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An Inductive Logic Programming Approach to the

Classi�cation of Phases in Business Cycles

Katharina Morik, Stefan R�uping

Univ. Dortmund, Computer Science Department, LS VIII

morik@ls8.informatik.uni-dortmund.de

Abstract A workbench for knowledge acquisition and data analysis is pre-

sented and its use for the classi�cation of business cycles is investigated. Induc-

tive Logic Programming (ILP) allows to model relations between intervals, e.g.

time or value intervals. Moreover, the user of the workbench is supported in

inspecting the learned rules, not only with respect to their coverage, accuracy,

and redundancy, but also regarding consistency (i.e., logical contradictions).

The application of ILP requires pre-processing in order to establish time and

value intervals. To this end, top-down induction of decision trees is used. This

paper describes the workbench MOBAL, its learning algorithm RDT, the pre-

processing of data, and the �rst encouraging results on business cycle data from

Germany.

1 Introduction

The observation of ups and downs of business activities has been observed

since a long time

1

. It is, however, hard to capture the phenomenon by a clear

de�nition. The National Bureau of Economic Research (NBER) de�nes business

cycles as \recurrent sequences of altering phases of expansion and contraction

in the levels of a large number of economic and �nancial time series." This

de�nition points at the multi-variate nature of business cycles. It does not

specify many of the modeling decisions to be made. There is still room for a

variety of concepts.

� What are the indices that form a phase of the cycle? Production, em-

ployment, sales, personal income, and transfer payments are valuable in-

dicators for cyclic economic behavior. Are there others that should be

included?

� Which measurements of indices are to be taken? Where the classical busi-

ness cycle is expressed according to the level of indicators, the growth cycle

is measured with respect to the deviation from the trend of indicators.

� What is the appropriate number of phases in a cycle? The number of

phases in a cycle varies in economic models from two to nine. The NBER

model indicates two alternating phases. The transition from one phase

to the next is given by the turning points trough and peak. In the RWI

model, a cycle consists of a lower turning point, an upswing, an upper

1

Amstad reports the �rst de�nition from Clement Juglar in 1860 [2]. She investigates

several models of the business cycle and discusses their distinctions with respect to dating

turning points of the business cycle.
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turning point, and a downswing. Here, the turning points are phases that

cover several months.

� Are all cycles following the same underlying rules or has there been a

drift of the rules? What is the appropriate sample for classifying current

business data?

All modeling decisions are to be (comparatively) validated with respect

to economic theory and to business data. One approach to validation is the

formalization by macro-economic equations. A model of business cycles is cal-

culated ex post and the deviation of the results of the equations from the ob-

served values assesses the model. For instance, the business cycle model of the

Rheinisch-Westf�alisches Institut f�ur Wirtschaftsforschung (RWI) only deviated

1.2 per cent for the spring 2000 state of a�airs in Germany [5]. The main focus

here lies on the prediction of level or growth of business activities. We do not

contribute to this approach. The other approach is an empirical one, in which

statistical methods are adjusted to business data and used for prognoses. Again,

the validity of statistical models is validated on past data. We are concerned

with the development and comparison of methods for the empirical modeling of

business cycles. Empirical methods are particularly demanded for the task of

dating turning points or phases of the business cycle. Our question is: Which

methods can support modeling and validating models of the business cycle?

More precisely: Can inductive logic programming support economists in dating

and predicting phases of the business cycle? We may re-formulate the questions

into two general problems.

Dating: Given current (and past) business measurements, in which phase is

the economy currently? In other words, the current measurements are to

be classi�ed into the phases of a business cycle.

Prediction: Given current (and past) business measurements, what do we

expect next?

Linear discriminant analysis has been proposed as the baseline of empirical

models [?]. Univariate rules were learned that used threshhold values for sepa-

rating phases. The accuracy of the 18 learned rules was 54% in cross validation.

Using this result as the baseline means that the success of any other method

has to be shown in comparison to this accuracy. It has been investigated how

the classi�cation can be enhanced by the use of monthly data [4]. More so-

phisticated statistical models have been developed and achieved 63% accuracy

[?]. However, even this substantial enhancement still reects how hard it is to

classify business phases correctly.

The diÆculty of the problem lies in its multi-variate nature, which follows

from the de�nition of business cycles. Moreover, the business cycle cannot be

observed directly and main factors of inuence may well be hidden. Hence,

we may want to incorporate economic knowledge (theory) into business cycle

data analysis. In fact, the advanced Markov Switching model as it was used by

Sondhauss and Weihs expresses knowledge about the past phase and the tran-

sition probability to the next phase [?]. Also the approach which we describe
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in this paper, exploits domain knowledge. Here, economic knowledge is used

to restrict the space of possible rules in order to exclude those that would not

make sense or are trivially true.

In this paper, we investigate the applicability of inductive logic programming

to the problem of dating phases of a business cycle. We were given quarterly

data for 13 indicators concerning the German business cycle from 1955 to 1994,

where each quarter had been classi�ed as being a member of one of four phases

[3]. The indicators are:

IE real investment in equipment (growth rate)

C real private consumption (growth rate)

Y real gross national product (growth rate)

PC consumer price index (growth rate)

PYD real gross national product deator (growth rate)

IC real investment in construction (growth rate)

LC unit labour cost (growth rate)

L wage and salary earners (growth rate)

Mon1 money supply M1

RLD real long term interest rate

RS nominal short term interest rate

GD government de�cit

X net exports

We experimented with di�erent discretizations of the indicator values. The

discretization into ranges (levels) of values was also used in order to form time

intervals. A sequence of measurements within the same range is summarized

into a time interval. For instance, the money supply being high for quarters 8

to 18 is summarized by the fact mon1(i1,high), where i1 corresponds to the

time intervall from 8 to 18. Hence, the time intervals di�er from indicator to

indicator. Relations between the di�erent time intervals express precedence or

domination of one indicator's level to another ones level. We also compared the

two phase with the four phase business cycle. In summary, the following three

models were inspected:

� business cycle with four phases, without time intervals,

� business cycle with four phases, time intervals,

� business cycle with two phases, without time intervals.

Particular attention was directed towards the appropriate sample size for the

dating problem. The homogenity of the data set of business cycles with two

phases was investigated. The hypothesis being that at the end of cycle 3 (i.e.,

third quarter of 1971) the rules for dating phases could change.

2 Inductive Logic Programming

Inductive Logic Programming (ILP) establishes the intersection of logic pro-

gramming and machine learning. A logic program is learned from observations

by inductive reasoning. The logic program expresses a theory in the form of
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facts and rules in a restricted �rst-order logic. The theory describes diverse

concepts together with the relations among them. This contrasts with proposi-

tional logic, where only one concepts and its sub-concepts can be modeled. A

simple example illustrates this.

Given the observations

mother (ann; brigid): mother (alice; bonnie)

mother (brigid; cecilie): mother (bonnie; christie)

old (ann): old (alice):

grandmother (ann; cecilie): grandmother (alice; christie):

ILP may learn the rule

mother(X;Z);mother(Z; Y )! grandmother(X;Y )

Whereas a propositional learner cannot exploit the relations but can only

learn the heuristic:

old(X)! grandmother(X;Y )

A logic program is directly executable. The learned rules derive the conclu-

sion from new facts. For instance, the learned grandmother rule derives

grandmother(agatha; carol):

as soon as the facts are stated:

mother(agatha; beth): mother(beth; carol):

The expressive power of �rst-order logic proves especially successful in rela-

tions between intervals. Explicitly the starting and end point of an interval can

be stated together with the relations between intervals. For instance, direct

precedence can easily be expressed between time intervals, here between the

time intervals from T1 to T2, from T2 to T3, and from T3 to T4:

cooking(C; T1; T2); serving(S; T2; T3); eating(E; T 3; T4) (direct precedence)

Similarly, inclusion and overlap of intervals is written.

cooking(C; T1; T4); serving(S; T2; T3); T1 � T2; T3 � T4 (inclusion)

cooking(C; T1; T3); serving(S; T2; T4); T1 � T2; T3 � T4 (overlap)

It has been shown that the time relations of Allen's calculus [1] can be

expressed in the form of a logic program [12, 13].

Note, that the �rst-order logic rules are inherently multi-variate. Distinct

events can be expressed with their properties. For instance, the activities cook-

ing (C), serving (S), and eating (E) can be described independently from

another, naming the involved places (Y 1; Y 2), persons X1 to X5, and their

properties (salary) and relations (mother; father).

cook (X1; C): guest (X3; E):

salary (X1; W1): guest (X4; E):

kitchen (Y 1; C): guest (X5; E):

recipe (Z; C): mother (X3; X5):

waiter (X2; S): father (X4; X5):

salary (X2; W2):

diningRoom (Y 2; S):

Of course, this representation can be compiled down to propositional logic, if

the number of objects is �nite [9]. However, the ease of understanding is lost in

the compilation. The understandibility of �rst-order logic eases the formulation

of hypotheses that the learning algorithm should test on the data. We shall see,
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how user-speci�ed sets of hypotheses are represented and tested by the Rule

Discovery Tool.

A last advantage of ILP to be mentioned is the explicit statement of back-

ground knowledge, commonly in terms of facts. In the grandmother example,

the facts stating the grandmother role are the examples and the facts stating

the mother role are the background knowledge.

We may now state the task of concept learning within ILP formally.

Concept learning or learning classi�cations

Given positive and negative examples E = E

+

[E

�

in a representation language

L

E

and background knowledge B in a representation language L

B

,

�nd a hypothesis H in a representation language L

H

, which is a (restricted)

�rst-order logic, such that

(1) B;H; E

+

6j= 2 (consistency)

(2) B;H j= E

+

(completeness of H)

(3) 8e

�

2 E

�

: B;H 6j= e

�

(accuracy of H)

2.1 MOBAL

MOBAL is a workbench which allows users to easily enter facts and rules,

detects inconsistencies in the knowledge base, and proposes minimal changes to

facts and rules in order to make it consistent [10]. In addition to the support

of users in building up a knowledge base, the rule discovery tool automatically

learns rules from facts and adds the learned rules to the knowledge base.

2.1.1 The Rule Discovery Tool RDT

For learning rules from facts, the Rule Discovery Tool RDT forms all possible

rules according to a user given hypothesis space [6]. The user speci�es rule

schemata. A rule schema has predicate variables that can be instantiated by

predicates of the domain. An instantiated rule schema is a rule. Rule schemata

are partially ordered according to their generality. For our learning task of

dating business data according to the business cycle, we �rst used the following

rule schemata:

m1 (Index1, Value, Phase):

Index1(T; V ); V alue(V )! Phase(T )

m2 (Index1,Value,Index2, Phase):

Index1(T; V ); V alue(V ); Index2(T; V )! Phase(T )

m3 (Index1, Value1,Index2,Value2,Phase):

Index1(T; V 1); V alue1(V 1); Index2(T; V 2); V alue2(V 2); opposite(V 1; V 2)!

Phase(T )
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Here, m1 is more general than m1 and m2. The predicates that �t to instan-

tiate the predicate variable Index are the 13 indicators of the economy (see

above), e.g., lc(T ime; V alue) for unit labour cost. The predicates that �t to

instantiate the predicate variable V alue are low;medium; high and express the

discretization of the real values of the indicators. The phase variable can be

instantiated by down; ltp; up; utp for four phases or by down; up for two phases

of the business cycle. The opposite predicates is used to write which qualitative

value intervals are excluding each other. The background knowledge consists

of such facts:

opposite(low;medium):

opposite(high;medium):

opposite(high; low):

Hence, the hypothesis space consists of all indicators or combinations of

two indicators that allow to predict the phase of the business cycle. Uni-variate

rules with just one indicator are excluded, because they are not considered to

be sensible. Where m2 states that two indicators have to have values within

the same range (e.g., both are low), m2 states that two indicators must have

opposite value ranges. The three rule schemata here enforce the selection of the

most informative indicators. By giving more complex rule schemata, the user

enables RDT to learn more complex rules. The rule schemata are the means

by which the set of interesting rules is speci�ed.

RDT's learning procedure consists of two steps: hypothesis generation and

testing. In a top-down, breadth-�rst manner, all possible instantiations of the

rule schemata are generated and tested according to an acceptance criterion on

the basis of all facts. For instance, the following rules which instantiate m1 and

were learned in one of our experiments:

mon1(T; V );medium(V )! up(T )

lc(T; V ); low(V )! up(T )

The following instantiation of m2 has been learned in another experiment:

ic(T; V );medium(V ); pc(T; V )! down(T )

A illustration for m3 is the following learned rule:

rs(T; V 1);medium(V 1); x(T; V 2)low(V 2)! down(T )

If a rule has enough support but too many non supporting examples, it is

considered too general. Later on, it becomes a partial instantiation of a more

speci�c rule schema if this exists. If a rule does not have enough support, it is

considered too speci�c. In this case, the rule need not be specialized further,

since this cannot increase the number of supporting examples. RDT safely

prunes the search in this case. RDT learns all valid rules that �t the rule

schemata. Hence, a rule which is not learned, de�nitely does not hold given the

facts.

2.1.2 Rule Inspection

For both, user given and learned rules, we might be interested in their coverage

of examples and in their redundancy. The coverage can be measured by the

percentage of the positive examples for a concept, that is covered by the rule.

For instance, if there are 58 time points classi�ed as down, we are interested
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in how many of them are covered by a certain rule predicting a downswing.

We are also interested in the number of examples that are covered by all the

rules together. The rule inspection of MOBAL indicates for each rule, how

many of the input fatcs (in our experiments, time points that are classi�ed into

a certain phase of the business cycle) are correctly classi�ed by the rule. For

a set of rules, MOBAL indicates how many examples are covered by all the

rules, or, in other words, how many examples cannot be explained by the rules.

Redundancy of rule sets can be determined intensionally or extensionally. The

intensional redundancy refers to the logical models that form the semantics of

the rule set. The extensional redundancy of a rule set refers to the examples

that are covered by the rules: if the same examples are covered by several rules,

these rules are extensionally redundant [14]. Rules that are 100 % extensionally

redundant are not necessarily intensionally redundant. They might cover new

examples not yet seen which would not be explained by another rule. It is up to

the domain expert to assess which of the extensionally redundant rules should

be kept within the knowledge base.

2.1.3 Knowledge Revision

A set of rules can easily become contradictive. Most user-given rule sets �rst

show contradictions because the user is not aware of all implications of all

rules. Also learned rule sets can become contradictive. The most frequent

contradiction occurs when applying the rules learned from a set of data (i.e.

the training set) to another set of data (i.e. the test set): the predicted phase

di�ers from the one given by the expert. In general, the detection and revision of

inconsistencies is a hard problem. Due to the well-de�ned semantics of MOBAL

and its restrictions of �rst-order logic, the problem could be solved [15, 16]. The

system determines the facts and rules that are involved in the contradiction.

It calculates all minimal changes to the knowledge base that would make it

consistent again. The user chooses among the proposed changes and the system

revises the knowledge base accordingly. Hence, the user is supported in building

up a knowledge base about a domain by integrating rule sets, either learned or

input. In particular, the user may input domain (causal) knowledge and the

system watches that no learned rule contradicts the theoretical insight.

3 Experiments on German Business Cycle Data

Our leading question was whether ILP can support economists in developing

models for dating phases of the business cycle. Given the quartely data for

13 indicators concerning the German business cycles from 1955 to 1994 where

each quarter is classi�ed as member of one of four phases, we used all but one

cycle for learning rules and tested the rules on the left-out cycle. The leave-one-

cycle-out test assesses the accuracy (how many of the predicted classi�cations of

quarters corresponded to the given classi�cation) and the coverage (how many

of the quarters received a classi�cation by the learned rules).

We now come back to the questions raised in the introduction. The learned

rules automatically select pairs of relevant indicators. Hence, all learning ex-
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periments contribute to the question, which indicators actually inuence the

classi�cation into one phase of the business cycle. Since the data we have are

measuring the growth, the learning results refer to the growth cycle. However,

we experimented with automatically �nding ranges or levels of values of the

indicators in order to base the learning results on a view of the business cycle

which favours the level of indicator values (see Section 3.1). In order to tackle

the question about the number of phases in business cycles, we have modeled

four phases (see Sections 3.2 and 3.3) and two phases (see Section 3.4). An

additional modeling decision needs to be made according to the handling of the

time aspect in the data. In two experiments (Section 3.2 and Section 3.4), we

just used the quarters as time points. No time intervals were formed. The rule

schemata are the ones shown in Section 2.1.1. Hence, the rules only classify

a quarter based on the measurements of this quarter. In a third experiment,

we formed time intervals for the indicators and learned rules between them

(Section 3.3).

3.1 Discretization

Before ILP can be applied, the originally real-valued time series of indicator

values have to be transferred into discrete-valued temporal facts about this in-

dicator. The goal of discretization is to provide the learning algorithm with data

from which it can generalize maximally. This means, the discretization must be

general enough such that rules learned from one situation can be transferred to

another situation but speci�c enough such that non-trivial rules can be found.

An example for a too speci�c discretization is to assign di�erent values to every

observation, an example for a too general discretization is to assign the same

value to every observation. We use the number of generated facts to judge the

quality of a discretization.

Actually, the task of discretization consists of two di�erent subtasks:

Discretization of Values: split the continuous range of possible values into

�nitely many discrete values, e.g. by using equidistant thresholds or cal-

culating suitable quantiles. For example, a gross national product of 4:93

in the �fth quarter could be expressed as the fact y(5; 4:93).

Interval segmentation: for a given time series, �nd a segmentation of the

time points into maximal sub-intervals, such that the values of the series in

this interval share a common pattern, e.g. by approximating the time se-

ries by piecewise constant or piecewise linear functions. For example, the

time series of gross national products Y = (10:53; 10:10; 9:21; 5:17; 4:93)

could be described as the temporal facts y(1; 3; high); y(4; 5; medium),

but can also be described as y(1; 5; decreasing).

Interval segmentation can be viewed as discretization of the temporal values,

therefore in this chapter we will use the name discretization as a generic term

for both discretization of values and interval segmentation.

These two subtasks are closely intertwined: Discretized data can be very

easily segmented by joining consecutive time points with identical discretization.
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Y<1,67 ?

Y<−0,24 ? Y<4,22 ? Y<4,22 ?

Y<1,67 ?

Y<−0,24 ?

val1 val4val3val2utp downltp

..
.

..
.

Figure 1: Decision tree and its induced discretization into val1 : : : val4.

Also, segmented data can be discretized by building a discretization based on

the patterns that lead to the segmentation. In this work, we chose the �rst

approach to discretize the data, �rst because it is simpler and secondly because

the indicators are already given free of trends (growth rates etc.), so it can

assumed the relevant information lies in the value of the indicator.

To improve the quality of the discretization, we can also use the information

that is given by the class of the examples [17]. In this case, we used C4.5 [11],

a decision tree learner, to induce decision trees about the cycle phase based on

only one indicator. The resulting trees were cut o� at a given level and the

decisions in this resulting tree were used as discretization thresholds. Decision

trees of depth 2, i.e. using 4 discrete values, proved to build a suitable number

of facts.

A closer look at the resulting discretization showed that in certain cases,

the indicators had a very high variation, which lead to many intervalls that

contained only one time point. In this case, the relevant observation may not be

the value of the indicator, but the fact that this indicator was highly variating,

i.e. no de�nite value can be assigned to it. This can be expressed by a new

fact indicator(T1; T2; unsteady), which replaces the facts indicator(T1; T1 +

1; value

1

); indicator(T1 + 1; T1 + 2; value

2

); : : : ; indicator(T2� 1; T2; value

n

).

3.2 Modeling Four Phases Without Time Intervals

The data correspond to six complete businss cycles, made of four phases each.

For the upper and lower turning point phases, no rule could be learned. Only

for the upswing, each learning run delivered rules. Here are some examples of

learned rules:

gd(T; V ); pc(T; V ); low(V )! up(T )

stating that a low government de�cit and a low consumer price index determine

the phase as an upswing.

c(T; V ); l(T; V );medium(V )! up(T )

stating that a medium private consumption and a medium number of wage and

salary earners classify a quarter as belonging to an upswing.

rld(T; V );mon1(T; V ); low(V )! down(T )

stating that a low long term interest rate and a low money supply can be used

to date a downswing.
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rs(T; V ); ic(T; V );medium(V )! down(T )

stating that a medium nominal short term interest rate together with a medium

investment in construction point at being in the downswing.

Illustrating the rule inspection, we show the result for the �rst rule, called

r171 in the leave-�fth-cycle-out learning run. The di�erence between the total

number of facts about up(t) and the input occurences of up(t) is explained by

the forward inferences of the (learned) rules. They derive further facts not given

in the input.

****** Statistics on rule r171 ******

Number of rules with same conclusion -- up(t): 10

Coverage

Total:

Number of occurences of up(t): 77

Number of occurences covered by r171: 43

r171s coverage of all occurences: 55.8442 %

Number of occurences covered by all rules: 59

Total coverage of all occurences: 76.6234 %

Of inputs:

Number of input occurences of up(t): 59

Number of inputs covered by r171: 35

r171s coverage of inputs: 59.322 %

Number of inputs covered by all rules: 41

Total coverage of inputs: 69.4915 %

Redundancy

Total:

Number of occurences also covered by other rules: 28

r171s internal redundancy (redundant/covered): 65.1163

On inputs:

Number of inputs also covered by other rules: 27

r171s internal redundancy (redundant/covered) on inputs: 77.1429

************

If no rule states that the classi�cation is exclusive, then no contradiction will

be detected between the input fact utp(31) and up or utp(30) and down(30).

Hence, for testing, we entered rules of the form:

utp(t)! not(up(t))

Then, we also �nd a misclassi�cation.

Contradictory instances covered by rule r171:

auf(31) - [1000,1000]

In fact, time point 31 (corresponding to the second quarter of 1963) starts the

upswing and time point 30 (�rst quarter of 1963) �nalizes the downswing. The

10



Cycle Accuracy Coverage No.of learned rules

LOO1 0.125 0.25 13 upswing

LOO2 0.5 1.0 12 upswing

LOO3 0.462 0.462 10 upswing, 2 downswing

LOO4 0.375 1.0 11 upswing

LOO5 0.696 0.696 10 uspwsing, 1 downswing

LOO6 1.0 0.36 1 upswing

Average 0.526 0.628 total: 60

Figure 2: Results in the four phase model using time points

�rst two quarters of 1963 are classi�ed as the lower turning point. Misclassi�-

cations at the turning points are strikingly more frequent than in other phases.

For the downswing, only two learning runs, namely leaving out cycle 3 and

leaving out cycle 5, delivered rules. Figure 3.2 shows the results.

The results miss even the baseline of 54% in the average. Leaving out the

�fth cycle (from 1974 until 1982) delivers the best result where both, accuracy

and coverage, happen to approach 70%. This might be due to its length (32

quarters), since also in the other experiment dealing with four phases the pre-

diction of upper turning point and upswing is best, when leaving out the �fth

cycle. Since the sixth cycle is even longer (45 quarters), we would expect best

results in LOO6 which is true only for the accuracy this experiment. In the

other experiment with four phases, the accuracy is best for upswing in LOO6

and second best for it in LOO5.

3.3 Modeling Four Phases With Time Intervals

Let us now see, whether time intervals can improve the learning results. We have

used the discretization of the indicator values for the construction of time inter-

vals. As long as the indicator value stays within the prede�ned level, the time

interval is continued. As soon as the indicator value exhibits a level change, the

current time interval is closed and the next one is started. We end up with facts

of the form Index(I,Range), and for each time point within the time interval

I a fact stating that this time point T (i.e. quarter) lies in the time interval:I

covers(I, T). The chosen relations between time intervals were iduring and

overlaps. The inverse of the regular during relation denotes a larger interval

I1 in which somewhere the interval I2 starts and ends. iduring(I1, I2) is

true for each time point within the larger interval I1. overlaps(I1, I2) is

true for each time point of the interval I1 which starts before I2 is starting.

More speci�c relations were not included in our model, because it is not very

likely that the starting point of one interval is identical to the end point of an-

other interval. The time intervals were calculation before the training started.

The rule schemata were de�ned such that they link two indicators with there

corresponding time intervals.

m1 (Index1, Value1, Value2, Phase):

Index1(I1; V 1); V alue1(V 1); covers(I1; T );

Index2(I2; V 2); V alue2(V 2); covers(I2; T ) ! Phase(T )
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Cycle Accuracy Coverage No. learned rules

LOO1 0.166 0.166 73 upswing, 1 downswing, 2 ltp

LOO2 - 0 103 upswing, 3 downswing, 2 ltp

LOO3 0.375 0.352 87 upswing, 2 downswing, 2 ltp, 2 utp

LOO4 0 0 59 upswing, 7 downswing, 4 ltp

LOO5 0.355 0.344 88 upswing, 3 downswing, 4 ltp

LOO6 0.486 0.354 6 upswing, 2 downswing

Average 0.276 0.203 total: 450

Figure 3: Results in the four phase model using time intervals

m2 (Index1, Value1,Index2,Value2,Rel, Phase):

Index1(T; V 1); V alue1(V 1); covers(I1; T );

Index2(T; V 2); V alue2(V 2); Rel(I2; I1) ! Phase(T )

m1 substantially not di�ers from m3 in the preceeding model (time point

model). It �nds two indicators which determine the phase on the basis of a

quarter which is shared by both time intervals.

m2 is more special in that it requires the time intervals of the two indicators

to either overlap or include each other. Instantiations of m2 express rules where

the behavior of one indicator must preceed or embrace the other indicator's

behavior. These more speci�c rule schemata were intended to �nd rules for

the turning phases, where no rules were learned in the previous experiment. In

fact, rules for the upper turning point, upswing, and downswing were learned,

but no rules could be learned for the upper turning point.

This rule states, that a period with high consumer price index growth, that

is overlapped by a period of high growth rate in the private consumption, is

indicatice of an upswing:

pc(I1; V 1); high(V 1); covers(I1; T );

c(I2; V 2); high(V 2); overlaps(I2; I1) ! up(T )

The next rule states, that a downswing happens, if during a period with medium

growth in the number of wage and salary earners, the short term interest rate

is high:

l(I1; V 1);medium(V 1); covers(I1; T );

rs(I2; V 2); high(V 2); iduring(I2; I1) ! down(T )

Another intention behind the time interval modeling was to increase the

accuracy of the learned rules. Indeed, rules for the upper turning point could

be learned with the average accuracy of 75% in the leave-one-cycle-out runs.

However, the accuracy for upswing decreased to 34% in the average. Hence,

overall the time interval model did not enhance the results of the time point

model in as much as we expected (see Table 3.3).

3.4 Modeling Two Phases

In our third experiment we mapped all time points classi�ed as upper turning

point to upswing and all quarters of a year classi�ed as lower turning point to

downswing. We then applied the rule schemata of the �rst experiment. An

example of the learned rules is:
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Cycle Accuracy Coverage No. learned rules

LOO1 0,8125 0,795 9 up, 69 down

LOO2 0,588 1,0 17 aup, 35 down

LOO3 0,823 0,571 2 up, 15 down

LOO4 0,8 0,35 6 up, 8 down

LOO5 0,869 0,8 10 up, 39 down

LOO6 1,0 0,701 6 up, 41 down

Average 0,815 0,703 total 50 up, 207 down

Figure 4: Results in the two phase model using time points

ie(T; V 1); low(V 1); c(T; V 2); high(V 2)! down(T )

stating that a low investment into equipment together with high private con-

sumption indicates a downswing.

Again, leaving out the �fth or the sixth cycle gives the best results in the

leave-one-cycle-out test. Accuracy and coverage are quite well balanced (see

Table 3.4).

These learning results are promising. They support the hypothesis that a

two phase model is of advantage for the dating task. Concerning the selection of

indicators, the learning results show that all indicators contribute to the dating

of the phase. However, the short term interest rate does not occur in three of the

rule sets. Consumption (both the real value and the index), net exports, money

supply, government de�cit, and long term interest rate are missing in at least

one of the learned rule sets. For the last four cycles, i.e. leaving out cycle 1 or

cycle 2, some indicators predict the upswing without further conditions: high or

medium number of salary earners (l), high or mediuminvestment in equipment

(ie), high or medium investment in construction (ic), medium consumption (c),

and the real gross national product (y). It is interesting to note, that a medium

or high real gross national product alone classi�es data into the upswing phase

only when leaving out cycle 1,2, or 4. Since RDT performs a complete search,

we can conclude, that in the data of cycle 1 to cycle 4, the gross national product

alone does not determine the upswing phase. Further indicators are necessary

there, namely money supply (mon1) or comsumer price index (pc).

3.5 Concept shift

Starting from the two-phase model, we analysed the homogenity of the business

cycle data. We want to know whether there are rules that are learned in all

training sets, or, at least, whether there are rules that are more frequently

learned than others. There is no rule which was learned in all training sets.

Eight rules were learned from three training sets. There is one rule, which was

learned in four training sets, namely leaving out cycle 1, cycle 4, cycle 5, or

cycle 6:

rld(T; V ); l(T; V ); low(V )! down(T )

We now turn around the question and ask: which training sets share rules?

Eighteen rules were shared in the training sets leaving out cycle 5 and leaving

out cycle 6. Four of the rules predict an upswing, fourteen rules predict a
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downswing. This means, that cycles 1 to 4 have the most rules in common.

The data from the last quarter of 1958 until the third quarter of 1974 are more

homogenious than all the data from 1958 until 1994. When leaving out cycle 1

or cycle 2, eleven rules occur in both learning results. This means, that cycles

3 to 6 have second most rules in common. The data from the second quarter

of 1967 until the end of 1994 are more homogenious than all data together.

This raises the question of the sample size for the dating problem [5]:page 16.

Klinkenberg has investigated methods for handling concept drift by adaptively

selecting the sample size for prediction and classi�cation [7, 8]. Concept drift

means that a concept changes over time. Concept shift is more speci�c and

means that a concept changes at a certain point in time. Here, we investigate

whether a concept shift has occured in business cycles.

We perform the same learning task on two disjoint data sets. We split

the overall data set into two parts, cycles 1 to 3 and cycles 4 to 6. We apply

training and leave-one-cycle-out testing to each part. The we check whether the

increased accuracy is due to the smaller size or actually given by the homogenity

of the data sets by putting together cycles from the two parts and see whether

this also increases accuracy.

4 Conclusion and Further Work

Coming back to the questions asked in the introduction, our research has de-

livered some answers and some new questions. Let us start with the answers.

� ILP o�ers opportunities for the analysis of business cycle data. It is easy

to interpret the results and the learned rules can be inspected with respect

to redundancy and contradictions. The multi-variate nature of ILP and

the automatic selection of most relevant indicators �ts the needs of dating

problem. However, numerical processes are not captured by ILP but a

discretization must preceed ILP processing.

� Although some indicators are more dominant than others, no subset of the

given indicators could be formed. All the thirteen indicators contribute

to the dating of the phase.

� The two-phase model of the business cycle clearly outperformed the four-

phase model. Where the best average accuracy in the four-phase model

was 0,53%, the average accuracy of the two-phase model was 0,82%.

� There is a (???no) clear concept shift between cycle 3 and cycle 4 (around

mid of 1971).

Indicators: what are the indices that form a phase of the cycle? more than

two indicators in rule schema { not yet done

Which measurements of indices are to be taken? growth versus classical

level cycle verschiedene Konjunkturmodelle hat [2] mit HMM untersucht.

discretization according to piecewise linear regression? { not yet tried, lack

of interpretation
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Background knowledge: Can ILP support economists in analysing cycles?

causal knowledge (for knowledge revision etc. in MOBAL) needs be elicited

from experts { not yet done

Inuence of particular events can be inspected in ILP { not yet done

What is the appropriate number of phases in a cycle? Two phase partition:

better partition into two phases according to the errors { not yet done

Concept drift vs. concept shift: concept drift or concept shift: drift cycle 3

and cycle 4 (1967,25 - 1974,50) or shift at end of 3, begin of 4 (1971,5) { further

investigation needed (drift)
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