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Abstract

The repeated median line estimator is a highly robust method for �tting

a regression line to a set of n data points in the plane. In this paper, we

consider the problem of updating the estimate after a point is removed

from or added to the data set. This problem occurs e.g. in statistical

online monitoring, where the computational e�ort is often critical. We

present a deterministic algorithm for the update working in O(n) time

and O(n

2

) space.

Keywords: Robust regression, time series analysis, robust �ltering,

repeated median, computational geometry, eÆcient algorithms

1 Introduction

A fundamental problem in modern data analysis is robust �tting of a straight

line to a sample of data points in the plane. Robustness is essential in applica-

tions where data are routinely collected and time-consuming screening of the

data is not possible prior to the data analysis. In the computer age such appli-

cations are encountered rather as a rule than as an exception. We are at risk of

�
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drawing wrong conclusions when using non-robust methods which do not pro-

vide protection against spurious data (\outliers") caused by e.g. measurement

artifacts. For example, it is well known that the classical least squares estima-

tor is not robust at all. Moving a single data point far out of the data cloud

may change the least squares estimate completely [9]. In order to cope with

such outlying points robust approaches have been proposed for line �tting, e.g.

the Theil-Sen estimator [7], the least median of squares estimator [8], deep-

est regression [1],and the repeated median estimator [10]. A common measure

of the robustness of an estimator is its �nite sample replacement breakdown

point. This breakdown point is the minimal fraction of data points that may

carry the estimate `beyond all bounds' when it is replaced by arbitrary values.

The repeated median was the �rst regression estimator to attain a breakdown

point of 50% asymptotically, i.e. for a large sample size, which is the optimum

for a regression equivariant estimator [9]:

De�nition 1.1 (Repeated Median) Given n points (x

1

; y

1

); : : : ; (x

n

; y

n

) 2

R

2

, x

i

6= x

j

, denote the slope of the line through (x

i

; y

i

) and (x

j

; y

j

) by a

ij

=

y

i

�y

j

x

i

�x

j

. The repeated median estimator (�

RM

; �

RM

) is de�ned by

�

RM

= med

i=1:::n

med

j=1:::n;j 6=i

(a

ij

) ;

�

RM

= med

i=1:::n

(y

i

� �

RM

x

i

) :

Here, we de�ne the median medC of a set C = fc

1

; : : : ; c

n

g as the element

with rank bn=2c in the sorted order of C.

Since it is possible to calculate the median in linear time, the repeated median

estimator can be computed in O(n

2

) time. Stein and Werman [11] present a so-

phisticated deterministic algorithm running in O(n log

2

n) time. A randomised

algorithm is given by Matou�sek, Mount and Netanyahu [7] with an expected

running time of O(n logn).

The repeated median has been used recently for online signal extraction [4].

For robust approximation of an underlying signal from a time series, the data

points are processed by moving a window along the time axis, which contains

exactly n subsequent observations, and calculating the repeated median for

each window. In other words, starting from a set of n points a sequence of

update steps is performed. In each step, one point is deleted at the start of the

window and one point is inserted at the end of the window before calculating the

repeated median for the modi�ed data set. In this way a smooth, locally almost

linear signal can be extracted from the data. The repeated median shows very

satisfactory performance in this setting as it guarantees both protection against

a large number of outliers (measured by the breakdown point and bias curves)

and moderate variability in an outlier free data set (measured by the variance).

For online processing of high frequency data the computation time needed is

critical. Although a straightforward implementation of the repeated median
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may be suÆcient for processing time series which are sampled every minute, a

faster algorithm is called for when the variables are observed much faster. In

intensive care for instance, medical devices measure physiological variables at

least once a second. The question is whether we can reduce the computation

time and bene�t from prior calculations since the problem of computing the

repeated median becomes an update problem here. In this paper, we present

an algorithm which performs an update step in O(n) time and O(n

2

) space.

In Section 2, the main idea of the algorithm is described. The details of the

subroutines are given in Section 3. A special case is treated in Section 4.

2 The Algorithm

In the following (x

1

; y

1

); : : : ; (x

n

; y

n

) denotes a sample of data points in the

plane. According to the point-line duality, we map the point (x

i

; y

i

) to the

dual line l

i

de�ned by v = x

i

u+y

i

. If we use the term \slope" in the following,

we will always refer to lines in the dual space. As we process data points

from time series, the x-coordinate measures time. Hence all x

i

are distinct and

the sequence x

1

; : : : ; x

n

is increasing and thus there are no vertical lines and

no two lines have the same slope. In the dual space, we say that the point

(u; v) is located left of the line l if there exists a constant c > 0 such that the

point (u + c; v) is located on the line l. The terms right of, above and below

are de�ned in a similar way.

Let (u

ij

; v

ij

) be the intersection point of the lines l

i

and l

j

. Since the equation

a

ij

= �u

ij

holds true, we have to �nd the median m

i

= med

j=1::n;j 6=i

(�u

ij

) on

each line l

i

and the global median �

RM

= med

i=1::n

(m

i

). In Section 2 and 3 we

assume that at most two lines are intersecting in one point. The other case is

handled in Section 4.

In the online scenario, one line l

i

is deleted and another line l

k

is inserted into

the arrangement. Considering the line l

i

, one intersection point (u

ij

; v

ij

) is

deleted and one intersection point (u

ik

; v

ik

) is inserted. What happens to the

median m

i

on l

i

? If the inserted and deleted points are located on di�erent

sides of the current median, the new median is one of the two intersection

points on the line l

i

in the neighborhood of m

i

. If both points are located on

the same side of the median m

i

, the median does not change.

To compute the n new medians, we need a special data structure, a hammock

graph [2], to represent the arrangement of lines. An arrangement consists of

vertices, line segments and faces. The hammock graph allows the algorithm to

walk around a face in clockwise order and to walk along a line visiting each

line segment in increasing or decreasing order. Each step needs O(1) time, and

O(n) steps are suÆcient to insert or delete a line. The details are described in

the next section.

After computing all n new medians, it is easy to determine �

RM

and �

RM

in
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Figure 1: The edges of a hammock graph are connected facewise.

The pointers are displayed as grey arrows. The implicit vertices

are drawn as dashed circles.

linear time using algorithms from [6]. However, for a practical implementation,

it is more convenient to make use of the Quickselect algorithm running in

expected linear time, presented in [3]. The following theorem summarises the

results of this paper:

Theorem 2.1 An update of the repeated median estimator can be computed in

linear time.

3 The Hammock Graph

In this section we describe the hammock graph which can be used to store an

arrangement of n lines, illustrated in Figure 1. It is organised as a doubly con-

nected edge list [5]. As we need a left and right boundary of the arrangement,

we add two vertical lines, line L located in the negative in�mum and line R lo-

cated in the positive in�mum. In this section we consider simple arrangements,

i. e. at most two lines intersect in one point, and in the primal problem no two

values a

ij

are equal. The other case of a degenerate arrangement is discussed

in Section 4. Besides there is no need to consider the problem of two parallel

lines since we process data points from time series and the slopes of the lines

are strictly increasing.

The lines of the arrangement divide the space into faces so that each line

segment is adjacent to exactly two faces. A line segment is represented by a

directed edge in the data structure and the description of the edge e

i

consists

of �ve entries. The u-coordinates of the incident intersection points are stored
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in the entries u

Left

and u

Right

. The next edges walking around the two adjacent

faces in clockwise direction are stored in the entry \edge", containing the edge

e

j

incident to the right intersection point of e

i

, and the edge incident to the

left intersection point. Each edge has a designated direction, the arrowhead

always points to the right hand side. If the next edge e

j

points to the reverse

direction as e

i

with respect to the walk around the face, then the �rst entry in

\direction" is \1", otherwise \0". The second entry behaves similarly. We say

that a line l supports an edge e if this edge e represents a line segment of l. We

denote this by l(e). The line supporting the edge is stored in the entry \line".

In contrast to usual graphs, no vertices are stored in the hammock graph. To

simplify the description, we will use the term implicit vertex. In the �gures,

each implicit vertex is displayed as a dashed circle.

This hammock graph allows two basic operations, the walk around faces and

the walk along the edges of a line. To determine the next edge in both walks,

O(1) time is suÆcient since we assume that no more than two lines intersect in

one point. In the next three subsections, the operations relevant for an update

are described.

3.1 Inserting a line

The empty hammock graph consists of two edges supported by L and R. The

�rst n lines are inserted consecutively to construct the initial hammock graph.

After inserting n lines, each line supports n+ 2 edges, n edges between L and

R, one edge left of L and one edge right of R. These two additional edges are

necessary for deleting a line.

As we process time series data, the newest line

l

k

in the kth step of the construction of the ini-

tial graph has a larger slope than any previous

one and it will intersect L below all other in-

tersections. Denote this intersected edge on L

by e

1

. In order to �nd the intersections of l

k

with the lines l

1

; : : : ; l

k�1

, we start at e

1

and walk

around the adjacent face as displayed in the Fig-

ure aside this paragraph. For each edge g

i

we

determine the line l(g

i

) and calculate the inter-

section point (u; v) and compare it with the u-

coordinates stored in g

i

. If u

Left

� u � u

Right

,

the next edge e

2

intersected by l

k

is found. We continue walking around the

second adjacent face from e

2

. In this way we �nd all edges e

1

; : : : ; e

k+1

inter-

sected by l

k

including the edge e

k+1

supported by R, which is located above all

other edges of R. Note that we do not have to walk around the last face since

we can determine e

k+1

directly after reaching the kth edge.
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Figure 2: The dissection of a line needed by the insertion opera-

tion.

Now we have to insert the new edges f

1

; : : : ; f

k+2

supported by l

k

. Starting

with f

i

, we have to dissect e

i

into e

i

and e

0

i

and connect them with f

i

and f

i+1

according to Figure 2. Calculate the u-coordinate of the new intersection point

and store it in the corresponding entry. Note that e

i

can be orientated in both

directions and it is important that the new edge e

0

i

has the same direction as

e

i

to ensure u

Left

� u

Right

. The entry \line" has to be updated as well. The

following lemma is taken from [2] and it also follows from the Zone Theorem [5]:

Lemma 3.1 A line can be inserted into a hammock graph consisting of n� 1

lines in time O(n).

3.2 Deleting a line

In the �rst part of an update step, the oldest line denoted by l

1

must be

deleted. As the oldest line is intersecting L above all others, the left-most

edge f

1

supported by line l

1

can be found easily. Following the six pointers in

Figure 3 on the following page, we can determine the edges e

0

i

, f

i+1

, e

i

, a

0

i

, a

00

i

and a

000

i

. Note that the edges a

0

i

, a

00

i

and a

000

i

exist (for n � 2) since we added

additional edges beyond the lines L and R. We have to delete e

0

i

and f

i

and

connect e

i

with a

0

i

and a

000

i

. The entry u

Right

of e

i

also has to be corrected. We

proceed with the edge f

i+1

until the edge f

n+2

is found. Hence, we have shown

the following:

Corollary 3.2 A line can be deleted from a hammock graph consisting of n

lines in time O(n).
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Figure 3: The basic operation needed to delete a line resp. the

supported edges f

i

.

3.3 Updating the medians

We have to determine the median intersection point on each line. As there are

no vertices in the hammock graph, we store for each line l

i

a median edge w

i

.

By convention, let the entry u

Right

be the current median m

i

of this line.

If the line l

�

is inserted or deleted, we have to determine whether we have to

move the median m

i

and, if so, into which direction. To this end, we count the

intersection points on l

i

located left of the current median. Considering the

total number of intersection points of l

i

, the new median can be found easily.

To adjust the count, we determine the position of the intersection of l

i

and l

�

,

denoted by v

�

, in the following way: Denote the intersection point representing

the median m

i

by v

i

. Let l

q

be the line intersecting l

i

in the point v

i

. We have

to distinguish four cases, which are shown in Table 1 on the next page. As

the cases can be handled similarly, we just consider one case. In the upper left

case of Table 1 on the following page, the slope of l

q

is larger than the slope

of l

i

and the intersection point c of the lines l

q

and l

�

is located below l

i

, as

displayed in Figure 4 on the next page. As the inserted line has the largest

slope and the deleted line the smallest one, it follows that v

�

is located left of

v

i

. Instead of determining c directly, we additionally mark visited lines in the

insertion operation. If l

q

is marked then c is below l

i

, respectively above in the

deletion operation. This allows us to count the intersection points on l

i

located

left of the current median v

i

.

It may happen that the median edge w

i

is involved in the insertion or deletion

operation. More precisely, w

i

may be one of the edges e

i

or e

0

i

. In this case, we

temporarily take one of the neighbors as w

i

and determine the correct median

edge after handling that line. Without considering the costs of the insertion

and deletion operation, only O(1) time is needed to �nd the new median edge

since only a constant number of edges has to be examined. Therefore, we
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c below l

i

c above l

i

slope(l

q

)

> slope(l

i

)

left right

slope(l

q

)

< slope(l

i

)

right left

Table 1: The entries give the posi-

tion of the intersection point v

�

of the

deleted/inserted line with respect to the

median-edge w

i

.

l*

l
i

v
i

w
i

c

v*

l
q

Figure 4: The upper left

case of Table 1 is displayed.

obtain the following corollary:

Corollary 3.3 Given a hammock graph consisting of n lines, the medians

m

1

; : : : ; m

n

can be updated in time O(n), after one line was deleted or inserted.

4 Degenerate Arrangements

Updating the repeated median is of potential interest in every application with

data being collected sequentially. In case of a random design, when regress-

ing one dependent variable on another random variable, three or more points

(x

i

; y

i

) can be located on the same line. Although the probability of this oc-

curring will often be small we nevertheless need to ensure that also in this

degenerate case the repeated median is computed correctly. The problem is

that in such situations more than two lines are intersecting in one point. Such

a multiple intersection point is not stored directly in the hammock graph. In-

stead of this, for each pair of two lines a separate implicit vertex is stored.

This leads to edges with u

Left

= u

Right

. We call a subgraph of the hammock an

agglomeration if the coordinates of all edges have the same value. An edge e is

called a border edge if exactly one implicit vertex belongs to an agglomeration

or both implicit vertices belong to di�erent agglomerations.

Since in the deletion and in the median update operation no coordinates are

involved, these operations are working correctly in this special situation. In

the following, we analyze how an agglomeration is handled by the insertion

operation.

Lemma 4.1 The algorithm described in Section 3.1 inserts a line correctly

even if the hammock graph contains one or more agglomerations.

Proof. We will show that the line l

n

de�ned by v = x

n

u+ y

n

, which intersects

one or more agglomerations, is inserted in the same way as the line l

�

n

de�ned
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by v = x

n

u+y

n

+ � for suÆciently small � > 0. For that purpose, we divide the

faces into three groups. A face is called interior if all edges of the face belong

to the same agglomeration. If only some edges belong to an agglomeration,

then the face is called border face. The other faces are called usual.

The new line is inserted from left to right. It is obvious that usual faces are

handled in the same way. Take an arbitrary agglomeration A in which k lines

intersect and thus 2k border edges belong to A. As l

�

n

is located above A, it

intersects exactly k border edges of A, which are located above l

n

. Consider the

�rst border face f belonging to A that is found and entered on an edge that is

not a border edge of A. Recall the condition used in the insertion operation to

detect if a point (u; v) is located on an edge: u

Left

� u � u

Right

. The insertion

operation walks around the face f in clockwise order and thus the �rst border

edge left of l

n

and adjacent to A is found and dissected. The following k � 1

border faces exactly contain two border edges that belong to A and are also

found by the insertion operation. There might be an agglomeration B located

above l

n

that has edges with A in common. Since the coordinates of A and

B are di�erent, B does not interfere the insertion of l

n

. The (k + 1)st border

face is left on a non-border edge or on a border edge that belongs to a distinct

agglomeration. Thus we have shown that the same edges in the hammock

graph are dissected, no matter if we insert l

n

or l

�

n

. �

5 Conclusions

In this paper, we have described an algorithm which computes an update of

the repeated median in linear time. This operation is useful in the context of

time series �ltering. We have considered the correctness of the algorithm even

in the case of degenerate inputs, which is important in high risk environments

like intensive care online monitoring [4]. The algorithm was implemented and

compared with the naive approach. In general, our algorithm is faster when

using windows with at least 10 data points, which can be considered as a

minimal length for getting useful estimates [4]. Empirical results show that the

computing time is reduced by a factor of 15 for time intervals with 500 points,

a factor of 30 for 1000 points and a factor of 50 for 2000 points. This time

saving can be crucial in applications where many variables which are sampled

in short time intervals need to be processed online at the same time [?].
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