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Densities, Spectral Densities and Modality

1

By P. L. Davies and A. Kovac

Universit�at Essen

2

Given a data set (x

1

; : : : ; x

n

) this paper considers the problem of

specifying a simple approximating density function. Simplicity is measured

by the number of local extremes but several di�erent de�nitions of ap-

proximation are introduced. The taut string method is used to control

the numbers of modes and to produce candidate approximating densi-

ties. Re�nements are introduced that improve the local adaptivity of the

procedures and the method is extended to spectral densities.

1. Contents In Section 2 we formulate the density problem in terms of ob-

taining the simplest density which is an adequate approximation for the given data.

The taut string method of Davies and Kovac (2001) is adapted to the density prob-

lem and is used for producing candidate densities of increasing complexity. The

diÆculties of the density problem are discussed in Section 3. Section 4 contains a

more detailed account of the application of the taut string method to the density

problem. The asymptotics of the procedure on appropriate test beds are discussed

in Section 5. A re�nement based on cell occupancy frequencies which increases local

sensitivity is described in Section 6. Section 7 compares the taut string method with

kernel estimators in a small simulation study. Finally in Section 8 considers brie
y

the application of taut strings to the problem of spectral densities.

2. Introduction

2.1. The density problem Given a sample x

n

= (x

1

; : : : ; x

n

) of size n we con-

sider the problem of specifying a distribution F with the smallest number of modes

such that the resulting model of i.i.d. random variables X

F

n

= (X

F

1

; : : : ; X

F

n

) with

common distribution F is an adequate approximation for the data x

n

:

We use di�erent concepts of approximation one of which is the following. Let

E

n

;

E

n

(x) =

1

n

n

X

I=1

fx

i

� xg;

denote the empirical distribution of the data x

n

and F

n

the empirical distribu-

tion function of n i.i.d. random variables X

F

n

with common distribution F: The

2
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Kolmogoro� metric d

ko

is de�ned by

d

ko

(F;G) = supfx : jF (x)�G(x)jg:

The i.i.d. model with distribution F will be regarded as an adequate approximation

to the data x

n

if

(2.1) d

ko

(E

n

; F ) � qu(n; �; d

ko

):

where qu(n; �; d

ko

) denotes the �-quantile of the random variable d

ko

(F

n

; F ).

qu(n; �; d

ko

) is independent of F for continuous F: This gives rise to the Kolmogo-

ro� problem:

Problem 2.1 Kolmogoroff problem. Determine the smallest integer k

n

for which there exists a density f

n

with k

n

modes and whose distribution F

n

satis�es

(2.2) d

ko

(E

n

; F

n

) � qu(n; �; d

ko

):

We note that the problem is well posed: for any data set x

n

it has a solution. We

have posed the problem in terms of approximation so that no assumptions regarding

the \true" data generating mechanism are required or made.

The problem (refkolprob) is formulated in terms of the smallest number of modes

required for an adequate approximation. A detailed theoretical discussion of such

one-sided problems is given by Donoho (1988): one of his examples is that of modal-

ity for nonparametric densities and spectral densities. His paper also raises inter-

esting questions about statistical inference involving objects whose very existence

cannot be shown, an example being the \underlying density" for the data. We avoid

such problems by phrasing the paper in terms of approximation.

Hengartner and Stark (1995) also make use of the Kolmogoro� ball to determine

nonparametric con�dence bounds for densities subject to an upper bound for the

number of modes. In the particular case of monotone or unimodal densities the

width of their bounds on appropriate trest beds is (logn=n)

1=3

which agrees with the

results given in this paper. It seems that their bounds become diÆcult to calculate

for more than one mode as the complexity is given as

�

n

l

�

where l is the number of

local extremes. The main di�erences to the work of Hengartner and Stark are as

follows:

� we provide an explicit density but no bounds,

� neither the number of modes nor even an upper bound is speci�ed in advance,

� the algorithmic complexity of our method is O(n) independently of the num-

ber of modes.

2.2. The taut string methodology The basic methodology we use for producing

densities is the taut string methodology. Taut strings were �rst used in the context

of monotonic regression: the greatest convex minorant of the integrated data is

a taut string and its derivative is precisely the monotone increasing least squares

approximation. This is described in Barlow, Bartholomew, Bremner and Brunk
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(1972) who were the �rst to use the phrase \taut string". We refer also to Leurgans

(1982). The �rst use of the taut string which goes beyond the monotone case and

which explicitly deals with modality is in Hartigan and Hartigan (1985) where it

is referred to as the \stretched string". Hartigan and Hartigan (1985) introduced

their DIP test for unimodality which is based on the closest (in the Kolmogoro�

metric) unimodal distribution to the empirical distribution function of the data.

Based on the work of Hartigan and Hartigan (1985) Davies (1995) used the taut

string method to produce candidate densities of low modality to approximate data.

Mammen and van de Geer (1997) employed the taut string in the non-parametric

regression problem. They considered a penalized least squares problem where the

penalty is the total variation of the approximating function. The solution is the

basic taut string con�ned to a tube centered at the integrated data. Mammen and

van de Geer gave a detailed description of the taut string but did not mention the

connection with modality. Hartigan (2000) recently proposed a generalization of

the DIP test and examined for each antimode of a taut string approximation the

supremum distance between the empirical distribution function and a monotone

density on a \shoulder interval" including the antimode. Finally Davies and Kovac

(2001) used the taut string methodology to control the number of local extremes

of a nonparametric approximation to a data set. They also introduced the idea of

local squeezing and residual driven tube widths which greatly increase the precision

and 
exibility of the taut string methodology.

2.3. Smoothness The taut string methodology produces densities which are

piecewise constant and therefore not even continuous. Smoothness will not be a

consideration in this paper but we point out that techniques for smoothing such

functions have been developed. The idea is to obtain the smoothest density subject

to shape and deviation constraints taken from the taut string. We refer to Metzner

(1997), L�owendick and Davies (1998) and Majidi (2001).

2.4. Previous work Much work has been done on the problem of density esti-

mation. One of the most popular methods is that of kernel smoothing. We refer

to Nadaraya (1964), Watson (1964), Silverman (1986), Sheather and Jones (1991),

Wand and Jones (1995), Sain and Scott (1996) and Simono� (1996) and the ref-

erences given there. The main problem here is the determination of appropriate

global or local bandwidths. A further approach is based on wavelets. We refer to

Donoho, Johnstone, Kerkyacharian and Picard (1996), Herrick, Nason and Silver-

man (2000) and to Chapter 7 of Vidakovic (1999). Mixtures of densities have been

considered in the Bayesian framework by Richardson and Green (1997) and Roeder

and Wasserman (1997). Other Bayesian methods are to be found in Verdinelli and

Wasserman (1998).

None of the above approaches is directly concerned with modality. For example

the non-Bayesian theory is generally based on integrated squared error or some

similar loss function. In spite of this methods are often judged by their ability to

identify peaks in the data as in Loader (1999) and Herrick et al (2000). Work di-

rectly concerned with modality has been done by M�uller and Sawitzki (1991) using
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their concept of excess mass. Their ideas have been extended to multidimensional

distributions by Polonik (1995a, 1995b, 1999). Hengartner and Stark (1995) use the

Kolmogoro� ball centred at the empirical distribution function to obtain nonpara-

metric con�dence bounds for shape restricted densities. Another way of controlling

modality is that of mode testing. We refer to Good and Gaskins (1980), Silverman

(1986), Hartigan and Hartigan (1985) and Fisher, Mammen and Marron (1994).

3. The diÆculties of the density problem Obtaining adequate approxi-

mate densities is a special case of nonparametric regression. Whereas nonparametric

regression is usually concerned with the size of the dependent variable the density

problem is concerned with measuring the degree of closeness of the design points. In

spite of a formal similarity this is the more diÆcult problem and it may explain the

modesty evident in the literature on densities. The diÆculties may be illustrated

by the following data set.

The upper panel of Figure 1 shows the so called claw density. It is one of ten

introduced by Marron and Wand (1992) and is de�ned analytically by

Q = 0:5 � N (0; 1) + 0:1 �

4

X

i=0

N (i=2� 1; 0:1):

Looking at the pronounced nature of the peaks one has the feeling, we put it no

more strongly than this, that it should not be diÆcult to detect the peaks given a

sample of size n = 500: The centre panel of Figure 1 shows a kernel estimate of the

density for a sample of size 500. The result seems to be disappointing. The �nger at

�0:5 is missing, the remaining �ngers are emasculated and there are two spurious

modes at �2:2 and 3:0: Decreasing the bandwidth until the �ve peaks are clearly

visible results in spurious peaks. This is shown in the bottom panel of Figure 1.

Figure 2 shows kernel and taut string approximations to the normal, uniform

and claw distributions using samples of size 2048 each. In each case the bandwidth

was chosen as small as possible while still retaining the correct modality. The kernel

method performs quite well on the sample from the normal distribution. The ap-

proximation to the uniform density is rather poor and can only be improved using

a smaller bandwidth and introducing additional modes. The claw distribution is

approximated even worse. Only three peaks are identi�ed correctly and two peaks

in the tails near �2 and 3 have been introduced. The taut string method produces

much better approximations, but still the diÆcult problem is left to �nd out how

many modes have to be included in the approximation.

4. Taut strings, Kuiper metrics and densities

4.1. Taut strings We give a short description of the taut string method. A

thorough analysis of properties of the taut string can be found in Hartigan (2000).

Further details and an algorithm of complexity O(n) are given by Davies and Kovac

(2001).

Consider a sample x

n

and form the ordered sample x

(n)

= (x

(1)

; : : : ; x

(n)

): For

a given " > 0 we consider the Kolmogoro� tube T (E

n

; ") centred at the empirical
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Fig. 1. Claw density. The upper panel shows the claw density function, the centre panel a default

kernel estimate based on a sample of size 500. The lower panel shows the e�ect of decreasing

the bandwidth until the �ve peaks are clearly visible.
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tions using the smallest bandwidth that retains the correct modality.
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Fig. 3. These �gures illustrate the taut string method applied to a sample of mixture of normal

distributions with two di�erent bandwidths. The right column shows the tubes and the taut strings

whilst the left column shows histograms of the data and the corresponding densities of the taut

string.

distribution E

n

and of radius " > 0

T (E

n

; ") = fG : G monotone sup

x

jG(x) �E

n

(x)j � "g

Imagine now a taut string which is attached to the upper boundary at the point

x

(1)

and the lower boundary at the point x

(n)

and is constrained to lie within

the Kolmogoro� tube. Such a string is shown in the right panels of Figure 3 for

two di�erent values of ": The taut string de�nes a function S

n

on the interval

[x

(1)

; x

(n)

]: Although S

n

depends on E

n

and " we suppress this dependency to

relieve the burden on the notation. We denote the density of S

n

by s

n

: It is de�ned

as the left hand derivative of S

n

except at the smallest data point x

(1)

where we

use the right hand derivative. The left panels of Figure 3 show histograms of the

data with the corresponding densities s

n

superimposed.

The taut string is a spline with knots at the points at which it touches the lower

or upper boundaries of the Kolmogoro� tube. It has the following properties (see

Mammen and van de Geer, 1997; Davies and Kovac, 2001):

(a) S

n

is monotonic increasing and linear between knots

(b) s

n

is nonnegative and piecewise constant between knots
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(c) s

n

has the minimum modality of all functions whose integral over [x

(1)

; x

(n)

]

lies in T (E

n

; ") and satis�es the end point conditions

(d) S

n

switches from the upper boundary E

n

+ " to the lower boundary E

n

� "

at points where s

n

has a local maximum

(e) S

n

switches from the lower boundary E

n

� " to the upper boundary E

n

+ "

at points where s

n

has a local minimum

(g) If �

j

and �

j+1

are consecutive knots on the same boundary then on the interval

(�

j

; �

j+1

]

(4.3) s

n

(x) =

jfi : �

j

< x

i

� �

j+1

gj

n(�

j+1

� �

j

)

It is property (c) which is of importance and allows control of the number of modes.

If consecutive knots �

j

and �

j+1

are on opposite boundaries then it follows from (d)

and (e) above that (4.3) must be replaced by

(4.4) s

n

(x) =

jfi : �

j

< x

i

� �

j+1

gj � 2"

n(�

j+1

� �

j

)

with a minus sign at local maxima and a plus sign at local minima. This means

that the derivative underestimates local maxima and overestimates local minima.

This can be remedied as follows (Davies and Kovac, 2001). We de�ne the modi�ed

string

~

S

n

by

(4.5)

~

S

n

(�

j

) = E

n

(�

j

) at all knots �

j

and linear in between. The corresponding derivative ~s

n

satis�es

(4.6) ~s

n

(�

j

) =

jfi : �

j

< x

i

� �

j+1

gj

n(�

j+1

� �

j

)

between the knots �

j

and �

j+1

:

This modi�cation has no e�ect on the modality. It is possible that the modi�ed

string

~

S

n

does not lie in the Kolmogoro� tube but we ignore this.

4.2. Data analysis Even without further analysis the taut string can be used

as a data analytical tool. If the radius of the Kolmogoro� tube is monotonically

decreased then the number of modes of the derivative of the taut string increases

monotonically. It is therefore possible to specify the number of modes of the ap-

proximate density. Figure 4 shows this for the same sample as used for Figure 1.

The densities of Figure 4 can also be interpreted as histograms with an automatic

choice of the number of bins and the bin widths. We note that in this example the

�ve peaks are correctly identi�ed when the tube is squeezed until the string has �ve

peaks. It should be compared with the bottom panel of Figure 1. Figure 5 shows

the number of correctly identi�ed peaks as a function of sample size when the tube

is squeezed to have �ve peaks. A peak is de�ned as being correctly identi�ed if the

midpoint of the interval de�ning a peak di�ers by less than 0.15 from the position of

the corresponding peak of the claw density. This shows that the taut string method

is extremely good at �nding peaks. For samples of size 200 the �ve peaks will be
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correctly identi�ed in over 80% of the cases. This in a sense con�rms Loader (1999)

who, on the basis of theoretical results of Marron and Wand (1992), claims that

for samples of size n = 193 the claws should be detectable. The problem we now

address is the diÆcult one of de�ning an automatic procedure to do this.

4.3. An automatic procedure The taut string method described above is the

same as that used in Davies and Kovac (2001) in the nonparametric regression

setting. The particular diÆculty of the density problem is deriving an automatic

procedure. In Davies and Kovac (2001) an autmatic procedure is obtained using a

multiresolution analysis of the residuals which is similar to the hard thresholding

method for wavelets. This is sensitive and works extrewmely well for many data

sets. There is unfortunately no obvious equivalent for the density problem and this

is the main di�erence between the two problems.

The following theorem is an immediate consequence of the properties of the taut

string listed above.

Theorem 4.1. The density s

n

of the taut string through the tube T (E

n

; qu(n; �; d

ko

))

is a solution of the Kolmogoro� density problem.

For �nite n the values of qu(n; �; d

ko

) can be obtained by simulation. In the limit

p

nqu(n; �; d

ko

) tends to the corresponding quantile of

max

0�t�1

B

0

(t)� min

0�t�1

B

0

(t)

where B

0

denotes a Brownian bridge and for which an explicit expression exists

(Dudley, 1989).

The solution of the Kolmogoro� density problem de�nes a procedure which can

be evaluated. If we do this on an i.i.d. test bed that is with data of the form

X

1

(F ); : : : ; X

n

(F ) where f has a k-modal density function f then it is clear that

the taut string density s

n

will have at most k modes with probability at least �.

This follows on noting that F lies in the tube with probability � and that in this

case s

n

has at most as many modes as f . In particular if k = 1 we have

Theorem 4.2. Let X

1

(F ); : : : ; X

n

(F ) be an i.i.d. sample with common uni-

modal distribution F and let s

n

be the solution of the Kolmogoro� density problem

(2.2). Then

(4.7) P(s

n

unimodal) � �:

A simulation was performed to investigate the performance of the procedure with

� = 0:9 and the corresponding tube width 1:245=

p

n on test beds de�ned by the

uniform distribution on [0; 1], the standard normal distribution and the claw density

for several sample sizes between 50 and 15000. It is clear that the modality is

correctly estimated with probability at least 0:9 for the unimodal distributions

in accordance with Theorem 4.2. Indeed the actual probability exceeds 0:9: all

simulations resulted in exactly one peak. The results for the claw distribution are,

in contrast, disappointing. They are shown in Table 1. Asymptotically the modality
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Size 50 500 2000 5000 10000 15000

Uniform 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Normal 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Claw 1 (4) 1 (4) 1 (4) 1 (3.96) 5 (0.35) 5 (0)

Table 1

Medians of number of detected modes in samples of three densities using the 0:9-quantile of the

Kolmogoro� metric. In brackets average absolute deviation from the true modality.

will be correctly estimated with probability at least 0:9 but the rate of convergence

is very slow. We now try and obtain an improved procedure in two ways. Firstly

we note that the choice of qu(n; �; d

ko

) for the radius of the tube means that a

probability of at least � is guaranteed for all unimodal test beds. If we provisionally

accept that many unimodal distributions, for example the uniform distribution, are

poor models for most data sets then we may accept a worse performance on such

test beds in return for an enhanced performance on others. Silverman (1986) and

M�uller and Sawitzki (1991) argue in a similar vein. The second way of gaining

an improved performance is to use a generalized Kuiper metric rather than the

Kolmogoro� metric. Kuiper metrics consider the di�erences in probability over a

�xed number of disjoint intervals and are therefore better at detecting modality.

4.4. Calibrating unimodality To implement the �rst way of improving perfor-

mance let qu(n; �; F; d

ko

) denote the ��quantile of the Kolomogoro� distance of

the closest unimodal distribution (given by the taut string) to the empirical distri-

bution F

n

of n i.i.d. random variables with common distribution F: We have the

following theorem.

Theorem 4.3. Let X

1

(F ); : : : ; X

n

(F ) be an i.i.d. sample with common uni-

modal distribution F and empirical distribution F

n

. Let s

n

be the derivative of the

string S

n

through the tube T (F

n

; qu(n; �; F; d

ko

)). Then

(4.8) P(s

n

unimodal) = �:

Clearly

qu(n; �; F; d

ko

) � qu(n; �; d

ko

)

but it is not clear whether

sup

F unimodal

qu(n; �; F; d

ko

) = qu(n; �; d

ko

):

We point out that the uniform distribution does not maximize qu(n; �; F; 1; d

ko

)

(Hartigan and Hartigan, 1985). We now take F = U to be the uniform distribution

on the basis that it is not an adequate approximation for most data sets and set

� = 0:5. This means that on uniform test beds the modality will be correctly

determined with probability 0:5. The uniform distribution has the advantage that
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Distribution 50 100 200 500 1000 2000

Uniform 2 (0.54) 2 (0.52) 1 (0.52) 1 (0.47) 1 (0.49) 1 (0.51)

Normal 1 (0.07) 1 (0.03) 1 (0.01) 1 (0) 1 (0) 1 (0)

Claw 1 (3.72) 1 (3.72) 1 (3.53) 3 (2.41) 4 (0.77) 5 (0)

Table 2

Medians of number of detected modes in samples of three densities using the 0:5-quantile of the

improved Kolmogoro� metric. In brackets average absolute deviation from the true modality.

the asymptotics of the quantiles qu(n; �; U; d

ko

) can be calculated. We have

(4.9) lim

n!1

p

nqu(n; �; U; d

ko

) = qu(�;B

0

)

where qu(�;B

0

) denotes the �-quantile of the random variable

(4.10) min

H

sup

x

jB

0

(x) �H(x)j

where the function H : [0; 1] ! R is convex on [0; t

H

] and concave on [t

H

; 1] for

some t

H

; 0 � t

H

� 1. Simulations show that the 0:5-quantile of (4.10) is 0.432. A

correction for �nite n gives

qu(n; 0:5; U; d

ko

) = 0:43=

p

n� 0:64=n:

with a percentage error (based on simulations) of at most 0.0045. Table 2 shows the

results. We see that the performance for the Gaussian test bed is hardly impaired.

On the claw test bed we note that the performance for n = 1000 is now comparable

to that of the simple Kolmogoro� quantile for n = 10000.

Instead of the uniform distribution one can use the Gaussian distribution �.

Heuristic arguments indicate that

lim

n!1

p

nqu(n; �;�; d

ko

) = 0

but we have no exact asymptotic result. For sample sizes 50 � n � 10000 the

following approximation may be used

(4.11) qu(n; 0:5;�; d

ko

) = 0:385=n

0:566

� 0:578=n

1:02

again with a percentage error of at most 0:0047.

4.5. Kuiper metrics Suppose that the density s

n

of the taut string is unimodal.

Part of the description of the taut string S

n

given in Section 4.1 is that it swaps

from the upper bound to the lower bound at each maximum. Consider now the

Kuiper metric d

ku

de�ned by

(4.12) d

ku

(F;G) = supfa < b : j(F (b)� F (a))� (G(b)�G(a))jg

It follows from the above that if d

ko

(E

n

; S

n

) = " and s

n

is unimodal then

d

ku

(E

n

; S

n

) = 2": The �-quantile qu(n; �; d

ku

) of d

ku

(F

n

; F ) is independent of F

for continuous F and is less than twice the �-quantile of d

ko

(F

n

; F ): This suggests

that the Kuiper metric is more appropriate for unimodality than the Kolmogoro�

metric. To demonstrate this we �rstly de�ne the Kuiper problem:
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Problem 4.1 Kuiper density problem. Determine the smallest integer k

n

for which there exists a density f

n

with k

n

modes and whose distribution F

n

satis�es

d

ku

(E

n

; F

n

) � qu(n; �; d

ku

):

Suppose now that F

n

is a unimodal distribution which solves the Kuiper density

problem. Let "

1

= maxfx : F

n

(x) � E

n

(x)g and "

2

= maxfx : G(x) � F

n

(x)g:

As d

ku

(E

n

; F

n

) = "

1

+ "

2

= qu(n; �; d

ku

) it follows by shifting F

n

by an amount

1

2

j"

2

� "

1

j that the solution of the Kolmogoro� problem with " =

1

2

qu(n; �; d

ku

)

is also unimodal. As

1

2

qu(n; �; d

ku

) < qu(n; �; d

ko

) this implies that if the solution

of the Kuiper density problem for a given � is unimodal, so is the solution of the

Kolmogoro� problem for the same �:

To cover the case of multimodality we de�ne the Kuiper metric d

�

ku

of order �

by

(4.13) d

�

ku

(F;G) = maxf

�

X

1

j(F (b

j

)� F (a

j

))� (G(b

j

)�G(a

j

))jg

where the maximum is taken over all a

j

; b

j

with

a

1

� b

1

� a

2

� b

2

� � � � a

�

� b

�

:

Again the distribution of d

�

ku

(F

n

; F ) is independent of F for continuous F . If we

denote the ��quantile by qu(n; �; d

�

ku

) we can formulate the �-Kuiper problem.

Problem 4.2 �-Kuiper density problem. Determine the smallest integer

k

n

for which there exists a density f

n

with k

n

modes and whose distribution F

n

satis�es

d

k

ku

(E

n

; F

n

) � qu(n; �; d

�

ku

):

If the density s

n

of the taut string has k modes then for the Kuiper metric d

2k�1

ku

of

order 2k � 1 we have

d

2k�1

ku

(E

m

; S

n

; ) = (2k � 1)":

This follows on noting that the strings swaps boundaries at each of the k local

maxima of s

n

and also at the k � 1 local minima. As

qu(n; �; d

2k�1

ku

) < (2k � 1)qu(n; �; d

ko

)

this indicates that the Kuiper metric d

2k�1

ku

is more eÆcacious when the data ex-

hibit k modes. We have no simple algorithm for solving the �-Kuiper problem so

we use the strategy of Davies and Kovac (2001) and decrease the radius " of the

Kolmogoro� tube gradually until

d

2k�1

ku

(E

n

; S

n

) � qu(n; �; d

2k�1

ku

):

For large n approximations to qu(n; �; d

�

ku

) are available using the weak convergence

result

p

nd

�

ku

(F

n

; F )) maxf

�

X

1

jB

0

(b

j

)�B

0

(a

j

)jg
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Distribution 50 100 200 500 1000 2000

Uniform 2 (0.66) 1 (0.60) 1 (0.65) 1 (0.65) 1 (0.68) 1 (0.77)

Normal 1 (0.14) 1 (0.08) 1 (0.04) 1 (0) 1 (0) 1 (0)

Claw 1 (3.39) 2 (3.08) 3 (2.44) 4 (1.37) 4 (0.66) 5 (0.08)

Table 3

Medians of number of detected modes in samples of three densities using the quantile

qu(n; 0:5; U; d

9

ku

). The values in brackets give the average absolute deviation from the true modal-

ity.

Distribution 50 100 200 500 1000 2000

Uniform 3 (1.56) 3 (2.06) 4 (2.85) 5 (4.18) 7 (5.66) 8 (7.38)

Normal 1 (0.67) 1 (0.71) 2 (0.88) 2 (0.95) 1 (1.02) 2 (1.19)

Claw 2 (2.52) 3 (1.91) 4 (1.12) 5 (0.25) 5 (0.09) 5 (0.12)

Table 4

Medians of number of detected modes in samples of three densities using the quantile

qu(n; 0:5;�; d

9

ku

) The values in brackets give the average absolute deviation from the true modal-

ity.

where B

0

denotes the standard Brownian bridge on [0; 1] and

a

1

< b

1

< a

2

< b

2

: : : < a

�

< b

�

:

The distribution of maxfjB

0

(b)�B

0

(a)jg corresponding to the unimodal case k = 1

is known (for example Dudley (1989), Proposition 12.3.4.) SuÆciently accurate

quantiles for �nite n and for the other asymptotic cases may be obtained by sim-

ulations. Best results are obtained if � is related to the modality k of the test bed

by � = 2k � 1. In practice a default value of � is required and we use � = 9. This

performed well over a wide class of test beds and larger values of � brought little

improvement even for test beds with many peaks.

We combine the �-Kuiper-metric with the ideas of Section 4.4. Let qu(n; �; F; d

�

ku

)

denote the �-quantile of the �-Kuiper distance of the closest unimodal distribu-

tion to the empirical distribution F

n

of n i.i.d. random variables with common

distribution F: We use the modi�ed string

~

S

n

(see (4.5)) as the closest unimodal

distribution. If F is the uniform distribution of [0; 1], then we have again a 1=

p

n

asymptotic. For example for � = 9 and � = 0:5 simulations showed that

qu(n; 0:5; U; d

9

ku

) h 5:46=

p

n� 13:7=n

is a good approximation. If instead of the uniform distribution we calibrate using

the Gaussian distribution we have corresponding to (4.11)

qu(n; 0:5;�; d

9

ku

) h 8:215=n

0:584

� 14:97=n

0:914

:

Table 3 shows the results using the quantile qu(n; 0:5; U; d

9

ku

) and Table 4 the

corresponding results for the quantile qu(n; 0:5;�; d

9

ku

). On comparing these with

Table 2 we see that there has been an improvement for the claw density and some

deterioration for the uniform and normal densities.
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Distribution 50 100 200 500

Conservative Kolmogoro� 1 (9.00) 1 (9.00) 1 (8.99) 1 (8.61)

Improved Kolmogoro� 3 (7.32) 4 (6.04) 7 (2.83) 10 (0.02)

Kuiper (Uniform) 4 (5.79) 7 (3.14) 9 (0.81) 10 (0)

Kuiper (Normal) 5 (5.08) 8 (2.47) 10 (0.4) 10 (0)

9-Kuiper (Uniform) 5 (4.83) 8 (2.50) 9 (0.85) 10 (0.01)

9-Kuiper (Normal) 6 (3.64) 9 (1.33) 10 (0.14) 10 (0)

Table 5

Medians of number of detected modes in samples of a mixture of ten normal distributions. The

values in brackets give the average absolute deviation from the true modality.

A sample of size n = 100 is generated from the the following mixture of ten

normal distributions:

f(x) =

1

10

10

X

i=1

�(x � (10i� 5)):

This mixture has recently been used by Loader (1999) to compare several band-

width selectors for kernel estimators. The Kolmogoro� tube is squeezed, until in

turn each of the following holds: d

1

ku

(s

Æ

n

;�

n

) = qu(n; 0:5; U; d

1

ku

); d

1

ku

(s

Æ

n

;�

n

) =

qu(n; 0:5;�; d

1

ku

); d

9

ku

(s

Æ

n

;�

n

) = qu(n; 0:5; U; d

9

ku

) and d

9

ku

(s

Æ

n

;�

n

) = qu(n; 0:5;�; d

9

ku

):

The resulting densities are shown in Figure 6.

Figure 6 shows in the top panel the result with the Kolmogorov metric. The

second panel shows the result using the standard Kuiper metric and the third

panel the result for the generalized d

9

ku

metric.

In this example the di�erences between the usual Kuiper metric and the gener-

alized Kuiper metrics are substantial. Simulations on other test beds show that the

gains using this metric are real but not as large as the last example suggests.

4.6. Discrete data So far we have looked for an approximation to the data in the

form of a Lebesgue density. However at little cost we can extend the methodology

to integer-valued data which typically arise from counts. Suppose the data set x

n

=

(x

1

; : : : ; x

n

) contains only N di�erent values t

1

< t

2

< � � � < t

N

: We look for an

approximation in terms of N probabilities p

j

= P(X = t

j

); j = 1; : : :N where the

random variable X has support t

1

< t

2

< � � � < t

N

: Let e

1

; : : : ; e

N

be the empirical

frequencies of the t

j

in the data and consider the cumulative sums

E

j

=

j

X

i=1

e

i

and the tube constructed by linear interpolation of the points (j=N;E

j

); j =

0; : : : ; N . Di�erentiating yields an approximation of p

1

; : : : p

N

. This procedure

corresponds to the taut string algorithm in the regression context (Davies and

Kovac, 2001) with time points t

1

; : : : t

n

and with observations e

1

; : : : e

n

. Our default

procedure uses the Kolmogoro� tube of radius but other forms of approximation

can be accommodated without much diÆculty. An example is shown in Figure 7
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Fig. 6. Mixture of ten normal distributions. The �gures show histograms of a sample of the

ten-modal density and taut string densities. The densities in the top row are based on the usual

Kuiper distance, those in the bottom row are based on the generalized 9-Kuiper metric. In the

left column the uniform distribution served as the calibrating distribution, in the right column

the normal distribution was used instead.
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Discrete Taut String Approximation

Fig. 7. Discrete data. The left panel shows the density function of the mixture of three Poisson

distributions and the frequencies of a sample of size 1200. The discrete taut string approximation

is shown in the right panel.
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where the discrete taut string method was applied to 1200 observations from a

mixture of three Poisson distributions

Q =

1

3

(P(1) +P(7) +P(21)):

The other situation is where repeated values occur not because of the nature of

the data (counting) but because of rounding. The rounding of data is very common

and it can cause diÆculties when looking for an approximation based on Lebesgue

densities. To see the diÆculties assume that some data point x is observed k times.

Depending on the exact implementation of the taut string algorithm two problems

may occur. If the tube is centred around the empirical distribution function and

the tube width is smaller than k=2n, the derivative of the taut string at x will

be 1. If on the other hand the tube is constructed by linear interpolation of the

empirical distribution function then the empirical mass at x of k=n is spread over the

interval [x

l

; x] where x

l

is the largest data point smaller than x. To overcome these

problems we propose the following. Let " be the precision or cut-o�-error which

we set to " = 10

�3

MAD(x

n

) where MAD denotes the Median Absolute Deviation.

We construct a modi�ed data set ~x

1

; : : : ~x

n

where the identical observations at x

are equally spread over the interval [x � "=2; x + "=2]. To be precise we replace

x

(j+1)

= x

(j+2)

= � � � = x

(j+k)

by

~x

j+i

= x+ " � (�

1

2

+

1

2k

+

i� 1

k

)

for i = 1; : : : ; k. The taut string method described above is then applied to ~x instead

of x.

5. Asymptotics on test beds The asymptotic behaviour of the taut string

may be analysed on appropriate test beds. It turns out that asymptotically the

modality is correctly estimated and that the optimal rate of convergence is attained

except in small intervals containing the local extremes of the density f .

We denote the modality of the derivative of the taut string in the supremum tube

T (F

n

; C=

p

n) by k

C

n

: The taut string based on the radius C=

p

n will be denoted

by S

C

n

with derivative s

C

n

: We write I

e

i

(n;C); 1 � i � k

C

n

; for the intervals where

s

C

n

attains its local extreme values and denote the midpoints of these intervals by

t

e

i

(n;C); 1 � i � k

C

n

: The length of an interval I will be denoted by jI j.

Theorem 5.1. Let f be a k-modal density function on R such that

min

g(k�1)�modal

jF (x) �G(x)j > 0:

Then we have for all Æ > 0

lim

C!1

lim inf

n!1

P(fk

C

n

= kg\f max

1�i�k

C

n

jI

e

i

(n;C)j � Æg\f max

1�i�k

C

n

jt

e

i

(n;C)�t

e

j

j � Æg) = 1:

In the following A denotes a generic constant which depends only on f and whose

value may di�er from appearance to appearance.

Theorem 5.2. Assume that
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� f has a compact support on [0; 1]

� f has exactly k local extreme values at the points 0 < t

e

1

< : : : < t

e

k

< 1

� f has a bounded second derivative f

(2)

which is non-zero at the k local extremes.

� f

(1)

(t) = 0 only for t 2 ft

e

1

; : : : ; t

e

k

g

Then the following statements hold.

(a) lim

C!1

lim inf

n!1

P(t

e

i

2 I

e

i

(n;C); 1 � i � k) = 1:

(b) For every C

1

< 6 and C

2

> 12

lim

C!1

lim inf

n!1

P(jI

e

i

(n;C)j �

�
p

njf

(1)

(t

e

i

)j

C

�

1=3

2 [C

1=3

1

; C

1=3

2

]; 1 � i � k) = 1:

(c) Let �

n;C

j

be the knots of the taut string S

C

n

and denote

m(n;C) = maxf�

n;C

j+1

� �

n;C

j

: �

n;C

j

; �

n;C

j+1

2 (0; 1)n[

k

1

I

e

i

(n;C)g:

For some constant A only depending on f we have

lim

C!1

lim inf

n!1

P

 

m(n;C) �

 

Ajf

(1)

(x

j

)j

�2=3

�

logn

n

�

1=3

!!

= 1:

(d) Denote

M(n;C) = [A

�

logn

n

�

1=3

; 1�A

�

logn

n

�

1=3

]n[

n

i

I

e

i

(n;C):

Then for some constant A only depending on f we have

lim

C!1

lim inf

n!1

P

 

max

t2M(n;C)

jf(t)� f

C

n

(t)j �

 

Ajf

(1)

(t)j

1=3

�

logn

n

�

1=3

!!

= 1:

(e) For some constants A

1

and A

2

only depending on f we have

lim

C!1

lim inf

n!1

P( max

t2[

n

1

I

e

i

(n;C)

jf(t)� f

C

n

(t)j � AC

2=3

n

�1=3

) = 1:

Part (d) of the theorem shows that bounded away from the local extrema the

taut string density attains the optimal rate of convergence up to a logarithmic

factor. The proofs follow the lines of Davies and Kovac (2001) and we omit them.

6. Cell occupancy frequencies and local squeezing
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6.1. Cell occupancy frequencies The multiresolution procedure of Davies and

Kovac (2001) is based on comparing the residuals of some regression function with

those of Gaussian white noise. The comparison is based on the means on intervals

which form a multiresolution scheme. A similar idea can be applied to the density

problem. A distribution F is an adequate model for the data x

n

= (x

1

; : : : ; x

n

) of

the transformed data

u

n

= F (x

n

) = (F (x

1

); : : : ; F (x

n

))

looks like an i.i.d. sample of size n from the uniform distribution on [0; 1]: This is

done by comparing the frequencies

w

n

jk

= jfl : k2

�j

< u

i

� (k + 1)2

�j

gj; 0 � k � 2

j

; 1 � j � m;

with those to be expected from i.i.d. uniform random variables. The maximum

resolution level m is taken to be the smallest integer such that n � 2

m

. Suppose

that U

1

; : : : ; U

n

are independently and uniformly distributed on [0; 1]: Then

W

n

jk

= jfl : k2

�j

< U

i

� (k + 1)2

�j

gj

is binomially distributed b(n; 2

�j

): For given � we de�ne the upper bounds v

n

j;k

(�)

by

(6.14) v

n

j

(�) = min

�

l : P(Z

n

j

� l) �

1� �

2n

�

where Z

n

j

satis�es the binomial distribution b(n; 2

�j

): It follows that

P(W

n

jk

< v

n

j

(�); 1 � k � 2

j

; 1 � j � n) � �:

This gives rise to the following problem:

Problem 6.1 Cell occupancy problem. Determine the smallest integer k

n

for which there exists a density f

n

with k

n

modes and whose distribution F

n

is such

that the cell frequencies w

n

j;k

satisfy

(6.15) w

n

j;k

= jfl : k2

�j

< F

n

(x

i

) � (k + 1)2

�j

gj � v

n

j

(�)

where the v

n

j;k

(�) are given by (6.14).

Although the cell occupancy problem is well de�ned there is no obvious connec-

tion between the modality of the density f

n

and the set of inequalities (6.15). We

therefore again adopt the strategy of producing test densities derived from the taut

string and gradually increase the modality until the inequalities (6.15) hold. The

knowledge of which inequalities fail to hold provides further information which we

are able to exploit as described in the next section.
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6.2. Local squeezing Local squeezing is described in Davies and Kovac (2001).

We apply it to the density problem as follows. Suppose that one of the inequalities

of (6.15) fails. We suppose that

w

n

j;k

= jfl : k2

�j

< F

n

(x

i

) � (k + 1)2

�j

gj � v

n

j;k

(�)

Clearly there exists an interval [x

(i1)

; x

(i2)

] such that k2

�j

< F

n

(x

i

) � (k + 1)2

�j

for all points x

i

in [x

(i1)

; x

(i2)

]:We now squeeze the tube locally on this interval and

do this for all intervals where an inequality fails. The general procedure for doing

this is as follows. Firstly, a suitable initial global tube radius 


0

is chosen using the

Kolmogorov or generalized Kuiper metrics and the taut string is calculated. If all

the inequalities (6.15) hold the procedure terminates. If not we reduce the radius

by a factor �; 0 < � < 1; on all intervals where an inequality fails. Typical choices

for � are 0:9 or 0:95: The taut string through the modi�ed tube is calculated and

using this new test distribution it is checked whether the inequalities (6.15) hold.

If so, the procedure terminates. Otherwise the tube radius is again decreased by

the factor � on all intervals where an inequality fails. This is continued until all the

inequalities are satis�ed.

It is not easy to analyse the behaviour of the local squeezing procedure. In the

case of nonparametric regression Davies and Kovac (2001) give a heuristic indicating

that the procedure improves the behaviour at local extremes. A similar argument

can be given for densities but as it remains heuristic we omit it.

The ability of the local squeezing method to detect low power peaks (see Davies

and Kovac, 2001) is shown by the following example. The data consist of a sample

of size 1000 drawn from a mixture of four normal distribution P given by

P = 0:8 � N (0; 3) + 0:015 � N (8; 0:02) + 0:015 � N (9; 0:02) + 0:17 � N (15; 0:2):

The density is shown in the upper left corner of Figure 8. It exhibits a main peak, a

moderate peak on the right and in the centre two low power but very concentrated

and very close peaks.

The upper right panel shows a kernel estimate which was calculated using a

Gaussian kernel. The mode on the right-hand side was detected, but is considerably

broader than the normal component of the original density function. The main

component is well captured but there are three super
uous peaks. Finally, the two

sharp peaks in the centre of the data result in one 
at local maximum. The lower

left panel shows the result with the taut string method and two global tube radii.

The solid line is derives from the d

1

ku

metric. There are no spurious local extremes

but the small central peaks are not detected. The dashed line shows that further

global squeezing would only lead to additional spurious modes on the left before the

central peaks are detected. Finally, the lower right panel shows the result of local

squeezing. The number and locations of the local extrema are estimated correctly

and the di�erence to the original density function is very small.

7. Simulations The performance of the taut string method on ten densities

was analysed by a simulation study. Figure 9 shows the densities that were used.

They are the uniform distribution on [0; 1], the Gaussian distribution and eight
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Fig. 8. Local squeezing: The upper left panel shows the density of a mixture of four normal

distributions. A kernel estimate is drawn in the upper right panel. The lower left panel illustrates

global squeezing �rst with a solid line using the Kolmogorov bounds and then with a dashed line

the taut string density with four modes. The local squeezing estimate is depicted in the lower

right panel.
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Density size KERNCV KERNSJ STRINGKOL50 STRINGKUIP50LOCAL

Uniform 100 1 16 99 50

500 0 1 100 44

2000 0 0 99 55

Gaussian 100 77 79 100 95

500 79 78 100 99

2000 74 59 100 99

Strongly skewed 100 4 0 99 96

500 1 0 100 100

2000 0 0 98 100

Outlier 100 15 0 100 96

500 0 0 99 100

2000 0 0 93 99

Bimodal 100 71 81 0 33

500 75 84 1 68

2000 75 73 54 95

Skewed bimodal 100 32 46 0 26

500 45 37 0 20

2000 34 12 0 31

Trimodal 100 29 12 0 1

500 57 67 0 4

2000 81 82 0 10

Claw 100 1 0 0 0

500 2 2 0 5

2000 0 0 0 92

Smooth comb 100 18 0 0 0

500 5 0 0 0

2000 1 1 0 8

Discrete comb 100 12 0 0 0

500 2 0 0 1

2000 0 82 0 88

Table 6

Correctly detected modes in samples of various densities and for several automatic methods.

normal mixtures from Marron and Wand (1992). Four automatic methods were

compared:

� KERNCV: A kernel estimator using likelihood cross-validation for the choice

of the bandwidth

� KERNSJ: A kernel estimator using Sheather-Jones plugin bandwidths

� STRINGKOL50: Taut string estimates based on the conservative Kolmogorov

metric with � = 0:5

� STRINGKUIP50LOCAL: Taut string estimates based on the 9-Kuiper metric

with � = 0:5 and local squeezing

Each method was applied to 100 samples of each of the densities and three dif-

ferent sample sizes (100,500,2000). For each estimate it was checked if the correct
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number of modes was found and if the positions of the modes corresponded to those

of the densities. Table 6 shows how often the modes were determined correctly for

the various densities and methods. Some comments are in order. Firstly all the den-

sities are mixtures of a small number of Gaussian distributions with the exception

of the uniform density. It is precisely this density where the kernel methods based

on a Gaussian kernel fail. The trimodal distribution is the one where the kernel

methods perform clearly better than the taut string method. If however the central

Gaussian distribution is replaced by a uniform distribution then the kernel meth-

ods again fail. This may indicate that the comparison is weighted in favour of the

kernel methods as both they and the densities are based on the Gaussian kernel.

Finally we note that the performance of the kernel methods seems to deteriorate

with increasing sample size.

8. Hidden periodicities, spectral densities and taut strings

8.1. Hidden periodicities The second problem we consider is that of detecting

hidden periodicities in a data set x

n

: One method of formulating the problem is

the following: calculate an appropriate spectral density function f

n

and identify the

hidden periodicities in the data with the peaks of f

n

(Brillinger, 1981; Priestley,

1981; Brockwell and Davis, 1987 and the references given there).

Existing methods by and large belong to one of two di�erent categories of pro-

cedures. The �rst is nonparametric and uses some form of smoothing of the pe-

riodogram. This may take the form of kernel estimators or splines or wavelets or

averages of periodograms obtained by splitting the data into blocks (see Chapter 5

of Brillinger (1981), Neumann (1996) and the references given there). The second

possibility is to model the data by an autoregressive process whose order is deter-

mined using some criterion such as AIC (Akaike, 1977), BIC (Akaike, 1978) or HQ

(Hannan and Quinn, 1979). The spectral density associated with the autoregressive

process is then used to determine the hidden periodicities. None of these methods

controls the number of peaks directly although the problem of hidden peaks is one

of modality.

Before proceeding we assume that the data have been normalized to have sample

mean zero and variance 1: To ease the notation the transformed data will also be

denoted by x

n

: In the context of time series e

n

will denote the empirical spectral

density or the periodogram de�ned by

(8.16) e

n

(!) =

1

2�n

�

�

�

�

�

n

X

t=1

x

t

exp(i!t)

�

�

�

�

�

2

; 0 � ! � 2�:

The corresponding empirical spectral distribution function E

n

given by

(8.17) E

n

(!) =

Z

!

0

e

n

(�)d�:

The candidate spectral densities we use are based on the taut strings S

n

through

the Kolmogoro� tubes centred at E

n

. We assume that the taut string is constrained

to go through (0; E

n

(0)) = (0; 0) and (2�;E

n

(2�)) = (2�; 1): One di�erence to the

i.i.d. model is the fact that the empirical spectral distribution function is de�ned
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Fig. 10. Sunspot data with number of peaks increasing from 1 to 4.

for all !. In practice a grid must be chosen which, when analysing the asymptotic

behaviour on test beds, becomes increasingly �ne. This has no theoretical e�ect.

We use the Fourier frequencies

2�j

n

; j = 0; : : : n � 1; where the data have been

augmented by zeros to produce a power of two. Choosing a �ner grid has had no

e�ect on the data sets we have analysed so far.

8.2. Data analysis Just as in Section 4.2 it is possible to use the taut string as

a data analytical tool. The radius of the Kolmogoro� tube is gradually decreased

and the resulting densities give information about the power and positions of the

peaks. We give two examples. Figure 10 shows the �rst four peaks for the sunspot

data (Anderson 1971).

The second example is an arti�cial data set generated according to a scheme

of Gardner (1988). Gardner does not explicitly specify the spectral density except

that it has Gaussian shape with centre frequency 2�� with � = 0:35. The density

f of (8.18) approximates the graph shown in Gardner's Figure 9.4 (a)

(8.18) f(!) =

1

3

e

�300

(

!

2�

�0:35

)

2

:
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Fig. 11. The Gardner data

A realization of length 2048 was generated by �ltering in the frequency domain.

The following pure sine terms were added

p

2 sin (2�(0:2� t� 106=360)) ;

p

2 sin (2�(0:21� t� 45:1=360)) ;

p

2=10 sin (2�(0:1� t� 32:6=360)) :

A segment of length 256 starting at t = 1023 was taken as the simulated sample.

It is shown in Figure 11.

A similar data set was analysed by Gardner (Chapter 9.E, Experimental Study,

Gardner, 1988) in an experimental study of the performance of di�erent spectral

estimates. Figure 12 shows the �rst four peaks (in a log scale) for the data set

of Figure 11. Finally Figure 13 shows the four peak density together with the

periodogram.

8.3. Two concepts of approximation The concepts of approximation used in the

i.i.d. case had the advantage that the distributions involved were independent of the

approximating model. This is no longer the case for stationary models. Furthermore,

specifying the spectral distribution function F does not specify the joint distribution

of the stationary sequence. If however one is prepared to accept a Gaussian model
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Fig. 12. Gardner data with number of peaks increasing from 1 to 4
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Fig. 13. Gardner data with four peaks and the periodogram
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then the distribution P

F

of the sequence is determined by F . In analogy with the

i.i.d. case we have

Problem 8.1 Kuiper spectral density problem. Determine the smallest

integer k

n

for which there exists a spectral density f

n

with k

n

modes and whose

distribution F

n

satis�es

(8.19) d

ku

(E

n

; F

n

) � qu(n; �;P

F

n

; d

ku

)

where P

F

n

denotes the distribution of the observations under the model.

There are two disadvantages with the procedure based on this concept of ap-

proximation. One is that the quantile in (8.19) depends on F

n

. It would be possible

to overcome this by at each stage using the taut string S

n

and then simulating the

quantile qu(n; �;P

S

n

; d

ku

). This is clearly very time consuming. The second disad-

vantage is the following. Under appropriate conditions (Dahlhaus, 1988) we have

the weak convergence result

p

n(F

n

� F )) Z

where F

n

denotes the empirical spectral distribution function of the model with

spectral distribution function F and density f and Z denotes a continuous zero

mean Gaussian process de�ned by

(8.20) E(Z(�

1

)Z(�

2

)) =

Z

min(�

1

;�

2

)

0

f(!)

2

d!

It follows from (8.20) that any large peaks will swamp smaller peaks which may be

present and so prevent their detection. The one advantage of (8.19) is that it allows

an asymptotic evaluation.

A more sensitive procedure is based on some kind of multiresolution analysis.

Suppose for the moment that the sample size n is a power of two n = 2

m

: Given a

spectral density function f we de�ne

(8.21) g

n

(f; !) =

e

n

(!)

f(!)

:

and consider the multiresolution scheme

(8.22) w

jk

(f) =

j2

k

X

l=(j�1)2

k

+1

g

n

(f; !

l;n

); j = 1; : : : ; 2

m�k�1

; k = 0; : : : ;m� 1;

where the !

l;n

= 2�l=n are the Fourier frequencies. The class of stationary processes

with spectral density function f is too large to provide a meaningful de�nition of

approximation so we now restrict attention to Gaussian processes. Corresponding

to level dependent thresholds for wavelets we specify lower and upper bounds l

k;n

and u

k;n

respectively for the multiresolution coeÆcients (8.22). These now de�ne

the
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Problem 8.2 Multiresolution spectral density problem. Determine

the smallest integer k

n

for which there exists a spectral density f

n

with k

n

modes

such that

(8.23) l

k;n

� w

jk

(f

n

) � u

k;n

; j = 1; : : : ; 2

m�k�1

; k = 0; : : : ;m� 1:

The default bounds we use are l

k;n

= qu(�

1n

; 2

k

) and u

k;n

= qu(�

2n

; 2

k

) where

qu(�; �) denotes the �-quantile of the Gamma distribution with � degrees of free-

dom, �

1n

= (1 � �)=2n and �

2n

= 1 � �

1n

with � = 0:9: The bounds are based

on the Gaussian model and the asymptotic results for such processes as given for

example by Theorem 5.2.6 of Brillinger (1981). If the asymptotic results held pre-

cisely for �nite n then the bounds are chosen such that for a stationary Gaussian

process with spectral density function f the inequalities (8.23) hold with probabil-

ity at least 0.9 for f

n

= f: As the individual g

n

(f; !) of (8.21) for ! =

2�j

n

are

asymptotically independent the bounds will be approximately of the correct order,

again for Gaussian processes with a spectral density function. The usefulness of

the bounds for real data sets is an empirical matter. In particular they will be be

too slack if the spectral distribution function contains point masses. This is the

case for the Gardner data given above and may be seen in Figure 13. The absolute

continuous part of the spectrum shows a degree of noise whereas the remainder of

the spectrum is noise free. The default bounds we propose will detect the �rst peak

but they are not suÆciently tight to split the two main peaks. On the other hand if

the bounds are suÆciently tight to separate the two peaks then super
uous peaks

will be produced in the absolutely continuous part of the spectrum. There would

seem to be no easy solution which will work equally well for continuous as well as

for discrete spectra.

We have no algorithm to solve the problem as it stands so again we use the

local squeezing variant of the taut string method. The string is squeezed locally

on the intervals where (8.23) fail and this is continued until all the inequalities

are satis�ed. When doing this however care must be taken regarding the order in

which the inequalities are treated. From the form of g

n

(f; !) in (8.21) it is clear

that a particular g

n

(f; !) can be very large and in
uence all interval containing

this particular frequency and this although the corresponding e

n

(!) is very small.

Squeezing locally over all intervals e�ected by this frequency will often produce

many super
uous peaks. To avoid this we consider the intervals in order of size

commencing with intervals of size one. When all the inequalities are satis�ed we

then move on to intervals of size two and continue in this manner until all the

inequalities are satis�ed. This is the default version of the algorithm. If global

squeezing is used then the peaks will be introduced according to their power and

may be introduced on intervals where the inequalities (8.23) are satis�ed. This is

the case for the Gardner data. If the default version with local squeezing is used

the main peak is not split. If however global squeezing is used then it is split.

8.4. Asymptotics on test beds We indicate brie
y the results of an asymptotic

analysis using the Kuiper concept of approximation. The test bed we consider is that
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of a stationary process X

n

(F ); 1 � n <1; with a spectral distribution function F

and spectral density function f as follows.

Test bed 8.1.

� F has exactly k local extreme values on the interval (0; �).

�

inf

G2F(k�1)

sup

!2[0; �]

jF (!)�G(!)j > 0

where F(k�1) denotes the set of distributions with at most k�1 local extreme

values.

To investigate the behaviour of the taut string on the test bed (8.1) we consider

a tube of width 2C=

p

n and denote the taut string through this tube by S

n

(C) with

derivative s

n

(C) and modality k

C

n

. The intervals on which s

n

(C) takes on its local

extreme values will be denoted by I

e

i

(n;C); i = 1; : : : ; k

C

n

with midpoints !

e

i

(n;C):

The �rst theorem shows that on test bed (8.1) the number and locations of the

local extreme values are determined in a consistent manner.

Theorem 8.1. Consider the test bed (8.1). Then for all Æ > 0

lim

C!1

lim inf

n!1

P(fk

C

n

= kg \ fmax

1�i�k

jI

e

i

(n;C)j � Æg \ fmax

1�i�k

jt

e

i

(n;C)� t

e

i

j � Æg) = 1:

To obtain rates of convergence on appropriate test beds we must impose further

conditions.

Test bed 8.2.

� all spectral densities f

j

of order j exist and sup

!

jf

j

(!)j � B

j

for some con-

stant B

� the spectral density function f = f

2

has a continuous second derivative f

(2)

� f has exactly k local extreme values, 0 < !

1

; : : : ; !

k

< 2�; and f

(1)

(!) 6= 0 for

! 2 [0; 2�]nf!

1

; : : : ; !

k

g

� f

(2)

(!

j

) 6= 0; j = 1; : : : ; k

� the fourth order spectral density is continuous.

The above conditions correspond to (i) of Assumption 2.1 of Dahlhaus (1988).

Rates of convergence require a modulus of continuity for the process Z

n

=

p

n (F

n

� F ) where F

n

denotes the empirical spectral distribution function of the

sample (X

1

(F ); : : : ; X

n

(F )): Under the conditions of Theorem 2.4 of Dahlhaus

(1988) it follows that

(8.24) sup

0�!

1

<!

2

�2�;!

2

�!

1

<Æ

jZ

n

(!

2

)� Z

n

(!

1

)j � C

p

!

2

� !

1

j log(!

2

� !

1

)j
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with probability tending to one as Æ tends to zero. From this the it can be shown that

the rate of uniform convergence away from the local extremes is O

�

�

(log n)

2

n

�

1=3

�

:

This di�ers from the rate of convergence for the test beds considered in Davies and

Kovac (2001) by an extra logn term. This is explained by the di�erent modulus

of continuity. On the test beds of Davies and Kovac (2001) it is

p

Æj log Æj whereas

above it is

p

Æ j log Æj:

8.5. Examples The default version we use is the procedure deriving from the

multiresolution problem with � = 1� 0:1=n and a squeezing factor of 0.9. For the

sunspot data the result is the one peak density shown in the top left panel of Figure

10. For the Gardner data the result is the four peak density shown in the bottom

right panel of Figure 12. Finally we consider data generated according to a scheme

of Neumann (1996) which is as follows:

(8.25) X

n

= Y

n

+ c

0

Z

n

where

Y

n

+ a

1

Y

n�1

+ a

2

Y

n�2

= b

0

"

n

+ b

1

"

n�1

+ b

2

"

n�2

and f"

n

g; fZ

n

g are independent Gaussian white noise processes with variance 1.

Neumann chose the coeÆcient values as follows: a

1

= 0:2; a

2

= 0:9; b

0

= 1; b

1

=

0; b

2

= 1 and c

0

= 0:5. A sample of size 1024 was generated according to this

scheme. Figure 14 shows the logarithm of the spectral density of the sequence

fX

n

g together with the logarithm obtained from the default version of the taut

string method. The two peaks are correctly identi�ed. The wavelet method used by

Neumann results in 6 peaks ((b) of Figure 2 of Neumann 1996) for the data set he

considered.
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PROOFS

9. Proof of Theorem 5.1 Let B denote the Brownian Bridge on [0; 1] and

E

n

=

p

n(F

n

� F ) the empirical process. Then

lim

n!1

P

�

max

t2R

jE

n

(t)j < x

�

= P

�

max

t2R

jB(F (t))j < x

�

� 1� 2 exp(�2x

2

)

using Proposition 12.3.3 of Dudley (1989). It follows that

lim

n!1

P

�

max

t2R

jF

n

(t)� F (t)j �

C

p

n

�

� 1� exp(�2C

2

):

As the taut string minimizes the modality in T (F

n

;

C

p

n

) we see that

lim

C!1

lim

n!1

P

�

k

C

n

� k

�

= 1:

On the other hand, if we denote byM all functions on R of modality at most k�1,

then

(9.26) inf

g2M

sup

t2R

jF (t)�G(t)j > 0:

Using the Glivenko-Cantelli theorem this implies that for for arbitrary C > 0 and

for all n large enough the modality of the taut string is at least k. We conclude that

lim

C!1

lim

n!1

P

�

k

C

n

= k

�

= 1:

The other claims are proved similarly. For example, assume that the lengths

of the intervals I

e

i

(n;C) do not converge in probability to zero. Then, for some

subsequence n

j

and constant Æ > 0

inf

j

P(max

i

jI

e

i

(n

j

; C)j > Æ) > 0:

Denote by M the set of all functions on R with �nitely many discontinuities and

such that they attain a local extreme values on an interval of size at least Æ. Then

we are again in the situation of (9.26) and have a contradiction to the Glivenko-

Cantelli theorem. A similar argument applies to the convergence of the location of

the local extreme points.
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10. Proof of Theorem 5.2 Proof of (a):

We require

Lemma 10.1. Assume that F is a convex function on [0; x

0

] and has three

continuous derivatives with F

00

(x

0

) = 0 and F

(3)

(x

0

) < 0. Consider a sequence

a

n

2 [0; x

0

] converging to x

0

. Then

G(h) =

F (x) � F (a

n

)

x� a

n

is strictly increasing on [a

n

; x

0

+

1

2

(x

0

� a

n

) + o(x

0

� a

n

)].

We now turn to the proof of (a). Since the empirical process

E

n

=

p

n(F

n

� F )

is tight, we conclude (Billingsley, 1968, p. 106).

lim

C!1

lim

n!1

P

�

sup

s�t�s+2�

n

jE

n

(s)�E

n

(t)j �

1

C

�

= 1

where

�

n

= max(t

e

j

� t

l

j

);

t

e

j

denotes the point where f takes its j-th local extreme value and t

l

j

the left

endpoint of the j-th local extreme interval of f

C

n

respectively.

From Theorem 5.1 we deduce that for C and n suÆciently large f

C

n

has the

correct modality and

(10.27) sup

s�t�2�

n

jE

n

(s)�E

n

(t)j �

1

C

with arbitrarily high probability,

We consider the case of the �rst extremum only since the general case is proved

analogously, but with some more technical notation. We can also assume without

any restriction that t

l

1

< t

e

1

as if t

r

1

> t

e

1

a similar argument holds. Suppose F

C

n

is

initially convex. Then F

C

n

is the largest convex minorant of F

n

+C=

p

n (Barlow et

al, 1972) until it reaches the left endpoint t

l

1

(n;C) of I

e

1

(n;C) = [t

l

1

(n;C); t

r

1

(n;C)]:

For some constant Æ > 0 such that for each C and suÆciently large n

t

r

1

� t

e

1

= argmax

0�h�Æ

H(h)

where

(10.28) H(h) =

F

n

(t

l

1

+ h)� F

n

(t

l

1

)�

2C

p

n

h

:

As F is convex on [t

l

1

; t

e

1

]. Lemma 10.1 implies that

(10.29) G(h) =

F (t

e

1

+ h)� F (t

e

1

)

h
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de�nes a strictly increasing function on [0;

4

3

�] where � = t

e

1

� t

l

1

. Furthermore, for

all � < �

H

�

4

3

�

�

�H(�) � G

�

4

3

�

�

�G(�) +

2C

p

n�

�

2C

p

n

4

3

�

�

2

C

p

n�

�

2C

p

n

�

�

1

�

�

3

4�

�

1

C

2

�

�

> 0:

(10.30)

This shows that H cannot attain its maximum on [0; �] and consequently t

r

1

> t

e

1

.

Proof of (b):

We suppose that S

n

has a local maximum on

I

e

1

(n;C) = [t

l

1

(n;C); t

r

1

(n;C)];

that t

e

1

2 I

e

1

and that (10.27) is satis�ed. De�ne G by

H(h) =

F (t

l

1

+ h)� F (t

l

1

)�

2C

p

n

h

:

and consider

h

0

= argmax

0�h�Æ

G(h):

Then G

0

(h

0

) = 0 implies

f(t

l

1

+ h

0

)h

0

= F (t

l

1

+ h

0

)� F (t

l

1

)�

2C

p

n

:

Using Taylor expansions in t

e

1

and the fact that f

0

(t

e

1

) = 0 we obtain

3h

0

(t

l

1

+ h

0

� t

e

1

)

2

= (t

l

1

+ h

0

� t

e

1

)

3

+ (t

e

1

� t

l

1

)

3

�

12C

p

nf

00

(t

e

1

)

+ o(h

3

0

):

Thus

h

0

(3(t

l

1

� t

e

1

)h

0

+ 2h

2

0

) = �

�12C

p

nf

00

(t

e

1

)

+ o(h

3

0

)

and �nally

h

3

0

� �

6C

p

nf

00

(t

e

1

)

+ o(h

3

0

):

In the other direction we consider

(10.31) h

1

= argmax

0�h�Æ

F (t

e

1

+ h)� F (t

e

1

)�

2C

p

n

h

and

h

2

= argmin

0�h�Æ

F (t

e

1

� h)� F (t

e

1

)�

2C

p

n

h
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It is not diÆcult to see that h

0

� h

1

+ h

2

. Setting the derivative of the right-hand

side of (10.31) to zero and using a Taylor expansion in t

e

1

yields

1

2

h

3

1

f

00

(t

e

1

) =

1

6

h

3

1

f

00

(t

e

1

)�

2C

p

n

+ o(h

3

1

):

Thus

h

3

1

= �

6C

p

nf

00

(t

e

1

)

+ o(h

3

1

):

The same argument holds for h

2

as well and both together show that

h

3

0

� �

12C

p

nf

00

(t

e

1

)

+ o(h

3

0

):

De�ne H as in (10.28) and consider

~

G(h) = G(h)�

2

p

C � nh

and

~

h

0

= argmax

~

G(h):

The considerations above show that

 

�

6(C +

1

p

C

p

nf

00

(t

e

1

)

!

1

3

�

~

h

0

(1 + o(1)) �

 

�

12(C +

1

p

C

p

nf

00

(t

e

1

)

!

1

3

:

Furthermore for all h > (1 +

1

p

C

)

~

h

0

H(

~

h

0

)�H(h) � G(

~

h

0

)�G(h)�

2

C

p

nh

=

~

G(

~

h

0

)�

~

G(h) +

2

p

C � n

~

h

0

�

2

p

C � nh

�

2

C

p

nh

> 0:

(10.32)

Consequently, H cannot attain its maximum in h >

~

h

0

(1 +

1

p

C

) and hence

argmax

0<h<Æ

H(h) < (1 +

1

p

C

) �

 

�

12(C +

1

p

C

p

nf

00

(t

e

1

)

!

1

3

:

Similarly it can be shown that

argmax

0<h<Æ

H(h) < (1�

1

1 +

p

C

) �

 

�

6(C �

1

p

C

p

nf

00

(t

e

1

)

!

1

3

:

Proof of (c):

The proof relies on the modulus of continuity of the empirical process E

n

.
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Lemma 10.2. Let Y (n;C) denote random variables such that for all " > 0

lim

C!1

lim

n!1

P (jY (n;C)j < ") = 1:

Consider

�

n

=

1

n




for some 
 < 1 and

�

C

n

= max

�

1

log(n)

; Y (n;C)g

�

Then for all B > 2 we have

lim

C!1

lim

n!1

P( max

�

n

<js�tj<�

C

n

jE

n

(s)�E

n

(t)j

q

jt� sj � log(

1

jt�sj

)

> B) = 0:

Proof: De�ne random integer-valued variables K

n

by

K

n

= blog

2

�

�

C

n

�

n

�

c

Simple considerations show that

P

�

max

�

n

<js�tj<�

C

n

jE

n

(s)�E

n

(t)j

q

jt� sj � log(

1

jt�sj

)

> B

�

�

1

X

k=0

P

�

jE

n

(s)�E

n

(t)j > B �

s

jt� sj � log(

1

jt� sj

) for some s; t with

2

k

�

n

< js� tj < 2

k+1

�

n

�

�

�

k � K

n

�

�

1

X

k=0

P

�

j!

n

(2

k+1

�

n

) > B �

r

2

k

�

n

� log(

1

2

k

�

n

)

�

�

�

k � K

n

�

where !

n

(a) = sup

js�tj<a

jE

n

(s)�E

n

(t)j. Denote 2

k+1

�

n

by a

k

and

�

k

= B �

s

log(

1

�

n

)

2

:

Using a result of Mason, Shorack and Wellner (1983) we conclude that

P

�

!

n

(a

k

) >

p

a

k

� �

k

�

�

�

k � K

n

�

�

20

a

k

� (�

C

n

)

3

� exp

�

�(1� �

C

n

)

4

�

2

k

a

 

�

�

k

p

na

k

��

(10.33)

where

 (x) = 2 �

(1 + x)(log(1 + x) � 1) + 1

x

2

:
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provided

(10.34) �

C

n

<

1

2

:

As

�

k

p

na

k

=

B �

q

log(

1

�

n

)

p

2 � n2

k+1

� �

n

�

B �

q

log(

1

�

n

)

p

n � �

n

=

~

C �

p

log(n)

n

1=3

it follows that  (

�

k

p

na

k

)! 1.

As  is strictly decreasing for x � 1,

(10.35) lim

C;n!1

P((1� �

C

n

)

4

�  

�

�

k

p

na

k

�

>

2

B

) = 1

This implies

P

�

!

n

(a

k

) >

p

a

k

� �

k

�

�

�

k � K

n

�

�

20

a

k

(�

C

n

)

3

exp

 

�

2

B

�

B

2

� log(

1

�

n

)

4

!

=

20

2

k+1

�

n

(�

C

n

)

3

�

B=2

n

=

10 log(n)

3

2

k

n


(B=2�1)

provided that the inequalities (10.34) and (10.35) are also satis�ed.

Putting this together we deduce that

P

�

jE

n

(s)�E

n

(t)j > B �

s

jt� sj � log(

1

jt� sj

) for some s; t with �

n

< js� tj < �

C

n

�

�

1

X

k=0

1

2

k

�

10 log(n)

3

2

k

n


(B=2�1)

<

20 log(n)

3

2

k

n


(B=2�1)

This completes the proof of the Lemma.

We proceed now with the proof of (c). Since is f is twice continuously di�eren-

tiable, there is some constant D > 0 such that

jF (x+ h)� F (x)� hf(x)�

1

2

h

2

f

0

(x)j � Dh

3

for all x and h.

Let B be an arbitrary constant greater than 2 and

d(n;C) = minfjf

0

(x)j jx 2 [0; 1] n [

i

I

e

i

(n;C)g:

De�ne a random sequence h(n;C) by

h(n;C) =

(8B)

2=3

log(d(n;C)

2

n)

1=3

(3n)

1=3

d(n;C)

2=3

:

We consider the situation where
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� f

C

n

attains the correct modality

� t

e

i

2 I

e

i

(n;C) for all i.

� The empirical process satis�es

sup

js�tj<Y (n;C)

jE

n

(t)�E

n

(s)j < B �

p

js� tj � log(1=js� tj)

where Y (n;C) is de�ned by

Y (n;C) = maxfx

j+1

� x

j

j x

j

; x

j+1

knots, [x

j

; x

j+1

] 6= I

e

i

(n;C) for all ig:

� For all x 2 [0; 1] n [

i

I

e

i

(n;C)

h

n

�

f

0

(x)

32D

holds.

� For each extreme interval I

e

i

(n;C), the distances of each endpoint to t

e

1

are

both smaller than 4h

n

.

The preceding lemmas and parts of this theorem show that the probability that all

these assumptions are satis�ed simultaneously converges to 1 as n and C tend to

1. For example, (10) follows from (b) which provides a constant A > 0 such that

jf

0

(x)j � A � n

�1=6

.

Consider now an arbitrary point t

1

2 [0; 1] n [

i

I

e

i

(n;C) where f

0

(t

1

) > 0. Then

F

n

(t

1

+ h

n

)� F

n

(t

1

)

h

n

� f(t

1

) +

1

2

h

n

f

0

(t

1

) +Dh

2

n

+

B

p

log(1=h

n

)

p

nh

n

:

Plugging in the expression for h

n

and using the assumptions made above we see

that

F

n

(t

1

+ h

n

)� F

n

(t

1

)

h

n

� f(t

1

) +

1

2

h

n

f

0

(t

1

)(1 +

1

4

+

1

4

):

Similarly, we conclude that for all h 2 [4h

n

; t

e

j

]

F

n

(t

1

+ h)� F

n

(t

1

)

h

� f(t

1

) +

1

2

hf

0

(t

1

)(1�

1

4

�

1

4

)

where t

e

j

is the smallest local extreme value greater than t

1

.

Suppose that there are knots x

j

and x

j+1

that do not embrace a local extreme

interval such that h

0

= x

j+1

�x

j

> 4h

n

and such that f is increasing on [x

j

; x

j+1

].

The width

~

h is the local argmin

~

h = argmin

0<h<Æ

F

n

(x

1

+ h)� F

n

(x

1

)

h

:

On the other hand the considerations above show that

F

n

(x

1

+ h

n

)� F

n

(x

1

)

h

n

<

F (x

1

+ h)� F

n

(x

1

)

h

:

Therefore, the distance between two knots that do not embrace an extreme interval

is bounded by 4h

n

.
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Proof of (d):

We assume that all the assumptions made in the proof of (c) are again satis�ed

and that each two extreme intervals I

e

i

and I

e

i+1

are separated by at least two

additional knots x

j

and x

j+1

:

max I

e

i

< x

j

< x

j+1

< min I

e

i+1

:

De�ne h

n

as in (10.31). Consider a knot x

i

which does not delimit a local extreme

interval I

e

i

. We take f to be increasing in x

i

. Then the proof of (c) shows that

f

C

n

(x

i

) �

F

n

(x

i

+ h

n

� F

n

(x

i

)

h

n

� f(x

i

) + C

1

jf

0

(x

i

)j

1=3

�

log(n)

n

�

1=3

:

Similar arguments show that

f

C

n

(x

i

) �

F

n

(x

i

)� F

n

(x

i

� h

n

h

n

� f(x

i

)� C

1

jf

0

(x

i

)j

1=3

�

log(n)

n

�

1=3

:

Analogous inequalities can be derived in the case where f is decreasing in x

i

.

Suppose now that t is an arbitrary point in

"

A

�

log(n)

n

�

1=3

; 1�A

�

log(n)

n

�

1=3

#

n [

k

i=1

I

e

i

(n;C):

Let x

i

be the nearest knot which does not delimit a local extreme interval. Then

(10.36) jf(t)� f

C

n

(t)j � jf(t)� f(x

i

)j+ jf(x

i

)� f

C

n

(x

i

)j+ jf

C

n

(x

i

)� f

C

n

(x)j:

The inequalities above show that the second term is bounded by

C

2

jf

0

(x

i

)j

1=3

�

log(n)

n

�

1=3

:

The �rst term is bounded by

C

3

� jt� x

i

j � jf

0

(x

i

)j � C

3

� jf

0

(x

i

)j

1=3

�

log(n)

n

�

1=3

:

This follows from (b).

Depending on the exact de�nition of f

C

n

(x) at knot points the third term is either

0 or bounded by 2C

1

jf

0

(x

i

)j

1=3

�

log(n)

n

�

1=3

.

This completes the proof of (d).

Proof of (e):

As in the other cases we assume that f

C

n

attains the correct modality and that

t

e

i

2 I

e

i

(n;C) for each extreme point t

e

i

. We also assume that for each extreme

interval I

e

i

(1�

1

1 +

p

C

) �

 

�

6(C �

1

p

C

p

nf

00

(t

e

1

)

!

1

3

� jI

e

i

(n;C)j � (1 +

1

p

C

) �

 

�

12(C +

1

p

C

p

nf

00

(t

e

1

)

!

1

3

:
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The regression function f

C

n

takes in t

e

i

the slope of the taut string in the extreme

interval I

e

i

= [x

1

; x

2

]: Taylor expansions in t

e

i

using f

0

(t

e

i

) = 0 show that

F (x

2

)� F (x

1

)

x

2

� x

1

� f(t

e

i

)

�

1

6

f

00

(t

e

i

)

(x

2

� t

e

i

)

3

� (x

1

� t

e

i

)

3

x

2

� x

1

+O

�

(x

2

� t

e

i

)

4

� (x

1

� t

e

i

)

4

x

2

� x

1

�

�

1

6

f

00

(t

e

i

)(x

2

� x

1

)

2

+O

�

(x

2

� x

1

)

3

�

and, similarly,

(10.37)

F (x

2

)� F (x

1

)

x

2

� x

1

� f(t

e

i

) �

1

24

f

00

(t

e

i

)(x

2

� x

1

)

2

+O

�

(x

2

� x

1

)

3

�

:

Another application of the modulus of continuity for the empirical process E

n

as

formulated in Lemma 10.2 yields

f

C

n

(t

e

i

) =

F (x

2

)� F (x

1

)

x

2

� x

1

+

E

n

(x

2

)�E

n

(x

1

)

p

n(x

2

� x

1

)

� f(t

e

i

) +

1

6

f

00

(t

e

i

)(x

2

� x

1

)

2

� (1 + o(1)) +B

q

log(

1

x

2

�x

1

)

p

n � (x

2

� x

1

)

� f(t

e

i

) + C

1

�

f

00

(t

e

i

)

1=3

n

1=3

(1 + o(1))

Applying the same arguments to (10.37) we conclude that

jf

C

n

(t

e

i

)� f(t

e

i

)j � D

1

� (1 + o(1)) �

f

00

(t

e

i

)

1=3

n

1=3

:

The proof is now completed by extending the bound to arbritrary points in extreme

intervals I

e

i

. This is done in the usual way as in as in (10.36) using a Taylor expansion

in t

e

i

and shows that

jf(t)� f(t

e

i

)j � D

2

jI

e

i

j

2

f

00

(t

e

i

):


