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Abstract

In this paper the general solution for a projection matrix on latent

factors ful�lling the condition (XG)

0

(XG) = I

r

is found and proved.

The practical importance of this lemma is outlined.
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1 Introduction

Latent factors are used in many multivariate statistical methods like reduced

rank regression or principal component analysis.

In reduced rank regression (see Schmidli (1995) or Reinsel and Velu (1998))

the di�erent techniques like Partial Least Squares, Canonical Correlation

Analysis or Redundancy Analysis di�er only in the way they project the orig-

inal variables on latent factors (see Schmidli (1995), page 61). To achieve a

prediction optimal projection, the mean squared error of prediction (MSEP)
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can be written as a function of the projection matrix (see Weihs and Hothorn

(2002), page 6). All possible projection matrices must ful�ll the side-condition

that the latent factors are orthonormal (see Schmidli (1995), page 55). To

do a computer intensive minimization of the MSEP it is therefore useful to

know the space of possible solutions of the side-condition. Within this solu-

tion space the MSEP can be minimized for example by means of simulated

annealing (see L�ubke (2002), page 27pp).

Knowledge about the structure of the general solution is also useful to con-

struct an experimental design for a simulation study in order to test and

compare di�erent regression techniques. To obtain general results (and not

just compare one speci�c example) characteristics of the underlying model

and the projection matrix can be varied. This can, however, only be done if

the aforementioned structure is known (see L�ubke (2002), page 30pp).

This paper is organized as follows: In section 2 the reduced rank regression

model is brie
y introduced. Section 3 presents and proves a lemma on the

general solution of the projection matrix on latent factors. In section 4 we

look at a more operable form of the general solution space.

2 The latent factor model

The basic multivariate linear model looks as follows

Y = 1

n

�

0

+XM + E (1)

where

� Y 2 IR

n�q

is the data of the response variables.

� � 2 IR

q

is the mean vector of the responses.

� X 2 IR

n�k

is the data of the explanatory variables. For simplicity it is

assumed that X is mean centered.

� M 2 IR

k�q

is the unknown regression coeÆcient matrix.

� E 2 IR

n�q

is the matrix of the errors.

If there are many response and explanatory variables but only a small num-

ber of observations is available the number of parameters to estimate in the

regression coeÆcient must be reduced. But even if there are 'enough' data
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points available there is often the well known problem of over-�tting. Espe-

cially when the explanatory variables X are correlated there are numerical

problems in estimating the regression coeÆcient (see Belsley et al. (1980),

page 114).

Also, besides the possible statistical problems in the basic model there might

be hypothetical unobservable 'latent' variables.

To solve the statistical problems it is often assumed that instead of the

variables X in the model (1) so-called latent variables Z under the side-

condition Z

0

Z = I

r

(r < k) with Z = XG are used (compare for example

Schmidli (1995) or Reinsel and Velu (1998)).

The model with latent factors looks as follows:

Y � 1

n

�

0

= XM + E = (XG)B + E =: ZB + E

with the side condition

(XG)

0

(XG) = I

r

:

Then, like with Partial Least Squares, Principal Component Regression,

Canonical Correlation Analysis and Redundancy Analysis the least squares

estimates of the regression coeÆcients of the response variables on the latent

factors is the least squares estimate are of the form:

^

B = Z

0

(Y � 1

n

�̂

0

).

The above methods di�er in the way they estimate the projection matrix

G. To compare them in di�erent situations the feasible projection matrices

must be investigated.

3 General solution of (XG)

0

(XG) = I

r

In this section the general structure of the solution of the side-condition is

revealed in the following lemma.

Lemma

Let X 2 IR

n�k

. The general solution for (XG)

0

(XG) = I

r

is

G = X

+

A+ (I

k

�X

+

X)C (2)

where A 2 IR

n�r

is any matrix with span(A) � span(X) and

A

0

A = I

r

, and C 2 IR

n�r

is arbitrary.
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Note that the conditions for A imply r < k and r � rank(X).

The lemma consists of two parts: The �rst (i) says, that any G with G =

X

+

A + (I

k

� X

+

X)C and A according to the conditions is a solution of

(XG)

0

(XG) = I

r

. The other part (ii) says, that all solutions G can be writ-

ten in the form of equation (2).

Proof

(i) G in equation (2) is a solution.

From span(A) � span(X) immediately follows

9G so that XG = A: (3)

This means that equation (3) has got a solution. The general solution is (see

Harville (1997), page 141)

G = X

+

A+ (I

k

�X

+

X)C: (4)

From (3) it follows that

(XG)

0

(XG) = A

0

A:

But according to the lemma A

0

A = I

r

so:

(XG)

0

(XG) = A

0

A = I

r

:

(ii) Every solution G can be written as

~

G with

~

G = X

+

A+(I

k

�X

+

X)C.

Let A := XG and C := G.

Now the conditions on A are ful�lled:

span(A) = span(XG) � span(X):

Also

A

0

A = (XG)

0

(XG) = I

r

:

And

~

G = G, since:

~

G = X

+

XG+ (I

k

�X

+

X)G

= X

+

XG+G�X

+

XG = G:

This completes the proof. 2

When X is of full colum rank the general solution becomes G = X

+

A,

since X

+

X = (X

0

X)

�1

X

0

X = I

k

.
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4 Practical Considerations

Knowing the structure of the general solution of the side-condition one only

needs to implement this either in an optimization algorithm or in an exper-

imental design for the latent factor model. To make the assumptions in the

lemma on A more practical one can use A = U

X

F where U

X

2 IR

n�p

(p being

the rank ofX) stems from the singular value decomposition ofX = U

X

L

X

V

0

X

,

and F 2 IR

p�r

an arbitrary orthonormal matrix. Then the assumptions on

A are given as

span(A) = span(U

X

F )

� span(U

X

)

= span(X)

and

A

0

A = (U

X

F )

0

(U

X

F )

= F

0

U

0

X

U

X

F

= F

0

I

p

F

= I

r

:

With this it is easy to ful�ll the side condition Z

0

Z = I

r

: One only needs

an arbitrary orthornomal matrix F . When r is smaller than p it is always

possible to (post-)ortho-normalize a full rank p � r matrix F for example

by the Gram-Schmidt method. The condition of r < p is ful�lled in the

common problem when X is of full-column rank and one looks for a latent

factor model with fewer latent factors than there are explanatory variables.

An application of this method for the case that X is of full column rank is

given in depth by L�ubke (2002).
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