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The Identi�cation of Multiple Outliers

in Online Monitoring Data

Marcus Bauer�� Ursula Gather�� Michael Imho���

� Department of Statistics� University of Dortmund

�� Surgical Department� Community Hospital Dortmund

Abstract

We present a robust graphical procedure for routine detection of isolated and patchy outliers

in univariate time series� This procedure is suitable for retrospective as well as for online

identi�cation of outliers� It is based on a phase space reconstruction of the time series which

allows to regard the time series as a multivariate sample with identically distributed but

non independent observations� Thus� multivariate outlier identi�ers can be transfered into

the context of time series which is done here� Some applications to online monitoring data

from intensive care are given�

Key words� Multivariate sample� online monitoring� outlier identi�cation� phase space

reconstruction� process control� time series�



� Introduction

Increasing technical possibilities for online recording process data produce manifold chal�

lenges for statistical methods� In many �elds like intensive care medicine� industrial process

control� supply chain management� or electrical energy systems more and more devices with

integrated microprocessors are in use �Imho	� �

�� Mc Gregor� �

�� Kirschen et al�� �

�
�

They allow an improved acquisition and storage of the data in real time� A common aim in

all �elds where online data are recorded is the monitoring of the data generating process�

The automatic detection of abrupt level shifts and trends in dynamical processes is one

part of this aim� Solutions are suggested with quite di	erent tools like time series analysis�

statistical and automatic process control� neural networks� system theory� digital signal pro�

cessing� arti�cial intelligence and fuzzy control �Basseville and Nikiforov� �

�� Oppenheim

and Schafer� �

�� Larsson and Hayes�Roth� �

�� Linkens and Nie� �

�� Navendra and

Parthasarathly� �

�
�

Usually� the detection of a level shift or a trend in a system leads to an alert� such that the

physician� engineer or operator can check the situation and possibly take some action� A

fundamental problem here is the occurence of outliers� They can produce false alerts and

if nonrobust procedures are used they can mask level shifts and trends� Also outliers may

carry the most important information� Hence there is a necessity for an automatic detection

of outliers in online monitoring data�

A typical example� where automatic online identi�cation of outliers is of major interest is

data from intensive care medicine� The use of clinical information systems in intensive care

makes it possible to report online� simultanously and automatically more than ���� physi�

ological variables� laboratory data� device parameters etc� in the course of time� To allow

for a more di	erentiated approach to therapy and computer aided clinical decision making�

we need intelligent alarm systems allowing for a suitable bedside decision support� Imho	

and Bauer ��

�
�

The existing alarm systems based on �xed threshholds which are chosen by the physician�

they produce a great number of alarms due to measurement artefacts� patient movements

or minor problems such as transient �uctuations past the set alarm limit �O�Carrol� �
��
�

Most alarms� about ��� � 
�� �M�akivirta� �

�� Lawless� �

�
 are irrelevant in terms of

patient care� This poor reliability may lead to critical or even life�threatening situations�

A few typical time series of physiological variables like heart rate� arterial and pulmonal ar�

terial blood pressure recorded in one minute intervals are shown in Figure �� They contain



Figure �� Typical time series of physiological variables

isolated and patchy outliers� which would produce false alarms when using nowadays alarm

systems� The aim of this paper is to construct a procedure for the automatic detection and

adjustment of outliers which can reduce the false alarm rate in online monitoring systems�

We �nd an increasing amount of literature in this �eld since the fundamental article of Fox

��
��
 and there seem to be two major approaches� Outliers in time series can be represented

within the framework of ARIMA models �with batch processing of the data
 or within state

space models �with sequential processing
� It is well known that ARIMA and state space

models are related� but outliers have been treated mainly by using ARIMA representations�

Furthermore� other areas like nonlinear time series analysis� neural networks� and frequency

domain analysis deal with outliers too �see� e�g�� Chan and Cheung� �

�� Conner� �

��

Tatum and Hurvich� �

�� Kleiner and Martin� �
�

�

Within batch processing the best investigated approach comprises iterative outlier detection

and adjustment procedures to obtain joint estimates of outlier e	ects and model parameters

�see� e�g�� Chang et al�� �
��� Tsay� �
��� Chen and Liu� �

� as well as S�anchez and Pe�na�

�

�� Justel et al�� �

�
� A comparison of several of these procedures is given by Flak et

al� ��

�
� Schmid ��
��
 uses likelihood�ratio�tests for the identi�cation of multivariate

outliers� For a review on tests for the detection of time series outliers see Hotta and Neves

��

�
� Sensitivity analysis for regression models is applied in the context of outlier detec�



tion in time series� for instance by Bruce and Martin ��
�

� Abraham and Chuang ��
�

�

Ljung ��

�
� Pe�na ��

�
� and Ledolter ��

�
� By robust approaches � as proposed in

articles of Denby and Martin ��
�

� Martin ��
��
� Martin and Yohai ��
��� ����
� Bustos

and Yohai ��
��
 � parameter estimation methods in time series models are modi�ed such

that the in�uence of outliers is reduced or eliminated� An early review on robust methods

for univariate ARIMA�models is given by Stockinger and Dutter ��
��
�

Typical problems of ARIMA�based procedures for detecting outliers are biased estimators

of initial parameter values� inappropriate model speci�cation and masking e	ects� espe�

cially if multiple outliers are present �S�anchez and Pe�na� �

�� Justel et al�� �

�� Le et al��

�

�� Tsay� �
��� Chen and Liu� �

�
� Also� because of lengthy model identi�cation steps�

ARIMA based procedures are not really appropriate when analysing online monitoring data�

Within the state space approach we �nd robusti�cations of the Kalman �lter in West ��
��
�

Pe�na and Guttman ��
�

 as well as Kitagawa ��
��
� A review is given by Schick and Mit�

ter ��

�
� However all these procedures are not robust against multiple or patchy outliers

and some procedures fail already if two or more outliers arise within less than w time in�

tervals distance of each other �Schick and Mitter� �

�
� Harvey and Koopman ��

�
 as

well as Kirkendall ��

�
 discuss the detection of outliers in structural models using the

Kalman �lter� too� All approaches in state space models can be sensitive w�r�t� violations

of the assumption of normality and stationarity� In practical applications this leads to false

classi�cations of clean observations as outliers which yields false alerts in online monitoring

systems�

State space models� and especially linear dynamic multiprocess models as introduced by

Harrison and Stevens ��
��
 are often used for online identi�cation of outliers and other

disturbances like e	ects of interventions �West and Harrison� �
��
� A very well known ex�

ample of a multiprocess model applied to online monitoring data after renal transplants is

given by Smith and West ��
��
� Related work in a linear growth model with multiprocess

Kalman �ltering is due to Daumer et al� ��

�
 who analyses medical online monitoring

time series from anaesthesia� A routine application of such models in intensive care units

or operating rooms is not practised yet because of a very strong sensitivity against mis�

speci�cations of the hyperparameters� the insensitivity against moderate level shifts� and

the extreme computational e	ort� which algorithms in multiprocess models require� This is

especially true when several variables are controlled �Bolstad� �
��
�



This paper choses a di	erent� partially graphical approach which leads to procedures which

are able to work online� We proceed as follows� In Section � we develop a simple model

�called phase space model
 for the steady state of a stationary Gaussian process and we

show how the construction of predictions based on this model are connected with classical

AR�models� We introduce the concept of outlier identi�ers in the context of time dependent

data in Section � and give a comparison with the classical way of outlier identi�cation in

time series in Section �� The new outlier identi�ers are used in Section � to construct

procedures for detecting outliers in time series retrospectively as well as in an online way�

The procedure is applied to online monitoring data from intensive care in Section ��

� Phase Space Models

Typically� time series models are formulated by some feedback equations� This is appropriate

if prediction is the main goal� As in �nonlinear
 ARIMA models� then the current observation

yt depends via some function f��
 on former observations yt�� �� �yt��� yt��� � � � � yt�p

� and

is superposed by disturbances �t �� ��t� �t��� � � � � �t�q

� with �t i�i�d� N��t� �

�
t 
� t � Z� such

that

yt � f�yt��� �t
� t � Z�

Often like in state space models� the observed variable is also related via a function to an

unobservable state variable� which depends on its own past� For modelling outliers and

e	ects of interventions usually an intervention term is added to such a steady state model

or it is assumed that the disturbances have a contaminated distribution�

If one is only interested in describing the equilibrium or steady state of a system and

in the detection of deviations from this equilibrium� it is su�cient to consider only the

dependence structure of the underlying process� Therefore� in the following we formulate a

simple model � the phase space model � for the underlying process which only a	ords a few

assumptions necessary to construct a procedure for the �online�
identi�cation of patterns

in time series like outliers and e	ects of interventions� Because of this parsimonious model�

the correspondig identi�cation procedures a	ord very low computational e	ort�

The so�called phase space reconstruction is a simple and fundamental tool introduced by

Takens ��
��� �
��
 and at the same time by Packard et al� ��
��
 to analyse nonlinear

deterministic� especially chaotic systems�



Let fytgt�f������Ng be a time series of length N � Consider the set of m�dimensional vectors�

where the components are the time delayed elements of the time series�

�yt �� �yt� yt�T � yt��T � � � � � yt��m���T 

��

�yt � Rm � T�m � Nnf�g �t � �� � � � � N � �m� �
T 
�

with m� T �N� Here� m is called the embedding dimension and T is the time delay�

The dynamical information of the univariate time series is thus transformed into a spa�

tial information within an m�dimensional space IRm� the so�called phase space� The set

f�yt j t � �� � � � � N � �m � �
Tg is called phase space reconstruction or embedding� The

claim� based on the theory of Takens ��
��
 is that the analysis of the phase space vectors

permits certain asymptotical inferences concerning the qualitative� especially geometric be�

haviour of the original system� Of course� there are assumptions for the approach to work�

e�g� m � �dH � �� where dH is the Hausdor	 dimension of the attractor of the original sys�

tem� For special systems a lower embedding dimension can be chosen �Broomhead� King�

�
��
� this is con�rmed by many applications �e�g� Bezerianos et al�� �

�� Buzug et al��

�

�
�

Also� a suitable choice of T is nontrivial� For nonlinear dynamical systems it is often rec�

ommended to choose the time delay T such that Corr�Yt� Yt�� 
 � � �	 � T �t � Z� Some

authors prefer a slight correlation� We note� that di	erent choices of T lead to di	erent

phase space reconstructions and estimated process properties� In the present paper we con�

sider linear stochastic systems� where the situation is less di�cult� some rules for choosing

m and T are given in Subsection ����

The data analytical methods based on phase space reconstructions� which are developed in

theoretical physics can make use of very large sample sizes and of data arising from con�

trolled experiments� When analysing data from biological or economical systems� only rela�

tively small data sets are available and stochastic disturbances must be taken into account�

Stochastic disturbances in nonlinear dynamics are considered by Nyschka et al� ��

�
 as

well as by Yao and Tong ��

�
� who investigate nonlinear autoregressive processes and

their properties with phase space techniques� In nonlinear systems the state of equilibrium

�for a de�nition of this term in nonlinear stochastic systems see Chan and Tong� �

�
 has

often very complex features� which are known as �strange attractors�� But in many medical�

environmental or ecological applications one can assume that �for all practical purposes�

the underlying process can be approximated by a linear stochastic process� Hence� we use

the phase space reconstruction as a tool for analysing linear stochastic processes with the



Figure �� Trajectories and their phase space of a pure deterministic and a pure stochastic process�

special aim of �online�
identi�cation of outliers� The phase space reconstruction could also

be used for the detection of level shifts in the phase space� This is not within the scope

of the paper� but the key idea for analysing level shifts is given in the discussion� As an

illustration the following examples are given�

Examples�

��
 Consider a nonlinear deterministic di	erence equation� which is part of the Henon

attractor�

Yt � �� ���Y �
t�� � ���Yt��� t � Z�

The simulated trajectory with starting value x and its ��dimensional phase space recon�

struction with T � � is shown in Figure �a and Figure �b� The deterministic structure of

the process is easy to recognize�

��
 In contrast to Example � we consider a pure White�Noise�process f�tgt�N with E��t
 � �

and covariance


k � E��t� �t�k
 �

��
� �� k � �

�� k �� �

as depicted in Figure �c� The corresponding phase space reconstruction is given in Figure

�d� where no structure is visible�



��
 For a stationary AR��
�process Yt � �Yt�� � �t� �t � N��� ��� 
� � � ���� �
 the phase

space vectors are concentrated in an elliptic cloud� This can be seen in Figure �a and Figure

�b� where a trajectory of an AR��
�process with parameters ��� � ��� and � � ��� and its

two�dimensional phase space reconstruction with T � � are shown� Subsequent vectors are

connected to show the movement through space� The connections are omitted in Example

� because the visible structure would then be covered� Adding an outlier to the trajectory

of an AR��
�process at time point ��� �Figure �c
 causes a typical movement through the

phase space �Figure �d
�

Figure �� Trajectory of an AR����process and its phase space with and without outlier�

��� The model

Extending Example � to AR�p
 models and higher embedding dimensions m� we get phase

space reconstructions located in m�dimensional ellipsoids� The smaller the dependence of

consecutive process variables is� the more the shape of the ellipsoid resembles a spherical

cloud� Clearly� this is valid in general for stationary Gaussian processes� Also� if we have a

process with memory� but choose T such that Corr�Yt� Yt�T 
 � �� we get spherical clouds

regardless of the embedding dimension m� Therefore the time delay T should be equal to



one� Otherwise the information about the dependence structure� i�e� the interesting strucure

in linear stochastic processes is lost�

The above remarks lead to the following model� We consider a stationary Gaussian process

fYtgt�Z� Yt � N��� ��


with absolutely summable autocovariance function 
�h
�
�X
h��


�h
 � �	�

The �sample�
 phase space vectors �Y�� � � � � �YN�m�� are constructed from a segment of the

process with length N �

�Y� ��

�
BBB�

Y�
���

Ym

�
CCCA � �Y� ��

�
BBB�

Y�
���

Ym��

�
CCCA � � � � � �YN�m�� ��

�
BBB�

YN�m��

���

YN

�
CCCA �

We recommend to choose the embedding dimension m according to

m � � �max
�
f	 � j 
�	
 j� �g�

where 
�	
 is the partial autocorrelation function �PACF
�

By the assumption of normality for the process variables it follows immediately that the

sample phase space vectors follow a multivariate normal distribution� For the choice of m

we suggest to take only those process variables into account� which have a direct in�uence

�measured by the PACF
 on the present process variable� The absolute summability of the

autocovariance function is a necessary condition for the central result given in Section � as

well as for the construction of the online outlier�identi�cation procedure derived in Section

��

For a given time series the sample partial autocorrelation function �SPACF
 has to be

calculated from the data to choose m and therefore� we replace 
�	
 by an estimator �
�	
�

typically based on the formula given by Durbin ��
��
� Then we choose m according to

m � � �max
�
f	 � j �
�	
 j� u���

r
�

N
g� ����


where u��� is the ��� �
�quantile of a standard normal distribution and V ar��
�	

 � �
N
�

This model allows to interpret a time series as a multivariate sample with identically dis�

tributed but non independent observations� Thus� there is a chance for several methods

originally constructed for multivariate i�i�d� data to be transfered to the context of a uni�

variate time series� One must only take care of the e	ects caused by the special dependency

structure of the observations�



��� Predictions

It is possible to derive predictions on the basis of phase space models� Let �yt�� be the one�

step�ahead prediction of a time series� By geometric considerations the following estimation

is natural in an m�dimensional phase space�

�Yt�� � argmin
x

�
m��X
i��

ai jj �Yt�� � �Yt�i�� jj� �a� jj �Yt�� � � jj�
�
� ����


where jj � jj is the Euclidian norm� x� ai � R� i � �� � � � � N �m � � and

�Yt�� ��

�
BBBBBB�

Yt�m��

���

Yt

x

�
CCCCCCA
� �Yt�i�� ��

�
BBBBBB�

Yt�i�m��

���

Yt�i

Yt�i��

�
CCCCCCA
� �i � �� � � � � m� �
�

It is easy to see that minimizing ����
 leads to

�Yt�� �

�
m��X
i��

aiYt�i�� � a��

�
�

m��X
i��

ai� when

m��X
i��

ai � �� ����


The predictions are constructed such that the weighted sum of the quadratic distances of the

m� � preceding phase space vectors and the mean vector to the new one is minimal� This

means that for predicting yt�� only those observations yt� � � � � yt�m�� are relevant� which

have a direct in�uence on yt��� This corresponds to the choice of m on the basis of the

PACF in Section ����

It is well known that the minimum mean square error forecast of an AR�m � �
�process

Yt � ��
Pm��

i�� �i�Yt�i � �
 � �t� �i � R� is given by

�Yt�� � ��
m��X
i��

�i�Yt�i�� � �
�

The prediction in ����
 can be compared with the minimum mean squared error forecast for

AR�processes� For this purpose let
Pm��

i�� ai � �� this guarantees also that �Yt�� minimizes

����
� Then

�Yt�� �
Pm��

i�� aiYt�i�� � a��

�
Pm��

i�� aiYt�i�� � ���Pm��
i�� ai
�

� ��
Pm��

i�� ai�Yt�i�� � �
�

Thus� with ai � �i �i � �� � � � � m � �
� we can use the same prediction function as for

AR�m� �
�processes�

argmin
x

�
m��X
i��

�i jj �Yt�� � �Yt�i�� jj� ����
m��X
i��

�i
 jj �Yt�� � � jj�
�

� ��
m��X
i��

�i�Yt�i�� � �
�



The process parameters can be estimated� e�g� by Yule�Walker estimators� calculated from

the SPACF by solving an m�dimensional equation system� Because the SPACF is already

calculated for choosing m� the additional computational e	ort to get predictions is not

high� if the embedding dimension is low� For example� in Imho	 et al� ��

�
 as well as

in Imho	 and Bauer ��

�
 several physiological variables from intensive care medicine are

investigated and meaningful descriptions of the data are derived with low order AR models�

Because of 
�	
 � �� 	 � m � �� for an AR�m
 model� the embedding dimension for this

application is small� when the model order is low�

� Outlier Identi�ers for time series data

The transformation of the dynamic information into a spatial picture leads to a multivariate

sample with dependent observations� We have just seen that outliers in time series cause

a typical movement through the phase space �Figure �c� �d
� Such outliers will now be

detected analogously to the identi�cation of outliers in multivariate i�i�d� samples� but

taking into account that the vectors in the new phase space sample are dependent�

Let us �rst explain what we mean by identifying outliers in a multivariate sample� We

follow Davies and Gather ��

�
 as well as Becker and Gather ��

�
 and formalize the task

of identifying outliers by using the concept of so�called ��outliers� Such ��outliers are only

characterized by their extreme position in the sample w�r�t� the anticipated distribution�

For a multivariate sample an ��outlier w�r�t N����
 is just de�ned as an element of

out��� ���
 �� fx � Rm � �x� �
�����x� �
 � ��m����g� ����


the so called ��outlier region w�r�t� N����
� For a sample of size N � one can also speak of

an �N �outlier region out��N � ���
 according to the condition

P �
N	
i��

fXi � Rmnout��N � ���
g
 � �� �� ����


for Xi � N����
 �i � �� � � � � N
 and some given � � ��� �
� For an i�i�d� sample this

leads to �N � � � �� � �

�
N � Note� that the �N �outlier region depends on the unknown

parameters � and �� Therefore� the outlier region is typically unknown and has to be

estimated from the data and estimating an ��outlier region is equivalent to identifying all

��outliers in a given data set� For this reason �N outlier identi�ers are now de�ned as

follows� Let xN � fx�� � � � � xNg be a sample of size N� xi � R
m �i � �� � � � � N
� such that



more than half� say N
�
� n 
 N � of the observations come i�i�d ��
 from an m�dimensional

normal distribution� Then� for �N � ��� �
� an �N outlier identi�er is de�ned as a region

�depending on the sample


OR�xN � �N
 �� fz � Rm j �z � v
�S���z � v
 � cg� ����


where S � S�xN
 � R
m�m is symmetric and positive de�nite� v � v�xN
 � R

m � and

c � c�m�N� �N
� c � R� c � �� Every point x � OR�xN � �N
 is then  identi�ed as an �N

outlier with respect to N����
� The normalization constant c can be chosen analogously to

����


P �Xi � RmnOR�xN � �N
� i � �� � � � � N
 � �� ��

Taking v � !xN and S � SN in ����
� where SN is the sample covariance matrix� leads to

the classical Mahalanobis�distance as outlier identi�er �Barnett and Lewis� �

�� p� ����

Schwager and Margolin� �
��� Caroni and Prescott� �

�� Gather and Becker� �

�
� Since

in the i�i�d� case

MDi �
q

�xi � !xN 
�S
��
N �xi � !xN 
� i � �� � � � � N� MD�

i � ��m�

we set c � ��m���� by using ����
� This is a weighted Euclidian distance� which considers the

distance as well as the direction of an observation to the centre of the data� An observation

xi is regarded as outlying if MDi is larger than ��m�����

However� the use of robust estimates for v and S like Minimum Volume Ellipsoid �MVE


estimators �Rousseeuw� �
��
 or S�estimators for location and scale is recommended to avoid

masking and swamping �Gather and Becker� �

�� Becker and Gather� �



�

Up to now we have concentrated on the i�i�d� case� Now� following the model in Section ���

we consider time series data� which are transformed into a multivariate sample by a phase

space reconstruction� De�nition ����
 of the � outlier region w�r�t� N����
 can be adopted

as it stands� but the dependence of the sample vectors has some consequences here�

For example� if we consider the simple analogue of the classical outlier identi�er� based on

the above Mahalanobis distance for time series �MDTS


MDTSt �
q

��yt � ��yN�m��

�S��Y�N�m����yt � ��yN�m��
 �t � �� � � � � N �m� �
� ����


we must investigate its asymptotic properties under the new conditions� In ����
 ��yN�m�� �

�
N�m��

PN�m��
t�� �yt is the arithmetic mean of the phase space vectors and SY�N�m�� is the



sample covariance matrix

SY�N�m�� �

�
BBBBBB�

�
N��
 �
N��
 � � � �
N�m� �


�
N��
 �
N��

���

���
���

���

�
N�m� �
 � � � � � � �
N��


�
CCCCCCA
�

with �
N�h
 �
�
N

PN�h
t�� �yt��
�yt�h��
 �h � �� � � � � m��
 where � � !yN � �

N

PN

t�� yt� The

following theorem shows thatMDTS�
t is still asypmtotically ���distributed in the dependent

phase space situation�

Theorem � Let fYtgt�Z be a stationary normal process with mean � and absolutely

summable autocovariance function 
�h
� h � N� If a set of process variables fYtgt�������N
is given and �Y�� � � � � �YN�m�� denote the multivariate normally distributed phase space vec�

tors with mean � and covariance matrix �� then

MDTS�
t

N��� ��m� for t � �� � � � � N �m � ��

Proof�

Because fYtgt�Z is stationary� normal and has an absolutely summable autocovariance func�

tion
��X
i��


�h
 � �	�

the process is mean and covariance ergodic� That means that ��N � ��yN�m�� and �
N�h
 �

�
N

PN�h
t�� �yt � �
�yt�h � �
 are consistent estimators for � and 
�h
�

V ar���N
 � O�N��
�

V ar��
N�h

 � O�N��
� h � �� �� �� � � �

It follows that ���YN � SY�N�m��
 are
p
N �consistent estimators for ����
� Similar to Becker

��

�
 we consider the function g�v
 �� �x � v
�S���x � v
� A Taylor expansion with rest

term r yields

g�v
 � g��
 �



�g�v�
�v

���
v��

��
�v � �


��v � �
�



�
�v



�g�v�
�v

�������
v��

�v � �
 � r

� �x� �
�S���x� �
 � ���� x
�S���v � �


���v � �
�S���v � �
 � r�



Because of
p
N �consistency we may neglect the rest term� Let v � ��YN and S � SY�N�m���

Then� using the consistency of v and S and the statement that ��Yt��
������Yt��
 � ��m�

we get that ��Yt � ��YN

�S��Y�N�m���

�Yt � ��YN
 is asymptotically ��m�distributed�

To adjust the outlier region correctly to the case of dependent samples� a choice of �N �

�
N�m��

seems appropriate� This guarantees the inequality

P

�
N�m���
t��

n
�Yt � out��N�m��� ���


o�


 �N �m � �
P ��Yt � out��N�m��� ���

 
 ��

On the basis of Theorem ��� we can now de�ne the analogue to the classical multivariate

outlier identi�er for time series�

De�nition � Let �N � ��� �
 and YN�m�� � ��Y�� � � � � �YN�m��
 be an m�dimensional

random sample constructed from a set of process variables fYtgt�������N arising from a normal

process with embedding dimension m� Then

ORMDTS�YN�m��� �N�m��
 ��

fz � Rm j �z � ��YN�m��

�S��Y�N�m���z � ��YN�m��
 � ��m����g

is called Mahalanobis�type outlier identi�er for univariate time series� Further� each vector

�yt with

�yt � ORMDTS�YN�m��� �N�m��


is called �N � phase space outlier ��N �outlier�PSV��

The normalization by choosing c�m�N� �N
 is according to ����
 and �N�m�� is given by

�N�m�� �
�

N�m��
�

An outlier identi�er based on the MVE can analogously be de�ned for time series data�

because the dependences in the sample do not in�uence the MVE� In the following de�nition

�YMVE�N�m�� denotes the center of the MVE and SMVE
Y�N�m�� denotes the estimated empirical

covariance matrix calculated from the observations in the MVE�

De�nition � Under the assumptions of De�nition �

ORMVETS�YN�m��� �N��
 ��

fz � Rm j �z � �YMV E�N�m��

��SMVE

Y�N�m��

���z � �YMV E�N�m��
 � c�m�N� �N
g

is called MVE outlier identi�er for univariate time series�



The MVE can therefore be used to calculate robust estimators of the process mean and the

�partial
 autocorrelation function� If these robust estimators are used in the Yule Walker

equation� this leads also to robust estimators of the process parameters and therefore to

robust predictions�

� Comparison to classical outlier identi�cation in time

series

In the fundamental paper of Fox ��
��
 two types of outliers are de�ned� additive and

innovative outliers� An additive outlier is considered as an observation with an extreme

distance from the rest of the data� whereas an innovative outlier is a short�term deviation

from the steady state of the system� It should be mentioned that the interpretation of

extraordinary observations depends on the adopted model� Following Fox it is possible

to model short�term deviations with ARIMA�models by adding an impuls function to the

noise at a �xed time point� In the context of state space models we cannot speak of

innovative outliers like in ARIMA�models� because there is no autoregressive structure in

the observation equation� When the term innovative outlier is used in the state space

approach it means nothing else than a level shift� modeled by a contaminated noise in the

state equation� In fact� a short�term deviation can also be interpreted as a level shift with

a fast decreasing e	ect and not as a new type of outlier�

If a short term deviation is present� the phase space vectors leave the ellipsoid of the steady

state� then move to the main diagonal and fall back on the main diagonal into the ellipsoid

�Figure �
� We do not want to consider this as a new type of outlier� because especially

in online monitoring situations one should avoid overmodelling� We rather want to identify

isolated additive outliers and patchy additive outliers� In some sense a short�term deviation

is a special case of the pattern of patchy additive outliers� A further task would be the

discrimination of level shifts from isolated and patchy outliers� We restrict here to the

automatic detection of additive outliers�

For AR�p
�processes Fox ��
��
 derived the maximum�likelihood�ratio test for additive and

innovative outliers� Chang et al� ��
��
 extended Fox results to general ARIMA�p� d� q
�

models

"�B
��B
Yt � ��B
�t� "�B
 � ��� "�B � � � �� "pB
p


��B
 � ��� ��B � � � �� �qB
q
� ��B
 � ��� B
d����Bs
d� �



Figure �� Trajectory of an AR����process and its phase space with an innovative outlier�

with d � d� � sd�� d�� d�� s � N � They recommend computing the likelihood�ratio statistic

�A�t for additive outliers� This statistic is given by

�A�t �
��A�t

��� �
P�

i�� �
�
i 

� �

�

�

where ��A�t � 
���F 
��B
yt� 
� � �� � ��� � � � � � �N�t

�� and F �B
 is the forward

�backward
 shift operator� ��� is an estimator of the residual standard deviation and ��B
 �

"�B
��B
���B
 � ��� ��B � � � �
� For an AR��
�process �A�t is given by

�A�t �
yt � ��

����
�
�yt�� � yt��
q
�

����
�
��

� ����


because for an AR��
�process ��B
 � ��B
 � ��"�B� In the case of an AR��
�process the

Mahalanobis�distance for time series is

MDTSt �
y�t � �"�yt��yt � y�t��

���
� ����


We can now see� that in general Equations ��� and ��� do not lead to the same results� In

the classical case the test statistic is based on the conditional expectation

�A�t �
yt � E�yt j yt��� yt��
q

�
����

�
��

�

Using the conditional expectation is especially crucial when multiple outliers are present�

because then the estimation of outlier e	ects ��A�t can be mislead and thus clean observations

are identi�ed as outliers� whereas genuine outliers are not detected� If one single outlier is

present� Chan and Liu ��

�
 realized already�  when the critical value is too low� there

is a higher frequency to misidentify the location of an outlier by one time period� This is

due to the higher correlation between neighboring test statistics� This fact is illustrated in



Figure �� Example of a wrong identi�cation of the time point where an outlier occurs with a

classical outlier detection procedure

the example in Figure �� In Figure �a a simulated AR��
�process of time length ���� with

process parameters "� � ��� and �� � ��� is simulated and its ��dimensional phase space

is shown �Figure �b
� In Figure �c the observations marked with ��� are outliers and are

generated by

y�t � yt � ���I���	 � ���I���
�

where y�t is the contaminated process and It is an impuls function� In fact using the classical

test statisic ����
 the observation y���� �marked by ���
 is identi�ed as an outlier using a

level � � ����� whereas the true outliers are not detected although the contamination is

relatively large ������� �����
� Applying the Mahalanobis�distance for time series leads to

an identi�cation of observations ���� and ���� as ��outlier�PSV� They are marked by ���
in Figure �d�

Obviously a slight change in yt�� may lead to a larger estimation of the outlier e	ect

yt � E�yt j yt��� yt��� yt��� yt�� � � �
 and thus the test statistic at time t is larger than a

critical value� Using Mahalanobis�distances for time series� MDTSt�� can also be smaller

than the critical value and only MDTSt can pass the limit� But here we have another



interpretation� something is wrong in the dynamic at the time points t� � and t� but it is

impossible to say which observation is the outlier� This is illustrated in Figure �d� where it is

obvious that changing yt�� or yt can move the process back into the steady state� Using the

test statistic ����
 to determine the exact time point can lead to de�nitely wrong decisions�

Thus it is better to investigate short time intervals to look for deviations�

� Identi�cation Procedures

In this chapter we use the above concept to construct procedures for detecting addi�

tive outliers in time series� If a phase space vector falls into an empirical outlier region

ORMDTS�YN�m��� �N�m��
 we have still to decide� which component of the vector is the

additive outlier in the time series� As remarked in Section � in some cases this problem

cannot be solved� In practical situations however a decision is needed�

Usually one additive outlier in a time series generates m outliers in the corresponding phase

space sample� Then the additive outlier is the observation� which is exactly that component

which arises in all outlying phase space vectors� But there are two special situations� where

the decision is more di�cult� First� in the situation where �yt � OR�YN�m��� �N�m��
 but

�yt��� �yt�� �� OR�YN�m��� �N�m��
 it is not clear� which observation is an additive outlier�

Second� consider a process with embedding dimension two� Let us assume that multiple

outliers occur� for instance at time points t� t� �� and t � ��

AO AO AO

� � �
yt�� yt yt�� yt�� yt�� yt��

Then the phase space vectors �yt� �yt��� �yt��� �yt�� and �yt�� are located in an outlier region�

The same phase space vectors would be �N �outlier�PSV�s� if additive outliers in the time

series occur at time points t� t� � and t� ��

AO AO AO

� � �
yt�� yt yt�� yt�� yt�� yt��

Clearly� the movements through space in these two cases di	er and one could distinguish

between these cases by a closer look on these movements� But there is a shorter recursive



way to identify the right observations as additive outliers in the retrospective as well as in

the online case�

First we consider the retrospective case� where the entire time series fytgt�f������Ng is ob�

served� Then the PACF is estimated and according to ����
 the embedding dimension is

chosen� If a priori knowledge is available� the embedding dimension can be regarded as

known� If m is thus determined� the dimension of � and � is known too and according to

Section � outlier identi�ers ORMDTS�YN�m��� �N�m��
 can be constructed� To determine

the outlier component of an �N �outlier�PSV exactly� one should check then the phase space

vectors in chronological order� If a phase space vector �yt falls into an outlier region� then yt

is regarded as additive outlier and it is replaced by its forecast �yt����� The one step ahead

forecasts �yt���� can be calculated according to section ���� Then the next phase space vector

is examined and so on�

Since there is little information at the beginning of the time series �� 
 t 
 m
 the outlier

identi�cation is complicated� One may consider here vectors �yt � �����m�t� y�� � � � � yt
 �t �

�� � � � � m
� If such a vector falls in an outlier region� then yt is replaced by ���

To identify outliers online we use a running time window of length N � Wtcurrent �

fytcurrent� � � � � ytcurrent�N��g� which is moved through the data� The estimated process pa�

rameters ��t� �
t�h
 �h � �� �� � � � � m � �
� and eventually also m and the parameters ai have

to be updated continually� At the beginning it is necessary to observe and analyse a starting

sequence retrospectively� Then outliers can be identi�ed online recursivly and analogously

to the retrospective case� only the estimators of the process parameters are updated based

on the observations within the current time window Wtcurrent�

Note that the procedures described above cannot be used for nonstationary time series� In

many applications the di	erenced series fdtgt�f������Ng� where dt � yt� yt��� can be regarded

however as stationary� The identi�cation procedure can then be applied to the di	erenced

series� One should only replace dt�� by yt��� �yt����� if dt is identi�ed as an additive outlier�

We should now discuss choosing the level �� Similar to control charts from quality control

we investigate two possibilities to choose the level �� Either one can use probability limits

or some kind of control limits� Choosing probability limits means to choose the level � itself�

If the assumptions of normality and stationarity are ful�lled then a condition in terms of

the expected number of falsly identi�ed observations as outliers is simply given by

E�number of falsly identi�ed AO
 � NG�N �

where NG is the size of the entire data set�



In many practical situations only a deviation from the process level of more than ���k��

k � #�� �$ is of interest and may be �xed by the engineer� physician or operator� In monitoring

situations it is often di�cult to keep the number of false alarms low� when using probability

limits� This is due to the fact that the level � is �xed� whereas the variability of the process

possibly �uctuates� If the variability of the process is small then the probability limits are

very sensitive and too many outliers are detected� If the variability is large the procedure

is very insensitive� Hence� an alternative approach in such situations is to choose the level

� depending on the process variance� We propose a kind of control limit for choosing the

level � adaptively to avoid too many false alarms�

Let us assume that m � �� If the process variables Yt� Yt�� were independent� then using

���k� control limits would lead to a square control region S � f�y�� y�
j ���k
� 
 y�� y� 

�� � k
�g� where the process is said to be  in control at time points t � � and t� when

�yt��� yt

� � S� But if there are dependences in the process� the correct control region is

elliptical� and the process is said to be  out of control only if �yt��� yt

� is outside the ellipse�

If m � � we can inscribe an ellipse into the square S or equivalently for the shifted situation�

�Yt�� � �� Yt � �
 � N

�
�
�
� �

�

�
A �

�
� �� 



 ��

�
A
�
A � N �����
 �

Then the set

f�y�� y�
j f	�
�y�� y�
 
 �������g

with

f	�
�y�� y�
 �


y� y�

��� � �

� �

�
A
�
� y�

y�

�
A �

�
� � �

� �

�
A � ����

is an ellipse� The equation f	�
�y�� y�
 � ������� is equivalent to

�y�� � ��y�y� � �y�� � ��������

If we want to inscribe an ellipse in the square S we have to consider one of the functions

y� � �
�	

�
���y�

��
q

���y�� � ����y�� � �������


�

� �
y�
	

�� �
	

q
��� � ��
y�� � ��������� �h � y� � h� h �

q
	�������
	��
�

�

which describe the upper and lower part of the ellipse� With

h �
q

	�������
	��
�


� ������� � h��	��
��
	



and h � k� we get

������� �
k������ � ��


�
�

And hence

� � �� F���

�
k������ � ��


�

�
�

For a time window of length N it follows

�N �
�� F���



k����	��
��

	

�
N � �

�

The parameters �� � and � are unknown and should be replaced by their estimators in

praxis� Using a moving time window in online monitoring applications� the current level �N

is calculated with the data of the current time window�

For higher embedding dimension m the choice of �N can be done analogously� For example

if m � � and �Yt�� � �� Yt�� � �� Yt � �
 � N�����
 one gets

�N �
�

N � �



�� F���

�
k���

�
�� � ��

�
�

���� � ��� � �

�

����� � ��


���

where �
BBB�

� � �

� � �

� � �

�
CCCA � ���� �

The di	erences in using a �xed or an adaptive level are investigated in the next section with

time series from intensive care medicine�

� Examples

We apply the proposed procedure to online monitoring data from intensive care medicine�

We concentrate on the time series shown in the introduction in Figure �� The data are

stored with a Clinical Information System �Emtek Continuum ����� Version ���M�� Decision

support system �DSS
� Sybase SQL server ��
��
� which is succesfully in use for six years at

the surgical intensive care unit of the Community Hospital at Dortmund �Imho	� �

�
� We

consider the mean arterial blood pressure �map
 and the diastolic arterial blood pressure

�dpap
� A short description of the data is given in table �� The examples presented in this

paper are a representative part of a more extensive study with �� data sets� which contain

isolated as well as patchy outliers�



Series � � � �

Variable apm apm apm apd

Size ��� �
� ��� ���

Outliers isolated isolated patchy patchy

Table �� Investigated time series�

Figure �� Typical time series of physiological variables

For the four time series depicted in Figure � we estimate the PACF on the basis of the �rst

�� observations� According to ����
 we get for Series �� � and � �Series �
 an embedding

dimension m � � �m � �
�

Using the procedure presented above we analyse each time series with a �xed level as well

as an adaptive one� The �xed level is � � ����� For the adaptive level� the physician

determines that every observation� which deviates more than ��� from the past level is an

artefact� thus we choose k � ���� Finally the length of the time window is set to N � ���

The results of the analysis are summarized in Table � and the observations identi�ed as

outliers are marked in Figure �� Observations which are identi�ed with the �xed as well as

the adaptive level are marked with a star �� These obsevations� which are only identi�ed by

using the �xed �adaptive
 level are marked with � ��
� Crosschecking these identi�cations

with a senior intensivist yielded that all artefacts labeled by him were reliably identi�ed



with the procedure� Also the �xed level more observations not labeled by the intensivist

were identi�ed as additive outliers than with the adaptive level�

Series � �xed level adaptive level Series � �xed level adaptive level

�N � �������� �N � ��������

AO at 	real	 � � pt �N �� pt AO at 	real	 �� pt �N � � pt

time point artefact time point artefact

�� no �
����
� �� yes �
������ ��
������ �
������

��� no �
�����
 �
 yes �
������ ��
������ �
������

��� no �
������ �� yes �
������ ��
������ �
������

��
 no �
������ �� no �
������

��� no �
������ ��� no �
�����


��� no �
����
� ��
 no �
������

��� yes �
������ ������
 no ��
���
�� ��
������

��� yes �
������ �
������ �
������ ��� no �
������

��
 yes �
������ ������� no ��
���
�� ��
������

��� no �
������ Series � �xed level adaptive level

��
 no �
������ �N � ��������

��� no �
������ AO at 	real	 �� pt �N � � pt

��� no �
������ time point artefact

��
 no �
������ 
� no �
������

Series � �xed level adaptive level 
� no �
������

�N � �������
 �� yes �
������ �
���
�� �
������

AO at 	real	 � � pt �N �� pt �� yes �
������ �
������ �
������

time point artefact ������� LS ��
�����


�� no �
������ ��
������ �
������ ��� yes �
������ �
������ �
������

�� no �
������ ��
������ �
������ ��� no �
����
� �
������ �
������

�� yes �
������ �
������ �
������ ��� yes �
������ �
������ �
������

��� yes �
������ �
������ �
������ ��� no �
������

��� yes �
������ ��
������ �
������ ��� no �
������

��� no �
�����


Table �� Identi�ed outliers in the investigated time series�

	 Concluding Remarks

The proposed procedure consists of a combination of the phase space embedding for linear

stochastic processes and techniques for the identi�cation of outliers in multivariate data�

There is a connection to statistical process control because the presented procedure can be

seen as a general Sheward chart for autocorrelated data� In fact� if we have i�i�d� data the em�

bedding dimension is one and thus the outlier region is out��� �� ��
 � fx � jx��j � z���
�
�g�

The limits ��z���
�
� and ��z���

�
� are exactly the same as for a Sheward chart for one�at�a

time data� And thus our procedure is then identical to such a Sheward chart� if no moving

window is used�

The procedure seems to be a useful tool for the automatic detection of outliers in on�

line monitoring data� Because of a low computational e	ort it can be applied to very

large sampling rates� Further the robust version is straightforward� because instead of

ORMDTS�YN�m��� �n�m��
 one can use the ORMVE�YN�m��� �n�m��
 or outlier identi�

�ers based on other robust estimators� The procedure may be extended to identify other

patterns like level shifts and trends� The e	ect of such a level shift to ��dimensional phase



space reconstructions of a simulated AR��
 process with level shift is shown in Figure ��

The vectors a	ected by the level shift form a second ellipse� The di	erent movements of the

phase space vectors through the phase space for di	erent patterns might be used to identify

and discriminate such patterns�

Figure �� Trajectory of an AR����process and its phase space with an innovative outlier�
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