~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Bernholt, Thorsten; Fried, Roland

Working Paper
Computing the update of the repeated median regression
line in linear time

Technical Report, No. 2002,43

Provided in Cooperation with:

Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Bernholt, Thorsten; Fried, Roland (2002) : Computing the update of the repeated
median regression line in linear time, Technical Report, No. 2002,43, Universitat Dortmund,
Sonderforschungsbereich 475 - Komplexitatsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/77373

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/77373
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Computing the Update of the Repeated Median
Regression Line in Linear Time

Thorsten Bernholt® and Roland Fried®*

®Lehrstuhl Informatik 2, Universitit Dortmund, Germany

bernholt@ls2.cs.uni-dortmund.de

bFachbereich Statistik, Universitit Dortmund, Germany

fried@statistik.uni-dortmund.de

September 18, 2002

Abstract

The repeated median line estimator is a highly robust method for fitting
a regression line to a set of n data points in the plane. In this paper, we
consider the problem of updating the estimate after a point is removed
from or added to the data set. This problem occurs e.g. in statistical
online monitoring, where the computational effort is often critical. We
present a deterministic algorithm for the update working in O(n) time
and O(n?) space.

Keywords: Robust regression, time series analysis, robust filtering,
repeated median, computational geometry, efficient algorithms

1 Introduction

A fundamental problem in modern data analysis is robust fitting of a straight
line to a sample of data points in the plane. Robustness is essential in applica-
tions where data are routinely collected and time-consuming screening of the
data is not possible prior to the data analysis. In the computer age such appli-
cations are encountered rather as a rule than as an exception. We are at risk of

*The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, Reduction of
complexity in multivariate data structures) is gratefully acknowledged.

drawing wrong conclusions when using non-robust methods which do not pro-
vide protection against spurious data (“outliers”) caused by e.g. measurement
artifacts. For example, it is well known that the classical least squares estima-
tor is not robust at all. Moving a single data point far out of the data cloud
may change the least squares estimate completely [9]. In order to cope with
such outlying points robust approaches have been proposed for line fitting, e.g.
the Theil-Sen estimator [7], the least median of squares estimator [8], deep-
est regression [1],and the repeated median estimator [10]. A common measure
of the robustness of an estimator is its finite sample replacement breakdown
point. This breakdown point is the minimal fraction of data points that may
carry the estimate ‘beyond all bounds” when it is replaced by arbitrary values.
The repeated median was the first regression estimator to attain a breakdown
point of 50 % asymptotically, i.e. for a large sample size, which is the optimum
for a regression equivariant estimator [9]:

Definition 1.1 (Repeated Median) Given n points (x1,91),. .., (Tn,Yn) €
R?, x; # x;, denote the slope of the line through (x;,y;) and (zj,y;) by a;; =

YU The repeated median estimator (Brar, prm) is defined by
i—Zj
= med med (a;;),
Brm i=l..n j:l...mj;éi(i)
pry = med (y; — Brurwi) -
i=1l...n
Here, we define the median med C of a set C = {c1,...,¢,} as the element

with rank |n/2] in the sorted order of C.

Since it is possible to calculate the median in linear time, the repeated median
estimator can be computed in O(n?) time. Stein and Werman [11] present a so-
phisticated deterministic algorithm running in O(nlog®n) time. A randomised
algorithm is given by Matousek, Mount and Netanyahu [7] with an expected
running time of O(nlogn).

The repeated median has been used recently for online signal extraction [4].
For robust approximation of an underlying signal from a time series, the data
points are processed by moving a window along the time axis, which contains
exactly n subsequent observations, and calculating the repeated median for
each window. In other words, starting from a set of n points a sequence of
update steps is performed. In each step, one point is deleted at the start of the
window and one point is inserted at the end of the window before calculating the
repeated median for the modified data set. In this way a smooth, locally almost
linear signal can be extracted from the data. The repeated median shows very
satisfactory performance in this setting as it guarantees both protection against
a large number of outliers (measured by the breakdown point and bias curves)
and moderate variability in an outlier free data set (measured by the variance).

For online processing of high frequency data the computation time needed is
critical. Although a straightforward implementation of the repeated median

may be sufficient for processing time series which are sampled every minute, a
faster algorithm is called for when the variables are observed much faster. In
intensive care for instance, medical devices measure physiological variables at
least once a second. The question is whether we can reduce the computation
time and benefit from prior calculations since the problem of computing the
repeated median becomes an update problem here. In this paper, we present
an algorithm which performs an update step in O(n) time and O(n?) space.
In Section 2, the main idea of the algorithm is described. The details of the
subroutines are given in Section 3. A special case is treated in Section 4.

2 The Algorithm

In the following (z1,u1), ..., (Zn,ys) denotes a sample of data points in the
plane. According to the point-line duality, we map the point (x;,y;) to the
dual line I/; defined by v = x;u 4+ y;. If we use the term “slope” in the following,
we will always refer to lines in the dual space. As we process data points
from time series, the z-coordinate measures time. Hence all x; are distinct and
the sequence zq,...,x, is increasing and thus there are no vertical lines and
no two lines have the same slope. In the dual space, we say that the point
(u,v) is located left of the line [if there exists a constant ¢ > 0 such that the
point (u + ¢, v) is located on the line [. The terms right of, above and below
are defined in a similar way.

Let (uj,v;;) be the intersection point of the lines /; and ;. Since the equation
ai; = —u;; holds true, we have to find the median m; = med;—;_, j; (—u;;) on
each line [; and the global median gy = med;—;_,, (m;). In Section 2 and 3 we
assume that at most two lines are intersecting in one point. The other case is
handled in Section 4.

In the online scenario, one line [; is deleted and another line [, is inserted into
the arrangement. Considering the line /;, one intersection point (u;;,v;;) is
deleted and one intersection point (u, vi) is inserted. What happens to the
median m; on [;7 If the inserted and deleted points are located on different
sides of the current median, the new median is one of the two intersection
points on the line /; in the neighborhood of m,;. If both points are located on
the same side of the median m,;, the median does not change.

To compute the n new medians, we need a special data structure, a hammock
graph [2], to represent the arrangement of lines. An arrangement consists of
vertices, line segments and faces. The hammock graph allows the algorithm to
walk around a face in clockwise order and to walk along a line visiting each
line segment in increasing or decreasing order. Each step needs O(1) time, and
O(n) steps are sufficient to insert or delete a line. The details are described in
the next section.

After computing all n new medians, it is easy to determine Sry and pgry in

¢
edge s [eye]

face 2 Qirection ([1,1]
line : l3
5

edge s [ene;]
,\ .) face 1 Q1rect10n : [0,0]
line oy
¢,

\~/

¢;

- edge s [-e,]
_ / - direction : [-,0]
‘, e, s 3 line ol

- t U3

Figure 1: The edges of a hammock graph are connected facewise.
The pointers are displayed as grey arrows. The implicit vertices
are drawn as dashed circles.

linear time using algorithms from [6]. However, for a practical implementation,
it is more convenient to make use of the Quickselect algorithm running in
expected linear time, presented in [3]. The following theorem summarises the
results of this paper:

Theorem 2.1 An update of the repeated median estimator can be computed in
linear time.

3 The Hammock Graph

In this section we describe the hammock graph which can be used to store an
arrangement of n lines, illustrated in Figure 1. It is organised as a doubly con-
nected edge list [5]. As we need a left and right boundary of the arrangement,
we add two vertical lines, line L located in the negative infimum and line R lo-
cated in the positive infimum. In this section we consider simple arrangements,
i.e. at most two lines intersect in one point, and in the primal problem no two
values a;; are equal. The other case of a degenerate arrangement is discussed
in Section 4. Besides there is no need to consider the problem of two parallel
lines since we process data points from time series and the slopes of the lines
are strictly increasing.

The lines of the arrangement divide the space into faces so that each line
segment is adjacent to exactly two faces. A line segment is represented by a
directed edge in the data structure and the description of the edge e; consists
of five entries. The u-coordinates of the incident intersection points are stored

in the entries uper, and urign;. The next edges walking around the two adjacent
faces in clockwise direction are stored in the entry “edge”, containing the edge
e; incident to the right intersection point of e;, and the edge incident to the
left intersection point. Each edge has a designated direction, the arrowhead
always points to the right hand side. If the next edge e; points to the reverse
direction as e; with respect to the walk around the face, then the first entry in
“direction” is “1”, otherwise “0”. The second entry behaves similarly. We say
that a line [supports an edge e if this edge e represents a line segment of [. We
denote this by [(e). The line supporting the edge is stored in the entry “line”.

In contrast to usual graphs, no vertices are stored in the hammock graph. To
simplify the description, we will use the term implicit vertex. In the figures,
each implicit vertex is displayed as a dashed circle.

This hammock graph allows two basic operations, the walk around faces and
the walk along the edges of a line. To determine the next edge in both walks,
O(1) time is sufficient since we assume that no more than two lines intersect in
one point. In the next three subsections, the operations relevant for an update
are described.

3.1 Inserting a line

The empty hammock graph consists of two edges supported by L and R. The
first n lines are inserted consecutively to construct the initial hammock graph.
After inserting n lines, each line supports n + 2 edges, n edges between L and
R, one edge left of L and one edge right of R. These two additional edges are
necessary for deleting a line.

As we process time series data, the newest line {
lr in the kth step of the construction of the ini-
tial graph has a larger slope than any previous
one and it will intersect L below all other in-
tersections. Denote this intersected edge on L —
by e;. In order to find the intersections of I \
with the lines [, ...,[; 1, we start at e; and walk
around the adjacent face as displayed in the Fig-
ure aside this paragraph. For each edge g; we
determine the line [(g;) and calculate the inter-
section point (u,v) and compare it with the u-
coordinates stored in g;. If upen < u < Upigns,
the next edge e, intersected by [is found. We continue walking around the
second adjacent face from e,. In this way we find all edges ey, ..., exy; inter-
sected by [; including the edge e;.; supported by R, which is located above all
other edges of R. Note that we do not have to walk around the last face since
we can determine e ; directly after reaching the kth edge.

—

Figure 2: The dissection of a line needed by the insertion opera-
tion.

Now we have to insert the new edges fi,..., frio supported by l;. Starting
with f;, we have to dissect e; into e; and e, and connect them with f; and f;
according to Figure 2. Calculate the u-coordinate of the new intersection point
and store it in the corresponding entry. Note that e; can be orientated in both
directions and it is important that the new edge ¢, has the same direction as
e; to ensure Uper, < Ugignt.- Lhe entry “line” has to be updated as well. The
following lemma is taken from [2] and it also follows from the Zone Theorem [5]:

Lemma 3.1 A line can be inserted into a hammock graph consisting of n — 1
lines in time O(n).

3.2 Deleting a line

In the first part of an update step, the oldest line denoted by [; must be
deleted. As the oldest line is intersecting L above all others, the left-most
edge f; supported by line /; can be found easily. Following the six pointers in
Figure 3 on the following page, we can determine the edges €., fi.1, e;, a;, a
and a}’. Note that the edges al, a! and a exist (for n > 2) since we added
additional edges beyond the lines L and R. We have to delete e} and f; and
connect e; with aj and a;’. The entry upign; of e; also has to be corrected. We
proceed with the edge f; 1 until the edge f,. is found. Hence, we have shown
the following:

Corollary 3.2 A line can be deleted from a hammock graph consisting of n
lines in time O(n).

Figure 3: The basic operation needed to delete a line resp. the
supported edges f;.

3.3 Updating the medians

We have to determine the median intersection point on each line. As there are
no vertices in the hammock graph, we store for each line /; a median edge w;.
By convention, let the entry ugign, be the current median m; of this line.

If the line [* is inserted or deleted, we have to determine whether we have to
move the median m; and, if so, into which direction. To this end, we count the
intersection points on [; located left of the current median. Considering the
total number of intersection points of /;, the new median can be found easily.
To adjust the count, we determine the position of the intersection of /; and [*,
denoted by v*, in the following way: Denote the intersection point representing
the median m; by v;. Let [, be the line intersecting /; in the point v;. We have
to distinguish four cases, which are shown in Table 1 on the next page. As
the cases can be handled similarly, we just consider one case. In the upper left
case of Table 1 on the following page, the slope of [, is larger than the slope
of [; and the intersection point c of the lines [, and [* is located below [;, as
displayed in Figure 4 on the next page. As the inserted line has the largest
slope and the deleted line the smallest one, it follows that v* is located left of
v;. Instead of determining ¢ directly, we additionally mark visited lines in the
insertion operation. If [, is marked then c is below /;, respectively above in the
deletion operation. This allows us to count the intersection points on /; located
left of the current median v;.

It may happen that the median edge w; is involved in the insertion or deletion
operation. More precisely, w; may be one of the edges e; or €;. In this case, we
temporarily take one of the neighbors as w; and determine the correct median
edge after handling that line. Without considering the costs of the insertion
and deletion operation, only O(1) time is needed to find the new median edge
since only a constant number of edges has to be examined. Therefore, we

¢ below [; | ¢ above [;

slope(ly) .
> slope(l;) left right

slope(ly) .
< slope(l;) right left

Table 1: The entries give the posi- Figure 4: The upper left
tion of the intersection point v* of the case of Table 1 is displayed.
deleted/inserted line with respect to the

median-edge w;.

obtain the following corollary:

Corollary 3.3 Given a hammock graph consisting of n lines, the medians
mi, ..., My can be updated in time O(n), after one line was deleted or inserted.

4 Degenerate Arrangements

Updating the repeated median is of potential interest in every application with
data being collected sequentially. In case of a random design, when regress-
ing one dependent variable on another random variable, three or more points
(x;,y;) can be located on the same line. Although the probability of this oc-
curring will often be small we nevertheless need to ensure that also in this
degenerate case the repeated median is computed correctly. The problem is
that in such situations more than two lines are intersecting in one point. Such
a multiple intersection point is not stored directly in the hammock graph. In-
stead of this, for each pair of two lines a separate implicit vertex is stored.
This leads to edges with wuper, = Urignt. We call a subgraph of the hammock an
agglomeration if the coordinates of all edges have the same value. An edge e is
called a border edge if exactly one implicit vertex belongs to an agglomeration
or both implicit vertices belong to different agglomerations.

Since in the deletion and in the median update operation no coordinates are
involved, these operations are working correctly in this special situation. In
the following, we analyze how an agglomeration is handled by the insertion
operation.

Lemma 4.1 The algorithm described in Section 3.1 inserts a line correctly
even if the hammock graph contains one or more agglomerations.

Proof. We will show that the line [,, defined by v = x,,u + y,,, which intersects
one or more agglomerations, is inserted in the same way as the line [{, defined

8

by v = z,u+1y, + € for sufficiently small € > 0. For that purpose, we divide the
faces into three groups. A face is called interior if all edges of the face belong
to the same agglomeration. If only some edges belong to an agglomeration,
then the face is called border face. The other faces are called usual.

The new line is inserted from left to right. It is obvious that usual faces are
handled in the same way. Take an arbitrary agglomeration A in which k lines
intersect and thus 2%k border edges belong to A. As [is located above A, it
intersects exactly k border edges of A, which are located above [,,. Consider the
first border face f belonging to A that is found and entered on an edge that is
not a border edge of A. Recall the condition used in the insertion operation to
detect if a point (u,v) is located on an edge: uren, < u < Ugigns. The insertion
operation walks around the face f in clockwise order and thus the first border
edge left of [, and adjacent to A is found and dissected. The following k — 1
border faces exactly contain two border edges that belong to A and are also
found by the insertion operation. There might be an agglomeration B located
above [, that has edges with A in common. Since the coordinates of A and
B are different, B does not interfere the insertion of /,,. The (k + 1)st border
face is left on a non-border edge or on a border edge that belongs to a distinct
agglomeration. Thus we have shown that the same edges in the hammock
graph are dissected, no matter if we insert /,, or [. [l

5 Conclusions

In this paper, we have described an algorithm which computes an update of
the repeated median in linear time. This operation is useful in the context of
time series filtering. We have considered the correctness of the algorithm even
in the case of degenerate inputs, which is important in high risk environments
like intensive care online monitoring [4]. The algorithm was implemented and
compared with the naive approach. In general, our algorithm is faster when
using windows with at least 10 data points, which can be considered as a
minimal length for getting useful estimates [4]. Empirical results show that the
computing time is reduced by a factor of 15 for time intervals with 500 points,
a factor of 30 for 1000 points and a factor of 50 for 2000 points. This time
saving can be crucial in applications where many variables which are sampled
in short time intervals need to be processed online at the same time [?].

Acknowledgement The authors would like to thank Detlef Sieling, Ingo We-
gener and Carsten Witt for helpful comments on the presentation.

References

[1]

2]

[10]

[11]

S. V. Aelst, P. J. Rousseeuw, M. Hubert, and A. Struyf. The deepest
regression method. Journal of Multivariate Analysis, 81(1):138-166, 2002.

B. Chazelle. Reporting and counting segment intersections. Journal of
Computer and Systems Science, 32:156—-182, 1986.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

P. L. Davies, R. Fried, and U. Gather. Robust signal extraction for on-
line monitoring data. Technical Report 02/2002, SFB 475, University of
Dortmund, 2002.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer, 2000.

D. Dor and U. Zwick. Selecting the median. STAM Journal on Computing,
28(5):1722-1758, 1999.

J. Matousek, D. M. Mount, and N. Netanyahu. Efficient randomized algo-
rithms for the repeated median line estimator. Algorithmica, 20(2):136-
150, 1998.

P. J. Rousseeuw. Least median of squares regression. Journal of the
American Statistical Association, 79:871-880, 1984.

P. J. Rousseeuw and A. M. Leroy. Robust Regression and Qutlier Detec-
tion. John Wiley & Sons, 1987.

A. F. Siegel. Robust regression using repeated medians. Biometrika,
69(1):242-244, 1982.

A. Stein and M. Werman. Finding the repeated median regression line. In
SODA: ACM-SIAM Symposium on Discrete Algorithms, pages 409-413,
1992.

10

