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A REMARK ON PREDICTION PROBLEMS IN

REGRESSION ANALYSIS

by

Gtz Trenkler�

Department of Statistics� University of Dortmund� Germany

� Introduction

In his paper� Kibria ������ investigated the prediction problem in presence of

uncertain prior information

H� � h ��	��

about the parameter vector � of the linear regression model

Y � X� 
 e� ��	��

Here Y is an n � � vector of observations� � is a p � � vector of unknown

regression coe�cients�X is an n�p known design matrix of rank p and e is an

n� � random error vector which follows a normal distribution with N�� ��I��

�� �  unknown	 The q � p matrix H is assumed to be of full row rank and h

is a q � � vector of constants� both H and h being known	

Suppose X� is a �xed n��p matrix of additional observations on the regressor

matris that is used to predict the future development of

Y� � X��� ��	��
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For this purpose� Kibria ������ investigated the class of predictors

�Y� � X�
���� ��	��

where ��� is one of the estimators described below	 When comparing these

predictors with bad other in terms of their mean square error �MSE� matrices

under the condition Hi � H� �� h this author inverted matrices which are

potentially singular	 Subsequently we shall resume and correct his analysis	

� Predictors and their mean square error ma�

trices

We shall consider the following four predictors for Y� � X���

�	 Unrestricted predittor �URP�

�Y� � X�
��n� ��	��

where ��n � C���X �Y is the unrestricted least squares estimator �URLSE� of

�� C � X �X	

�	 Restricted predictor

�Y� � X�
��n� ��	��

where ��n � ��nI�Ln�F���� 

��nI�Ln�F���� is the preliminary test estimator

�PTLSD� for �� I�S� is the indicator function of the set S� F��� is the up�

per �� percentile of the central F�distribution with �p� �n � q� degrees of

freedom and Ln is the well�known test statistic for testing the null hypothesis

H� � H� � h vs	 H� � H� �� h�
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� shrinkage predictor

The shrinkage predictor of Y� � X�� is de�ned by

�Y SP � X�
��SEn � ��	��

where ��SEn � ��n 
 ��� uL��
n �� ��n � ��n� with

n �
�q � ���n� p�

q�n� p 
 ��
�q � ��

being the shrinkage constant	

Let Mi� i � �� � � � � � denote the mean square error matrices of the four esti�

mators introduced above	 Under H�� it was shown in Kibria ������ that for

example

M� �M� � ��X�AX
�
�� ��	��

where A � C��H ��HC��H ����HC��	 Unfortunately� it was also con�rmed

there that A andM��M� are positive dfeinite �p	d	� matrices	 This is� however�

not the case	 Both matrices can only shown to be nonnegative de�nite	 Also

the other mean square error matrix di�erences in section � of Kibria ������

can namely be identi�ed as n	n	d	 matrices	 The dominance ranking of the

predictors under this weaker criterion fortunately remains valid	

The comparisons of section � of Kibira ������ are based on the nonsingularity

of mean square error matricess which will be done in the next section� where

we use some results achived by Baksalary and Kala ������	

� Comparison of the predictors under H�

Assume that H� � H� �� h is valid	 Then the four predictors� except �Y� � X�
��n�

will be biased	 When comparing them� Kibria ������ inverted X�AX
�
�	 This is
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not permitted� since A is not p	d	� and if it were� X�AX
�
� need not be nonsin�

gular	 Hence we have to use an alternative method	

Lemma �� �Baksalary and Kala� �����

Suppose A is a symmetric n�n matrix� a is an a�� vector and � is a positive

scalar	 Then the following statements are equivalent

�i� �A� aa� is n	n	d	

�ii� A is n	n	d	� a � R�A� and a�A�a � � where A� is any generalized inverse

of A� i	e	 AA�A � A and R��� denotes the column space of a matrix	 This

result enables us to perform the following comparisons	

Comparison between URP and RP

the di�erenc eof the MSE matrices of �Y� and �Y� is

M� �M� � ��X�AX
�
� �X�yy

�X �
�� ��	��

where

� � C��H ��HC��H �����H� � h�� ��	��

By Lemma �� M� �M� is n	n	d	 if and only if

a� X�AX
�
� is n	n	d	�

b� X�� � R�X�AX
�
���

c� ��X �
��X�AX

�
��
�X�� � ��� wher �X�AX

�
��
� is any generalized inverse of

X�AX
�
�	

Obviously condition a� is ful�lled	 To show b� observe that R�X�AX
�
�� �

R�X�A�	 Hence if su�ces that � � R�A�	 Since H is of full row rank we have

HH� � I and consequently � � ACH��H� � h� � R�A�� where H� denotes

the Moore�Penrose inverse of H	 ThusM��M� is n	n	d	 if and only if condition

c� is satis�ed	 This corresponds to condition ��	�� in Kibria ������� where the

invers of X�AX
�
� has to be replaced by a g�inverse	
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We shall not perform the other MSE�matrix comparisons in detail	 The MSE�

matrix di�erences under H� considered further in Kibria�s paper are easily seen

to be of the form

Mi �Mj � 	X�AX
�
� � 
X���

�X �
�� ��	��

where 	 and 
 are positive scalars	 Proceeding as in the comparison between

URP and RP and applying Lemma � we can readily derive the dominance

criteria corresponding to those in Kibria�s paper where� however� �X�AX
�
��
�	

With one exception� The comparison between URP and SP in formula ��	���

seems to be completely incorrect since it is based on the maximum character�

istic root of the �positive de�nite� matrix �X �
��X�AX

�
��
��X��C��	
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