly quasiconcave over the range where

P (Q) > 0. The case where (α + β)P ′ − C ′′i < 0 is analogous. �

Proof of Theorem 4.2. Existence follows from Theorem 3.3. As for uniqueness,

note first that P (Q) > 0 in any equilibrium, by Assumption 4.1. Assume next that

qi > 0 for some firm i in an equilibrium (q1, ..., qN). Then, by strict quasiconcavity,

Πi(qi, 0) ≥ Πi(qi, Q−i) > Πi(0, Q−i) = Πi(0, 0), so that Q = 0 is not a second equi-

librium. Consider, finally, χ(Q) =
∑N

i=1 χi(Q), where χi(Q) is defined in Lemma A.7

below. Since χ(Q) = Q holds in any equilibrium, it suffices to show (Hagood and

Thomson, 2006) that the right-derivative of χ, denoted by D+χ, satisfies D+χ < 1.

Write B(Q) = {i : D+χi(Q) > 0}. Then,

D+χ(Q) =
N∑
i=1

D+χi(Q) ≤
∑

i∈B(Q)

D+χi(Q) =
∑

i∈B(Q)

qiP
′′(Q) + P ′(Q)

C ′′i (qi)− P ′(Q)
. (15)

Note that qiP
′(Q) +P (Q) ≥ 0 for any i ∈ B(Q). Indeed, if qiP

′(Q) +P (Q) < 0, then

χi(Q) = 0 also if Q is marginally raised, which would contradict i ∈ B(Q). Hence,
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by Lemma A.6,

D+χ(Q) ≤
∑

i∈B(Q)

(α− qi
Q

(1− β))P ′(Q)

C ′′i (qi)− P ′(Q)
≤
∑

i∈B̃(Q)

(α− qi
Q

(1− β))P ′(Q)

C ′′i (qi)− P ′(Q)
, (16)

where B̃(Q) = {i ∈ B(Q) : α− qi
Q

(1− β) < 0}. If now either P ′(Q) = 0 or B̃(Q) = ∅,

then (16) implies D+χ(Q) ≤ 0 . Otherwise, i.e., if P ′(Q) < 0 and |B̃(Q)| ≥ 1, then

necessarily α + β < 1, and

D+χ(Q) <
∑

i∈B̃(Q)

−α + qi
Q

(1− β)

1− α− β
≤ 1− α|B̃(Q)| − β

1− α− β
≤ 1. (17)

Thus, D+χ < 1 in any case, and there is precisely one equilibrium. �

Q-i 
Q,Q-i 

qi 

0 

ki 

ri(0) 

ri(0) 

Q 

χi(Q) 

ri(Q-i) 

qi+Q-i=Q 

ki+ε 

-ε 

ri(Q-i) 

ri(Q-i) 

ri(Q-i) 

Figure 3: The slope of the best-response function strictly exceeds −1.

The following lemma is needed for the argument above. See also Figure 3.

Lemma A.7. Impose the assumptions of Theorem 4.2. Then, for any Q ∈ IP , the

equation qi = ri(Q − qi) has a unique solution qi ≡ χi(Q) ∈ [0;Q] if Q ≥ ri(0), and

no solution if Q < ri(0). Moreover,

D+χi(Q) =
qiP

′′(Q) + P ′(Q)

C ′′i (qi)− P ′(Q)
IMi

(Q), (18)
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where IMi
is the indicator function of a measurable set Mi ⊆ IP .

Proof. Let Πi(qi, Q−i) = qiP (qi + Q−i) − Γi(qi), where Γi is twice continuously dif-

ferentiable over R, and Γi(qi) = Ci(qi) over Ti. By Theorem 3.4, for any Q−i ∈ IP ,

the function Πi(., Q−i) is strongly pseudoconcave over the subinterval of Ti where

P (qi+Q−i) > 0. Hence, for any Q0
−i ∈ IP , there is some ε > 0, and a neighborhood U

of Q0
−i such that Πi(., Q−i) is strongly pseudoconcave over the corresponding subin-

terval of T εi = [−ε,∞) if ki =∞, and of T εi = [−ε, ki + ε] if ki <∞, for any Q−i ∈ U .

By making ε > 0 sufficiently small, ri(Q−i) = arg maxqi∈T εi Πi(qi, Q−i) is well-defined

on any given compact subset of IP . Since, locally, either ri(Q−i) = max{0; ri(Q−i)}

or ri(Q−i) = min{ri(Q−i); ki},

D+ri(Q−i) = − P ′(Q) + qiP
′′(Q)

2P ′(Q) + qiP ′′(Q)− C ′′i (qi)
IM0

i
(Q−i) (19)

for some measurable set M0
i ⊆ IP ; see Dem’yanov and Malozemov (1971). Now

P ′ − C ′′i < 0 implies D+ri > −1. Thus, ψi(Q−i) ≡ Q−i + ri(Q−i) is continuous and

strictly increasing, with ψi(0) = ri(0) and ψi(Q) ≥ Q, proving the first assertion. As

D+ψi = 1 + D+ri > 0, the directional inverse function theorem (Pang et al., 2003)

implies D+(ψ−1
i ) = 1/(1 + D+ri). Hence, D+χi(Q) = D+ri(Q)/(1 + D+ri(Q)), and

(18) holds with Mi = ψi(M
0
i ). �
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Table I: Conditions sufficient for firm i’s profits to be quasiconcave in own output†

Reference Conditions Implication‡ (α, β)

Sel70, Ch. 9 P twice continuously differentiable and posi-
tive, with P ′ < 0 andQP ′′(Q)+2P ′(Q) < 0;
Ti = [0, ki] for ki ≥ 0; costs Ci twice con-
tinuously differentiable with C′′i ≥ 0

∂2Πi(qi, Q−i)/∂q2i < 0 (1,−1)

MSS82, Lemma 1 P nonincreasing or convex [strictly decreas-
ing or strictly convex]; QP (Q) concave

R(., Q−i) concave [strictly concave
if Q−i > 0]

(1,−1)

DK99, proof of
Theorem 1

P : R+ → R+ continuous; there is a finite
Q0 > 0 such that P (Q) = 0 for all Q ≥ Q0;
P is C2 on [0, Q0) with P ′(Q) < 0; 2P ′(Q)+
QP ′′(Q) < 0 for all Q ∈ (0, Q0); costs Ci :
R+ → R+ are C2, strictly increasing, and
convex

Πi(., Q−i) strictly concave on
[0, Q0]

(1,−1)

Am96, criterion
used in Ex. 3.3

P ′′P − 2P ′2 < 0, with linear costs Πi(., Q−i) quasiconcave (−1, 1)

DK99, proof of
Theorem 2

D : R+ → R+ continuous; there is a finite
p0 > 0 such that D(p) = 0 for all p ≥ p0;
further, D is C2 on (0, p0] with D′(p) < 0; fi-
nally, 2D′(p)+pD′′(p) < 0 for all p ∈ (0, p0);
costs Ci : R+ → R+ are C2, strictly increas-
ing, and convex

p · [D(p)−Q−i]− Ci(D(p)−Q−i)
strictly concave in p over the
relevant interval (see the original
paper)

(−1, 1)

vMQ12,
Theorem 4

P positive and differentiable; LP (Q) ≡
Q lnP (Q) −

∫Q
0 lnP (ξ)dξ concave; costs Ci

are continuous, nondecreasing, and convex

Πi(., Q−i) quasiconcave (0, 0)

Viv99, Section
4.2

P is C2 with P ′ < 0 and P ′+qiP ′′ ≤ 0 when
P > 0; costs Ci are C2 with C′′i (qi) > P ′(Q)

Πi(., Q−i) strictly concave over the
interval in which P > 0

(1, 0)

Viv99, Section
4.2

P is C2 with P ′ < 0 when P > 0; P is
log-concave; costs Ci are C2 with C′′i (qi) >
P ′(Q)

Πi(., Q−i) strictly quasiconcave
over the interval in which P > 0

(0, 1)

† The notation and terminology of the present paper is used throughout.
‡ The implication is meant to hold for any Q−i ≥ 0.
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Table II: Conditions sufficient for the uniqueness of a pure-strategy equilibrium†

Reference Conditions‡ # equ. (α, β)

SY77,
Theorem 1

There is a finite Q0 > 0 such that P (Q) = 0 for all Q ≥ Q0; P twice differen-
tiable on [0, Q0] with P ′(Q) < 0 and P ′′(Q) ≤ 0; all Ci twice differentiable
with C′i > 0 and C′′i ≥ 0

= 1 (1, 1)§

SY82,
Theorem 2

P differentiable, nonincreasing, and concave; Ti = [0, ki] for ki > 0 finite; all
Ci continuous, nondecreasing, and convex; either P ′ < 0, or all Ci strictly
convex

= 1 (1, 1)§

Sel70, Ch. 9 P twice continuously differentiable and positive, with P ′ < 0 and QP ′′(Q)+
2P ′(Q) < 0; Ti = [0, ki] for ki ≥ 0; all Ci are twice continuously differentiable
with C′′i ≥ 0, C′i(0) = 0, and C′i(ki) > P (ki)

= 1 (1,−1)

MSS82,
Lemma 5

P continuously differentiable and strictly decreasing; QP (Q) concave for
Q ≥ 0; all Ci continuously differentiable, nondecreasing, and convex; either
all Ci are strictly convex, or QP (Q) is strictly concave, or P is concave\

≤ 1 (1,−1)

Wat96, Cor. 1 QP (Q) strictly concave; all Ci convex; QP (Q)−Ci(Q) decreasing for Q large
enough

= 1 (1,−1)

DK99,
Theorem 1

P : R+ → R+ continuous; there is a finite Q0 > 0 such that P (Q) =
0 for all Q ≥ Q0; further, P is C2 on [0, Q0) with P ′(Q) < 0; finally,
2P ′(Q) +QP ′′(Q) < 0 for all Q ∈ (0, Q0); all Ci : R+ → R+ are C2, strictly
increasing, and convex

= 1 (1,−1)

SO97,
Theorem 1

P (Q) = 1/Q for Q > 0, and Πi(0, 0) = 0; all Ci twice differentiable, Ci(0) =
0, C′i > 0, C′′i > 0

= 1 See
text

vMQ12,
Theorem 3

Either Ti = R or Ti = [0, ki] for ki > 0 finite; P positive, nonincreasing, and

differentiable on T\{0}, where T ≡
∑N
i=1 Ti is the Minkowski sum; L̃P (Q) ≡

Q lnP (Q) −
∫Q
ξ0

lnP (ξ)dξ concave, where ξ0 ∈ T\{0}; all Ci nondecreasing

and convex; either L̃P (Q) is strictly concave, or all Ci are strictly convex

≤ 1 (0, 0)

Gra93,
Proposition

Individual demand functions with sufficient heterogeneity of characteristics
(see the original paper); cost functions linear and sufficiently increasing

= 1 See
text

GS91, remark
following
Assumption 5

There is a finite Q0 > 0 such that P (Q) > 0 for Q ∈ [0, Q0) and P (Q) = 0
for Q ∈ [Q0,∞); inverse demand P is C2 with P ′(Q) ≤ 0 on [0, Q0); all Ci
are C2, and C′i(qi) > 0 for any qi > 0; for all Q ∈ [0, Q0), there is some
σi(Q) < 0 such that P ′(Q) − C′′i (qi) ≤ σi(Q) < 0 for every qi ≥ 0; finally,
qiP
′′(Q) + P ′(Q) ≤ 0 for all Q ∈ [0, Q0)

= 1 (1, 0)

Viv99, Section
4.2

P is C2 with P ′ < 0 (in the interval for which P > 0); P ′+ qiP
′′ ≤ 0; all Ci

are C2 with C′′i (qi) > P ′(Q)
= 1 (1, 0)

VLS00 There is some Q0 > 0 such that P (Q) > 0 for Q ∈ [0, Q0), and P (Q) = 0
for Q ≥ Q0; P is C2 with P ′(Q) < 0 for Q ∈ [0, Q0); all Ci are C2, with
C′i(qi) > 0 for all qi ∈ (0, Q0]; Ci(0) = 0, C′i(0) = 0, and C′′i (qi) > 0 for all
qi ∈ (0, Q0]; qiP

′′(Q) + P ′(Q) < 0 for all Q ∈ [0, Q0) and qi ∈ (0, Q]; there
is some τ such that −P ′(Q) > τ > 0 for all Q ∈ [0, Q0); there is some b > 0
such that C′′i (qi) < b for all qi ∈ (0, Q0]

= 1 (1, 0)

Am96, Th. 2.3 N = 2; inverse demand P is strictly decreasing and log-concave; all Ci left-
continuous, strictly increasing, and convex; there exists Q > 0 such that
QP (Q)− Ci(Q) < 0 for all Q > Q

= 1 (0, 1)

DK99,
Theorem 7

D : R+ → R+ continuous; there is a p0 > 0 such that D(p) = 0 for all p ≥ p0;
further, D is C2 on (0, p0] with D′(p) < 0; finally, D′(p) + pD′′(p) < 0 for
all p ∈ (0, p0); all Ci are C2, strictly increasing, and convex

= 1 (0, 1)

Viv99, Section
4.2

P is C2 with P ′ < 0 (in the interval for which P > 0); P is log-concave; all
Ci are C2 with C′′i (qi) > P ′(Q)

= 1 (0, 1)

Jen06,
Example 9

Smooth Cournot model with strict strategic substitutes; Ti = [0, ki] for ki >
0 finite; qiP

′′(Q) + C′′i (qi) > 0
= 1 See

text

† The notation and terminology of the present paper is used throughout.
‡ Unless indicated otherwise, inverse demand and cost functions are defined on R+. Assumptions on choice sets Ti
and costs Ci are generally imposed on all firms i = 1, ..., N .
§ To replicate the result using Theorem 4.2, choose (α, β) = (1, 0), and exploit Theorem 1.1.
\ Murphy et al. (1982) write “convex.”
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