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Abstract

We show that the weak Pareto law, as used to characterize the tail
behaviour of income distributions, implies regularly varying tail
probabilities, but that the reverse implication does not hold. We
also establish implications among other versions of the weak Pareto

law.
Key words: Pareto law, regular variation, tail probabilities.
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1 Introduction and Summary

The strong Pareto law requires that for a distribution function Fi,, (%),

—Q

T

1_7]?(@:1 (x >z9> 1, >0). (1)
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It was first suggested by Pareto (1896) as a "universal law” for income distri-
butions; it immediately leads to the Pareto distribution F(z) = 1 — (zo/z)°.
The weak Pareto law by Mandelbrot (1960) only requires that

x*O{

L TR (2)

Almost all popular income distributions obey the weak Pareto law.

Merkies and Steyn (1993, Theorem 1) claim that the weak Pareto law is equiv-
alent to the regular variation of 1 — F'(x). We show below that this is not true.
While (2) implies that 1 — F(z) is regularly varying with index —c«, the re-
verse implication does not hold. We also establish relationships among other

versions of the weak Pareto law which have been suggested in the literature.

2 Various versions of the weak Pareto law
By definition, a function f : R, — R, is regulary varying at infinity with
index p (in short: f € RV,) if

. flte)
Hm 110 =’

Trivially, x=* € RV_,. Assuming that the weak Pareto law (2) holds, we have

(3)
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Therefore,
. 1— F(tx) _
lim ———~> =2 ¢ 1-F " a-
i —— a0 =%, and (x) € RV_,

This is the first part of Theorem 1 in Merkies and Steyn (1993).

However, it need not hold that 1 — F\(z) € RV_, implies the weak Pareto law.
Take

1— F(z) = . (5)




Distributions of this type are characterized by an asymptotically constant slope

in the Pareto diagram. Then x=%/¢n(z) € RV_,, but

—Q

%M:fn(x)ﬁoo as T — o0. (6)
Another implication of the weak Pareto law first explored by Kakwani (1980)
1s

zf(x)

lim ——— = .
tggol_F(g;) a>0 (7)

Following Merkies and Steyn (1993), we refer to this as the Kakwani weak
Pareto law (KWPL). The relationship (7) is immediate from

r~ ag—o!
lim —— = im 25— 8
a1 — F(z) i (2) ; (8)

which implies

z”*f(z)
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From Karamata’s (1930) theorem, the relationship (7) is equivalent to
' € RV_,_1. See also Bingham et al. (1987).

Yet another version of the weak Pareto law is the requirement, discussed by
Esteban (1986), that

i @)+ af @)

) =a > 0. (10)

Following Merkies and Steyn, we call this the Esteban weak Pareto law
(EWPL). Contrary to what is claimed in Esteban (1986), it is not weaker
than the Kakwani weak Pareto law. This has already been noted by Merkies
and Steyn (1993). The reason is that, if the limit in (10) exists, it must be
equal to the limit in (7), as (10) is obtained from (7) by taking derivatives in

the numerator and denominator. However, the limit need not exist.
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If it exists, one can again invoke Karamata’s theorem to show that then

f'(x) € RV_,_5. We therefore have the following chain of implications:

WPL

7 N

PL KWPL<=1—-Fe€RV_ ,<= feRV_ o

7

EWPL < f' € RV_,_»

3 Some examples

For each of the implications above, we give an example of an economic income

distribution which satisfies the weaker law but not the stronger one.
(i) WPL »# PL:
Take the Lomax-distribution, where

r — T

1—F(a;):[1—|—< )}a (x >z, > 0)

g

or the log-logistic distribution, where

r — Xy

1—F(:L‘):l1+< )11 (z = 20,7 > 0)

o
It is easily seen that both obey the weak Pareto law, but not the Pareto law.
(ii) EWPL # PL:

Take the log-Pareto distribution discussed in Ziebach (2000), where

k(o bnx + )

f(l') == W (ZE Z Tog > 07O[ > 0,5 Z —Q énl'(]) (1].)

and where k = x§(fn x0)P. It is straightforwardly checked that

: zf'(z) C
}LIEO<1+ f(g;)>_ ’




so the distributions obey the Esteban weak Pareto law. However, from

—Q —

. x T x T 8 _
BT T A ey kfn 2)” = oo, (12)

it is also obvious that it does not obey the weak Pareto law, and therefore, a

fortiori, the Pareto law.

(iii) KWPL # EWPL

Take the example given in Merkies and Steyn (1993) where F(x) = 1 — e~#(®)
with ¢(z) > 0 and nondescending, ¢(0) = 0 and p(o0) = co. Setting

, a 1+ sin(z)
I Mt Ne’d 13
Po) =+ 2R (13)
it is straightforwardly checked that
z f(x) , 1+ sin(z)
e m @ =ar I (14)

as * — oo, but the limit in (10) does not exist. Therefore, the distribution

does not obey the Esteban weak Pareto law.
(iv) KWPL # WPL

Take once more the log-Pareto distribution from (11). We have already shown
below that it obeys the Esteban weak Pareto law. From

i xf(x) . alnzx+p

it is obvious that it also obeys the Kakwani weak Pareto law. However, we

have already seen in (12) that it does not obey the weak Pareto law.

One can also show that neither the weak Pareto law nor the Esteban weak
Pareto law implies the other. We have already seen in (12) that the log-Pareto

distribution obeys the Esteban weak Pareto law, but not the Kakwani weak
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Pareto law. To see that the weak Pareto law likewise does not imply the Este-

ban weak Pareto law, let, for large z,
1 - F(x) = (x+sinz) (16)

Then

—Q

X

—alln(z+sin z)—n(z)]
1 — F(x)

=e — 1, (17)

so the weak Pareto law obtains. However, it is easily checked that

lim f'(z)
v=oo f(x)

does not exist, so the Esteban weak Pareto law does not hold.
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