
Krahnke, Tillmann

Working Paper

Spatial statistics with S-Plus: Available libraries and
functions

Technical Report, No. 1999,39

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Krahnke, Tillmann (1999) : Spatial statistics with S-Plus: Available libraries and
functions, Technical Report, No. 1999,39, Universität Dortmund, Sonderforschungsbereich 475 -
Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/77337

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/77337
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Spatial Statistics with S-Plus

- Available Libraries and Functions

�

-

Tillmann Krahnke

Department of Statistics

University of Dortmund

44221 Dortmund, Germany

Abstract

An overview is given over the S-Plus libraries and modules for

statistical analysis of spatial data that are currently available at the

Department of Statistics, University of Dortmund. It is believed that

this includes all libraries currently available on the internet.

Listings of functions show what statistical techniques are im-

plemented, and where to �nd them. This facilitates the search

for any particular function, and saves from re-programming of

techniques that are already available. This overview may there-

fore also be viewed as a starting point for developing further

analysis tools for spatial and spatio-temporal statistics in S-Plus.

KEY WORDS: Geostatistics, lattice data, modules, public li-

braries, S-Plus, spatial statistics, spatial point pattern.

�

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Sonder-

forschungsbereich 475.

1

1 Introduction

The statistical analysis of spatio-temporal data is under current investiga-

tion at the Department of Statistics at the University of Dortmund

1

. By

their very nature, the corresponding methods for this type of analysis largely

draw on results both from spatial statistics and time series analysis. Many

of these techniques are already implemented in the statistical software pack-

age S-Plus (Mathsoft,1998), some as part of the commercial add-on module

S+SpatialStats, others as part of publicly available collections of functions,

so-called libraries.

Before implementing newly developed methods, a �rst step should always

be to review what statistical methodology is already encoded. This paper

attempts to do so for functions from spatial statistics. It also shows how

these functions can be made available on any PC within the department's

computer network.

All code described here is written by authors outside of the University of

Dortmund and published in the internet, or o�ered on a commercial basis by

oÆcial S-Plus distributors.

The sections of the paper are divided as follows: An introduction in Us-

ing Modules and Libraries is given in section 2. Section 3 briey reviews

what Types Of Data In Spatial Statistics are encountered. Sections 4 to 8

describe the libraries splancs, sgeostat, spatial and spatCSU, and the module

S+SpatialStats, respectively. Each of these �ve sections is subdivided into

subsections as follows: General Concepts and Sources informs on the purpose

the library was designed for, when it was written, and by whom.Working with

Data mainly lists functions for data import and export. Geostatstics, Lattice

Data, and Spatial Point Patterns all include listings of functions related to

the corresponding data type. Short descriptions explain what the functions

are used for. For completeness, Data sets lists the data sets included. Any

Other Features are described in the last subsection.

Section 9 , Other Functions for Spatial Statistics, lists additional S-Plus func-

tions that are already part of the base package. A Summary concludes the

paper in section 10.

1

See section on \The Analysis of Spatio-Temporal Data in Epidemiology and Ecology"

in the Collaborative Research Centre 475, \Complexity Reduction In Multivariate Data

Structures", funded by the Deutsche Forschungsgemeinschaft.

2

2 Using Modules And Libraries

This section describes how to access libraries over the network

2

. It also shows

how modules and libraries can be installed locally if necessary, and given the

necessary rights for system administration.

In general, S-Plus libraries should be accessed using the departments PC

network. This saves time and disk space. Because there are only single user

licenses for the module S+SpatialStats, this must always be installed lo-

cally.

2.1 Before Getting Started...

Before working on a particular project it is recommended to create a cor-

responding project directory �rst. This assures that all objects related to

a single project will be stored in one directory. In S-Plus 4.x you create a

project directory as follows:

1. Create a link to the S-Plus startup �le. This is usually located in

(SHOME)/cmd/splus.exe, where "(SHOME)" refers to the S-Plus

home directory (e.g. c:/software/splus45). Move the link to any desired

location, e.g. on the Windows desktop.

2. Left-click on the icon's name for highlighting. Left-click again for edit-

ing. Change the name to the project's name, e.g. \Myproject".

3. Right-click on the icon to edit its properties.

4. In the �eld \Target" in the property dialog, add the expression

\S Proj=c:/Myproject" to the path to the S-Plus startup �le (if the

project's �les are to be saved in folder S Proj=c:/Myproject).

If S-Plus is opened for the next time by clicking on the icon labeled \Mypro-

ject", you will be asked to allow for creation of two new directories \ Data"

and \ Prefs". Answer yes. All objects and functions created will then be

saved under c:/Myproject/ Data.

2

Thanks to Uwe Ligges for his support when installing the libraries

3

2.2 Network Access

All public libraries discussed here are stored in the directory

//server01/software/s-plus/libraries. You �nd this server in the

NT Explorer under your Network Neighborhood. To use a library, do the

following:

1. Create a project directory (if necessary) and start S-Plus

2. From the Commands window or a Script window, de�ne the location

of the additional libraries by submitting:

assign(x="lib.loc",where=0,

value="//server01/software/s-plus/libraries")

3. To attach the library called spatial, say, submit library(spatial,

first=T) from the commands window, or chose FILE - LOAD LI-

BRARY - spatial from the menu.

If you plan to use certain libraries whenever you use S-Plus, it might be

better to de�ne something similar to the following function:

.First<-function()f assign(x="lib.loc",where=0,

value="//server01/software/s-plus/libraries")

library(spatial, first=T)g

This function will be automatically called at every startup of the program. If

you already de�ned a function .First(), simply add the appropriate lines.

Now all installed libraries should be accessible by the local machine and can

be loaded as described above.

2.3 Install Libraries Locally

Libraries in S-Plus are collections of functions and objects stored in a

particular �le or folder. The libraries splancs, spatial and spatCSU origi-

nally come as zipped �les, but are already unpacked for public use on the

departments server. sgeostat comes as compressed tar-�le. Its contents is also

already extracted and can be found on the server. Locations of all these �les

are given in the corresponding sections below. Although not recommended,

you may want to install them locally on your PC. This section describes

how to do that.

4

2.4 Installing splancs, spatial or spatCSU

For installation of splancs, spatial or spatCSU proceed as follows.

1. Download the zipped library �le you need and copy it to the de-

sired location. This is c:/splus45/library for the �les spatial.zip and

VR5.zip. For the the libraries splancs and spatCSU create new fold-

ers before unpacking, e.g. c:/splus45/library/splancs (assuming that

c:/splus45 is the folder were your version of S-Plus resides).

2. Unzip the �le in the folder where it was copied. Allow for creation of

the corresponding folders!

3. Start S-Plus.

4. a) Load the library from menu using File - Load Library... and

selecting the library name, or

b) type, e.g.,

library(spatial, first=T)

in the commands window. The option first=T assures that S-Plus uses

the library version of a function even if there comes a function with the

same name with the S-Plus base distribution.

5. Libraries are automatically detached when S-Plus is closed. If you want

to detach a library during a running session, look up its number in the

search list and remove it using the command

detach(libnumber)

where libnumber is the number of the library in the search list.

2.5 Installing sgeostat

The library sgeostat was written for S-Plus for Unix and comes as compressed

tar-�le. You need to have access to Linux or Unix to uncompress it. To be

more speci�c, proceed as follows:

1. Download �le SGeoStat.tar.Z from

http://www.gis.iastate.edu/SGeoStat/homepage.html.

5

2. Under Unix or Linux, uncompress SGeoStat.tar.Z and extract the �les

by

uncompress SGeoStat.tar.Z

tar -xvf SGeoStat.tar

Copy the resulting *.s -�les to your Windows PC.

3. Create a new library folder (SHOME)/library/sgeostat/ Data, where

(SHOME) is the folder where S-Plus is installed. Edit all *.s -�les and

change the value of the where-argument of each call to assign() to:

paste(getenv("SHOME"),"/library/sgeostat/ Data",sep="")

4. Create a project directory (if necessary) and open S-Plus from there.

Attach the library folder by

library(sgeostat,first=T)

5. Source in all *.s -�les and make the new functions visible by calling

synchronize(database=2), if the new library folder is the second on

the search list (This should be the case if you used first=T when

attaching the library).

Now the library sgeostat should be available.

2.6 Install Modules Locally

Commercial versions of S-Plus libraries are called Modules. They are easily

installed by running the corresponding setup.exe-�le from disk. You need to

have the appropriate version of the S-Plus main program installed on your

computer (should be S-Plus 4.x). In addition, the necessary rights for system

administration have to be set. If problems occur, check with your local system

administrator.

Menus and dialog boxes lead the user through the installation process. To use

the module after installation, start S-Plus and open the File-menu. You will

�nd special help topics under Help-S+SpatialStats in the menu. Selection

of Load Module... will open a dialog box that allows for selection of the

module S+SpatialStats (choose spatial). Pressing OK will load the module.

If you want to start the module from the commands window, make this

window active and type

6

module(spatial)

To unload the module, type

module(spatial, unload = T)

All modules used in the current session will be automatically unloaded when

exiting S-Plus. If you want to re-open the module automatically whenever

you start the program, you may do this by de�ning the following function in

your working directory:

.First <- function()fmodule(spatial)g

If you already de�ned a function .First(), simply add the appropriate lines.

The First()-function will be executed at each startup of S-Plus and opens

the module automatically.

2.7 Getting help

2.7.1 Help for Libraries

For general information on a library called \libname" submit the words

library(help=libname) from the command line. To access help for func-

tions and objects from this library, try

help(name, library="libname")

or

?name

from the command line. Here name refers to any S-Plus object.

2.7.2 Help for Module Functions

If you are using a S-Plus module, help is available in the following ways:

� Open the menu selectingHelp - S+SpatialStats. The usual Microsoft

Windows dialog box appears. Type a name or select one from the list

and press OK. A help page will be displayed.

7

� From the command line, type help(module="spatial") to get the

same dialog box. Proceed as above.

� Alternatively, ask for help for a speci�c function or object from the

commands window using the syntax

?name

The help page for function name will be displayed.

3 Types of Data in Spatial Statistics

Spatial data can be collected in several di�erent ways. Depending on the un-

derlying data structures, spatial statistics may be divided into three major

�elds (Kaluzny et al., 1998; Cressie, 1993): Geostatistics, Analysis of Lattice

Data and Spatial Point Patterns (or: SPPs). This is not the only possible par-

tition, and there is some overlap in the statistical methodology. This applies

particularly to Geostatistics and the Analysis of Lattice Data.

In all three �elds, the data are generally modeled according to the decompo-

sition

data = large{scale variation + small{scale variation

The large-scale variation may be interpreted as a (not necessarily linear)

trend in the data, whereas the small-scale variation may be interpreted as

measurement error, within region variability, inherent site variability and the

like (c.f. Haining, 1990).

If the measurements are taken at some �xed locations, one deals with random

�eld data or Geostatistics. The spatial coordinates are usually taken to be

continuous. The actual measurement z, say, can be either continuous or dis-

crete. Examples are: The amount of rain fall at some �xed weather stations

(continuous case); or the number of members of a speci�ed species collected

at �xed sites in a forest.

8

The general stochastic model in spatial statistics can be formulated based

on the notation given in the following table (Cressie, 1993; Kaluzny et al.,

1998).

The General Spatial Stochastic Model

s 2 R

d

Location of measurement in R

d

Z(s) Measurement at location s.

fZ(s) : s 2 Dg Multivariate random �eld. D � R

d

index set.

The interpretation in Geostatistics is as follows:

The Geostatistical Model

D is a �xed index set that encompasses a rectangular area.

s Set of continuous coordinates in D.

Z(s) Random vector of measurements at location s in D.

The situation changes if the data collected are related to regions of interest.

Epidemiological data, for example, often refer to numbers of events within

a certain area. The regions of interest are usually laid out in an irregular

fashion, and in many cases additional neighborhood information is available.

Data of this type are called Lattice Data. The general model now has a

slightly di�erent interpretation:

The Lattice Model

D Fixed set of countably many sites in R

d

.

Z(s) Measurement at location s in D.

(others) Neighboring information.

The third type of data are Spatial Point Patterns (SPPs). Here the locations

of measurement themselves are random. One is typically interested in the

distribution of these locations, which may be completely at random, or show

some kind of regularity or clustering. An example for SPP data are the lo-

cations of trees of a certain kind within a speci�ed region. Typical questions

then are if the trees are randomly scattered over the area, or if some structure

can be observed.

If additional variables are measured, a marked Spatial Point Pattern is given.

The extra variables may be used to improve the analysis of the underlying

random processes. In the above example, one may collect additional data on

soil quality or precipitation.

9

The model for a (marked) Spatial Point Pattern is given in the following

table:

The (marked) SPP-Model

D Point pattern in (subset of) R

d

. D is random.

Z(s) equal to 1 (= observed) for the general statistical point pattern; or:

Z(s) Random vector at location s 2 D for a marked SPP.

Since the type of data as well as the major goals of the analysis di�er in

some respect between the three �elds given above, some speci�c statistical

methods were developed. In what follows, the S-Plus functions for each

module or library are therefore sorted into three di�erent subsections as

well: Functions for Geostatistics, for Lattice Data, and for Spatial Point

Patterns will be described separately. Two preceding subsections will give

some information on General Concepts and Sources of the particular library,

or describe the Working with Data (mainly data im- and export). Data sets

included and additional functionality are listed in two additional subsections

Data sets and Other Features.

4 The Library splancs

4.1 General Concepts and Sources

The library splancs was written and �rst released by Barry Rowling-

son and Peter Diggle from Lancaster University in 1991 as part of a

project integrating spatial statistical analysis into a Geographical Infor-

mation System (GIS). It is particularly designed for the analysis of Spa-

tial Point Patterns. Some functionality has been added later, particularly

dealing with space-time SPPs. It was last revised in 1997. For down-

load see http://www.maths.lancs.ac.uk/�rowlings/. The splancs li-

brary was ported to Windows NT 4.0 and Windows 95 by Steven Reader

from the University of South Florida in 1998 and is available as Version

\2.00 Win" (see the copyright notes printed when calling splancs()). This

Windows version is contained in the zipped �le /Florida/sorida.zip

which can be found under the link above. A summary of all functions is

10

given in �le /Splancs/splancs.ps. Printable help �les can be found in

/Splancs/Shelp.ps.

The library splancs does not use the object oriented approach for program-

ming in S-Plus. It therefore does not introduce new classes of S-Plus objects.

4.2 Working with Data

The general format used to store data within splancs is in a n by m (m

� 2) array (matrix or dataframe), where the �rst two columns are assumed

to contain x and y coordinates, respectively. Other columns may contain

additional information. Read in the data by regular S-Plus functions like

scan(), or read.table() for a marked SPP. The splancs format may be

obtained by applying as.points() on any numeric S-Plus data object. Check

for correctness using is.points(). Vectors are put into the right format by

spoints(), taking the odd vector elements for x coordinates and the even

elements for y coordinates. The number of points read in (i.e., the number

of rows of the array) are counted by npts(). Note that the \points objects"

in splancs do not have a special attribute and do not constitute a class!

Function Action

as.points Create data object in spatial point format.

is.points Test if data object is in spatial point format.

npts Count number of points in data set.

spoints Turn vector into matrix in spatial point format.

Table 1: Library splancs { Working With Data

4.3 Geostatistics

The library splancs is not designed speci�cally for the analysis of geostatisti-

cal data. For some functions that might be applicable to this type of analysis

compare the subsection on Spatial Point Patterns below.

4.4 Lattice Data

The library splancs is not designed for this type of analysis. For some func-

tions that might be applicable to this type of analysis compare the subsection

on Spatial Point Patterns.

11

4.5 Spatial Point Patterns

The strength of the splancs library is in the analysis of spatial point patterns.

An important goal is to check on randomness of the observed points. This can

be done using Ripley's K-function. It is estimated by khat(). For a bivariate

version see k12hat(). Pointwise standard errors for di�erences between two

K-functions are found with secal(). Envelopes for K-functions and their

di�erences are calculated from simulated data by Kenv.csr(), Kenvlabel()

and Kenv.tor(). The covariance matrix is found by khvc() or khvmat().

The functions Fhat(), Fzero(), Ghat() and n2dist() deal with nearest

neighbor distances from one or two patterns. The functions kernel2d(),

kernrat() and mse2d() perfrom kernel smoothing to obtain estimates for

local intensity. pdens() calculates the intensity for points in a polygon. The

Diggle-Rowlingson raised-incidence model is �t by tribble().

For space-time analysis, kernel3d() for kernel smoothing has been added.

stkhat() gives the K-function in space and time, and stvmat() the covari-

ance. Space-time clustering is analyzed using stmctest() and stsecal().

Random selections and simulations of data points are managed by rlabel(),

thin() and csr().

Function Action

area Calculate area of polygon.

bbox Find bounding box for set of points.

csr Generate random pattern.

dsquare Squared distances from points to sources.

Fhat Empirical distribution function of origin-to-point

nearest neighbor distances.

Fzero Theoretical nearest neighbor distribution function for

Poisson process.

Ghat Empirical distribution function of point-to-point near-

est neighbor distances.

gridpts Create sampling origins.

inout Logical vector. True if point is in polygon, False if not.

inpip Return indices of points inside a polygon.

k12hat Bivariate K-function.

Kenv.csr Generate random pattern and estimate K-function.

Kenv.label Envelope for di�erence of two K-functions.

Kenv.tor Envelope from k12hat() using toroidal shifts.

kernel2d Estimator of local intensity using quartic kernel.

kernel3d Compute space-time kernel.

Table 2: Library splancs { SPP (cont.)

12

Function Action

kernrat Calculate ratio of local intensities.

khat Ripley's K-function.

khvc Covariance for di�erence between two K-functions.

khvmat Covariance for di�erence between two K-functions un-

der random labelling.

mpoint Overlay point patterns.

mse2d Find optimal kernel.

n2dist Nearest neighbors for two point patterns.

nndistF Calculate nearest neighbor di�erences for Fhat().

nndistG Calculate nearest neighbor di�erences for Ghat().

pdense Intensity of points in polygon.

pip Return subset of points within (or without) a given

polygon.

plt Cumulative distribution as function of distance.

print.ribfit Print �t from tribble().

ranpts Generate random points.

rlabel Randomly label point sets.

rtor.shift Perform random toroidal shift.

sbox Bounding box plus extra space.

secal Pointwise standard errors for di�erence of two K-

functions.

shift Shift point pattern along x and/or y axis.

splancs Version number and author information.

stdiagn Summary plots for space-time clustering analysis.

stkhat Compute space-time K-functions.

stmctest Monte-Carlo test of space-time clustering.

stsecal Pointwise (in space and time) standard errors for

space-time clustering.

stvmat Four-dimensional Covariance matrix for space-time

clustering.

thin Randomly select n out of a set of points.

tor.shift Perform toroidal shift.

tribble Diggle-Rowlingson raised incidence model.

triblik Log-likelihood for the Diggle-Rowlingson raised inci-

dence model.

Table 2: Library splancs { SPP Data

13

4.6 Data sets

There are no data sets included in library splancs.

4.7 Other Features

There are a couple of special features associated with graphics that come

with library splancs: pointmap() results in a scatterplot of observed points

with axes of equal length. Points can be added or deleted interactively by

addpoints() and delpoints() (the Graphical parameter \plot type" should

be set to \s" �rst if used in combination with pointmap()). getpoly() in-

teractively creates a surrounding polygon by mouse click. If the polygon is

stored as an S-Plus matrix, use polymap() with argument add=T to add it

to an existing plot. For display of space-time data kerview() was added.

The authors added a map of boarders and counties which can be called by

uk().

Function Action

addpoints Add points interactively.

delpoints Delete points interactively.

gen Generate random points in polygon.

getpoly Create polygon interactively.

kerview Display linked-window system for browsing space-time

data.

pointmap Plot new points or add to existing plot.

polymap Plot new polygon or add to existing plot.

uk Plot of the United Kingdom (without Northern Ire-

land).

uk.coast Data set containing UK coast lines.

uk.county Data set containing UK county lines.

zoom Select and enlarge subregion from plot.

Table 3: Library splancs { Other Features

14

5 The Library sgeostat

5.1 General Concepts and Sources

The library sgeostat was written by James J. Majure from Iowa State

University in Ames, Iowa, USA. It consists of 26 functions and ob-

jects that are designed using the object oriented approach to program-

ming. The focus is on the analysis of geostatistical data, i.e. exploratory

data analysis, variogram modeling and kriging. The library can be down-

loaded from http://www.gis.iastate.edu/SGeoStat/homepage.html.

This URL also points to the online help �les, which refer quite frequently

to Cressie (1993). Note that sgeostat does not come with regular S-Plus help

�les !

5.2 Working with Data

There are several newly de�ned classes of objects that are used in sgeostat,

like "point", "pairs", "variogram", and "variogram.model". They rep-

resent observed data, neighborhood information used for variogram es-

timation, variogram estimates and �tted variogram models. In addition,

"trend.surface" objects can be created to describe a trend surface model.

The table below gives an overview. See the sgeostat online help on Data

Structures for more details.

Object Class Contents Function

point Dataframe with x and y coordinates and

observed data.

point()

pairs List with neighborhood information, dis-

tances and lags.

pairs()

trend.surface List of parameters and other components

describing a trend surface model.

fir.trend()

variogram Dataframe with lag information and em-

pirical variogram estimates.

variogram()

variogram.model List of parameters and function of vari-

ogram �t.

fit.?()

Table 4: Library sgeostat { Object Classes

To read in data for use with sgeostat, use the regular S-Plus functions. Cre-

ate a dataframe with two named columns containing the coordinates, and

15

additional columns with the data. The function point() converts such a

dataframe to a point -object.

5.3 Geostatistics

Central to the sgeostat library is variogram estimation and kriging. The

Corresponding functions are variogram() for variogram estimation, plus sev-

eral �tting tools called fit.modeltype(), where modeltype is exponential,

linear or wave. Graphical tools for variogram estimation are a plot-method

for variograms, and spacecloud() and spacebox() to plot for variogram

clouds or boxplots. To �t a linear trend surface, use fit.trend(). Estimate

the trend with trend.value() or trend.matrix().

Function Action

calcangle Find angle between 2 points in 2D.

export.point Export point-object to �le.

fit.exponential Fit an exponential model to empirical variogram.

fit.linear Fit a linear model to empirical variogram.

fit.trend Fit a trend model to point-object.

fit.wave Fit a wave model to empirical variogram.

identify.point identify()-method for point -objects.

krige Perform spatial prediction.

krige.all Perform spatial prediction using all points.

krige.maxdist Perform spatial prediction using points up to distance

maxdist.

lagplot Spatially lagged scatterplot.

ls Rede�nition of ls(). Use objects() instead.

pairs Create a pairs -object containing neighborhood in-

formation for variogram estimation.

pairs.aniso Create a list similar to a pairs -object for anisotropic

model. Used in pairs().

pairs.iso Create a list similar to a pairs -object for isotropic

model. Used in pairs(). Need to change stations

in function de�nition to point.obj!

pairs.newangle Create a pairs-object for isotropic model. Include

only pairs in speci�ed directions (given angle and angle

plus 180 degrees), and within given tolerance angle.

plot.point Plotting method for point -objects.

plot.variogram Plot empirical variogram, optionally with �tted model.

point Create point -object from dataframe.

Table 5: Library sgeostat { Geostatistics (cont.)

16

Function Action

print.pairs Print-method for pairs -object.

print.point Print-method for point -object.

spacebox Boxplots of variogram cloud.

spacecloud Plot scatterplot of square-root or squared distances of

pairs versus distance.

trend.matrix Evaluate trend surface over grid given by coordinates

of corners.

trend.value Evaluate trend surface for set of points.

variogram Calculate classic, robust and median variogram esti-

mates.

Table 5: Library sgeostat { Geostatistics

5.4 Lattice Data

The library sgeostat is not designed for the analysis of lattice data.

5.5 Spatial Point Patterns

The library sgeostat is not designed for the analysis of spatial point patterns.

5.6 Data sets

There are no data sets included in library sgeostat.

5.7 Other Features

As mentioned at the beginning of this section on sgeostat, there are online

help �les in html-format available. They may be copied from the original

URL and saved on hard disk and read by your local web browser.

In addition to sgeostat for S-Plus there exists a modi�ed version for use with

the GNU software R. It was ported to R by Albrecht Gebhardt (from Univer-

sity of Klagenfurt, Austria), with contributions by Roger Bivand (Norwegian

School of Economics and Business Administration, Bergen, Norway) and ex-

tended by functions for �tting gaussian or spherical variogram models.

17

6 The Library spatial

6.1 General Concepts and Sources

The library spatial for spatial statistics is available as supplement of the book

\Modern Applied Statistics with S-Plus" (MASS, for short) by Venables and

Ripley (1997). Some of the code presumably goes back to the work related to

Ripley (1981) and Ripley (1988). The library is designed for spatial smoothing

and analysis of spatial point patterns. It contains a Windows help �le that

can be accessed in the usual fashion using the help()-function.

The library spatial heavily draws on C code written by the authors.

This source code may be obtained from http://www.stats.ox.ac.uk

/pub/MASS2/VR5.zip which includes the UNIX distribution of the li-

brary. The library spatial does not use the object oriented approach for pro-

gramming in S-Plus. It therefore does not introduce new classes of S-Plus

objects. The library can be obtained from the following sources:

� As �le spatial.zip from http://lib.stat.cmu.edu/DOS/S/SWin/.

� As part of the complete set of libraries used in MASS. See

http://www.stats.ox.ac.uk/pub/MASS2/Windows.shtml.

� As part of S-Plus 2000. Here, the library spatial and some other

slightly modi�ed libraries from MASS are installed when installing the

base software.

The version currently used at the University of Dortmund is downloaded

from the second source. This source also makes available some additional

functions and data sets as part of a library called mass that are used in the

chapter on spatial statistics in Venables and Ripley (1997).

The \Statistics Online Complements" to Venables and Ripley (1997) include

a few pages that give an idea of how analysis di�ers between the library

spatial and the S+SpatialStats module. The complements can be found under

http://www.stats.ox.ac.uk/pub/MASS2.

6.2 Working with Data

To read in data for geostatistical analysis, use the regular S-Plus functions like

read.table() or import.data(). The surf.* -functions in library spatial

18

expect either a dataframe with columns named x,y and z, or three vectors

that contain the appropriate data. It therefore seems useful to create the

appropriate column names when reading in the data.

When working with point patterns special functions are needed to read in the

data and to initialize the domain for the process. ppinit() reads in ASCII

data-�les of special format and returns a list: In the �rst line, the �le should

contain the number n of observations to read in. The next line contains a

header, usually the name of the data set. A third line gives the coordinates of

the four corners for the (rectangular) domain where the process lives. These

are the lower and upper possible values for x and y, respectively. A �fth

number in this line describes the number by which the values from �le must

be divided to obtain the coordinates as used by S-Plus, i.e. a scaling factor.

Finally, the n pairs of x- and y-coordinates for the data points follow. There

must be an even number of values in each line. When calling ppinit(), the

domain of the point process is read in and stored internally. Other func-

tions may rely on this for their computations (e.g., Kenvl()). To check for

the domain currently set up, call ppgetregion() (with no arguments). To

explicitly set up a domain, use ppregion().

Function Action

ppgetregion Extract corners of spatial domain after initialization

with ppinit(). No arguments.

ppinit Read in �le with point process data.

ppregion Initialize domain for SPP for use in C code. Arguments

are either four numbers for the domain's corners, or a

vector of length four.

Table 6: Library spatial { Working with Data

6.3 Geostatistics

For smoothing, the main functions in the spatial library are surf.ls() and

surf.gls() for least squares and general least squares �ts, i.e. universal

kriging. To evaluate a �t on a grid, use trmat() and prmat(), respectively.

Standard errors for prediction are found by semat(). Important tools when

modeling a kriging surface are the (co-) variogram and correlogram. Their

empirical versions are found by variogram() and correlogram(). Exponen-

tial, gaussian or spherical theoretical covariance functions may be calculated

by expcov(), gaucov or spher.cov().

19

Function Action

correlogram Compute and plot emperical spatial correlogram from

nint bins.

variogram Compute and plot emperical spatial(semi-) covari-

ogram from nint bins.

expcov Theoretical covariance based on exponential model.

gaucov Theoretical covariance based on gaussian model.

sphercov Theoretical covariance based on spherical model (up

to 3D).

surf.ls Fit polynomial trend surface using least squares.

surf.gls Trend surface using generalized least squares (univer-

sal kriging).

trmat Evaluate trend surface over grid.

prmat Evaluate kriging surface over grid.

semat Standard error of prediction for kriging.

Table 7: Library spatial { Geostatistics

6.4 Lattice Data

There are no functions in the spatial library particularly designed for lattice

data. For this type of analysis one may refer to the other libraries or modules

described here.

6.5 Spatial Point Patterns

The functions for analyzing SPPs concentrate on Ripley's K-function, and on

the simulation of particular spatial processes. The K-function for a particular

data set may be estimated by Kfn(), whereas Kaver() and Kenvl() calculate

the average K-function and envelope for a simulated process. It is possible

to simulate binomial, Strauss and Mat�ern's sequential inhibition processes.

Function Action

pplik Pseudo likelihood estimation for �tting a Strauss pro-

cess.

Kfn Estimate scaled version of Ripley's K function.

Kenvl Averages and extremes from simulated K-functions

(\envelope").

Kaver Average from simulated K-functions.

Psim Simulate binomial process.

SSI Simulate sequential inhibition process (Mat�ern).

Strauss Simulate Strauss process.

Table 8: Library spatial { SPP

20

6.6 Data sets

There are a couple of data sets that come with the spatial library. They

are stored in the subdirectory \.../spatial" where \..." refers to the lo-

cation where the library was installed. In the departments network, this

is //server01/software/s-plus/libraries. The data �les have extension

*.dat and contain ASCII-Text in a format that can be read in by ppinit()

(see Working with Data above).

The data sets npr1, shkap and topo are used in the examples on spatial

statistics in chapter 16 of Venables and Ripley (1997), but are available only

after installation and loading of the mass-library. It is part of the �le VR-

libc.exe (second source 2 mentioned above) and is also installed on the server.

Note that all data sets except agter in the spatial library are also contained

in the library spatCSU (see below). For more speci�c information on sources

for the contained data sets see the �le pp.�l that comes with both of these

libraries.

agter.dat caveolae.dat cells.dat davis.dat

drumlin.dat eagles.dat grocery.dat hccells.dat

nztrees.dat pairfn.dat pereg.dat pines.dat

redwood.dat schools.dat stowns1.dat tokyo.dat

towns.dat npr1.dat shkap.dat topo.dat

Table 9: Library spatial { Data sets

6.7 Other Features

The libraries from MASS (including spatial) as well as sgeostat

are ported to the freely available software package R. See

http://www.ci.tuwien.ac.at/R/bin/windows/windows-9x/contrib/

and VR5.3pl037.zip.

21

7 The Library spatCSU

7.1 General Concepts and Sources

The �le spat98.zip contains a library of functions on spatial statistics col-

lected at the Colorado State University (CSU), Fort Collins, Colorado, by

Robin M. Reich and Richard Davis. Unfortunately, the authors refer to this li-

brary also as library spatial, apparently because Ripley's spatial library served

as a starting point for spatCSU. In fact, essentially all functions from spatial

can also be found in spatCSU. Three issues have to be kept in mind, however:

� There may be some di�erences in function names, like using upper case

letters instead of lower case, or inserting dots into the names.

� Ripley's functions in spatial contain C code, whereas in spatCSU he used

FORTRAN. This may result in some di�erences between functions.

� Since the spatial library is still maintained by B.D. Ripley, some changes

may be introduced from time to time which are not necessarily incor-

porated immediately into spatCSU.

To avoid confusion with other libraries and modules on spatial statistics,

the library compiled by Reich and Davis will here be referred to as library

spatCSU. This name was chosen quite arbitrarily, but reects the origin in

some sense. The version used here was last updated on 8 February 1999,

and downloaded from http://www.stat.colostate.edu/�rdavis/st523/.

It was used for a course on Quantitative Spatial Statistics held by R. Reich

and R. Davis in 1998. A course manual is accessible as pdf-�le via the link

given above.

Contributors to spatCSU are R. Davis (CSU), R. M. Reich (CSU), R.D.

Ripley (Oxford University), P. Mielke Jr. (CSU) and K. Metzger (CSU). See

the �le Readme.new to �nd out about the author of a particular function.

Some of the functions contributed by Brian Ripley were already described

above for library spatial. In spat98.zip you �nd slightly modi�ed versions as

in spatial: Whereas the former uses Fortran-code, the latter contains C-code.

7.2 Working with Data

Reading in data for use with spatCSU is very similar to reading in data with

the spatial library. For example, the function ppinit() expects a certain �le

22

format for spatial point patterns. See section Working with Data for library

spatial for details. In addition, spatCSU has special functions spinput() and

swinput() to read in ASCII �les with data or neighborhood information.

Files in ARC/INFO format may be imported or exported with arcexprt()

and arcinput(). A description how to do this is given in the �le arc.txt

which can be found under the URL for spatCSU given above.

Function Action

arcexprt Import ARC/INFO ASCII-�le and create S-Plus grid.

arcinput Export a Splus grid into ASCII text �le for input into

ARC/INFO.

ppinit Read in �le with point process data.

spctg Read in ASCII �le for use with spwtctg().

spinput Read in ASCII �le into matrix.

swinput Read in ASCII �le with neighborhood information.

Table 10: Library spatCSU { Working with Data

7.3 Geostatistics

There are a couple of additional functions in spatCSU that do not appear

in library spatial. For variogram estimation, use fitvar() in combination

with expvar(), gauvar(), linvar() or sphervar(). correlogram() and

variogram() from spatial are replaced by corrgram() and variogrm()

which are also attributed to Ripley. In addition, cross-variograms can be

estimated by crossvar().

Polynomial trend surface estimation may be done by ols(), trendls()

and trend(). mpolish() does median polishing. For kriging, use krig(),

cokrig() and cokrig1(). Results can be evaluated with crossval(),

vcokrig() or vcokrig1(), which perform cross-validation on a (co-)kriged

surface. The surface itself is predicted by predkrg(), predcok() and

predcok1().

Function Action

cokrig Ordinary cokriging with non-bias constraint.

cokrig1 Ordinary cokriging with non-bias constraint.

corrgram Spatial correlogram as a function of distance.

crossvar Spatial cross-variogram.

crossval Crossvalidation of kriged surface.

expcov Theoretical covariance based on exponential model.

Table 11: Library spatCSU { Geostatistics (cont.)

23

Function Action

expvar Theor. variogram based on exponential model.

fexp Support for fitvar().

fitvar �ts an exponential, Gaussian, spherical, or model to a

sample variogram or cross-variogram (Reich).

fmat Support for surfls() and surfgls().

gau Support for fitvar().

gaucov Theoretical covariance based on gaussian model.

gauvar Theoretical variogram based on gaussian model.

krig Ordinary (block) kriging.

lin Support for fitvar().

linvar Theoretical variogram based on linear model.

mpolish Median polish on data matrix.

ols Fit linear model and test residuals from spatial auto-

correlation using Moran's I.

pred Find point estimate from kriged surface.

predcok Spatial prediction using cokriging.

predcok1 Spatial prediction using cokriging.

predkrg Spatial prediction using kriging.

predval Support for prmat().

prmat Evaluate kriging surface over grid.

semat Standard error of prediction for kriging.

serror Standard error of point estimate from kriged surface.

seval Support for semat().

sph Support for fitvar().

sphercov Theoretical covariance based on spherical model.

sphervar Theoretical variogram based on spherical model.

surfls Fit polynomial trend surface using least squares.

surfgls Trend surface using generalized least squares (univer-

sal kriging).

trendls Fit polynomial trend surface using least squares. Pro-

vides more info than surfls().

trend Evaluate trend surface over grid using output from

trendls().

trmat Evaluate trend surface over grid using output from

surfls() or surfgls().

trval Support for prmat().

unflip Reverses order of columns of a dataframe or matrix.

variogrm Empirical variogram in 2D.

vcokrig Crossvalidation of cokriging model from cokrig().

vcokrig1 Crossvalidation of cokriging model from cokrig1().

Table 11: Library spatCSU { Geostatistics

24

7.4 Lattice Data

When examining lattice data, spatial correlation is of major interest. The spe-

cial data structure makes it necessary, though, to allow for weight matrices

(proximity matrices) that describe neighborhood relations between points.

Helpful functions to create such matrices are spwtctg() (using data set

with information on neighboring polygons), spwtjoin() (using chess moves)

and spwtdist() (using distances). Rescaling of the weights is handled by

rescalew(). The neighborhood information used by spwtctg() should come

in an ASCII �le with the total number of polygons given in the �rst line. For

each polygon two more lines follow, stating the polygon ID and the number

of neighbors, followed by the IDs of the neighbors.

Moran's I and Geary's C can be estimated by functions morani(),

bimorani() or gearyc(). For measures of spatial correlation on data of the

chess board type, see bb(), bw() or ww().

A couple of functions deal with spatial AR models. These are spatar() and

spatlag() for modelling and spatt() for testing.

Function Action

bb Black-black join statistic.

bimorani Moran's I to test for spatial cross-correlation.

bw Black-white join statistic.

gearyc Geary's C to test for spatial auto-correlation.

join Compute join count statistics for lattice data.

morani Moran's I.

rescalew Rescale spatial weights matrix to rowsum 1.

spatar Fit spatial autoregressive model.

spatlag Fit spatial lag model.

spatt Spatial t-test.

spwtctg Generate spatial weights matrix using polygons.

spwtjoin Generate spatial weights matrix using chess moves.

spwtdist Generate spatial weights matrix using distances.

ww White-white join statistic.

Table 12: Library spatCSU { Lattice Data

25

7.5 Spatial Point Patterns

There is a variety of functions available for the analysis of spatial point

patterns. Before working with data, the domain should be set by ppregion()

or equivalently ppset(). The values can be checked for by nppset().

In addition to what is possible in Ripley`s spatial library, spatCSU al-

lows for estimation of the K-function for two populations with envelope

by kfn2() from data, or by kenvl2() from simulated processes. Tests for

(non-)randomness can be performed calculating Clark and Evans' nearest

neighbor index (cenn(), Pielou's index of non-randomness, or applying per-

mutation procedures (mrpp(), mrppa()). The Cramer-von Mises goodness-

of-�t test may be used to test for Neyman-Scott clustering or a Strauss

process (cramera() and cramerst()). Fitting functions are fitfreq(),

ftstrau(),or neyman().

The intensity of a process can be estimated by kernel estimates or using the

k-th nearest neighbor approach, or even a combination of the two. Take a

look at intker(), intknn(), and intknn2(). An alternative is to use quadrat

sampling, as is done by quad() and quadrat().

Extending Ripley's functions, it is possible to simulate Mat�ern's clustering

process (agg()), a poisson inhibition process (inhom()), and a Strauss soft-

core process (softcore()). Use ppsetsd() to set the random generator ex-

plicitly.

Function Action

agg Simulates Mat�ern's clustering process.

assoc Contingency table of nearest neighbors.

cenn Clark and Evans' nearest neighbor index.

cramera Test for Neyman-Scott clustering using Cramer-von

Mises goodness-of-�t test.

cramerr Test complete spatial randomness using Cramer-von

Mises goodness-of-�t test.

cramerst Test for Strauss process using Cramer-von Mises

goodness-of-�t test.

dmap Compute Kth nearest neighbor distances over a grid

of equally spaced points and compare with distance

when CSR holds.

fitfreq Fits quadrat count data to various models.

ftstrau Fit a Strauss process.

inhom Simulates inhomogeneous Poisson point process.

Table 13: Library spatCSU { SPP (cont.)

26

Function Action

intker Kernel estimate of intensity function.

intknn K-th nearest neighbor approach to estimate intensity.

intknn2 Estimates the intensity using a combination of the k-

th nearest neighbors and kernel estimator.

kaver Average from simulated K-functions.

kenvl Averages and extremes from simulated K-functions

(\envelope").

kenvl2 Like kenvl(), but for two species populations.

kern Support for kernel estimation.

kfn Estimate scaled version of Ripley's K function.

kfn2 Like kfn(), but for two species populations.

knear Support for kernel estimation.

knear2 Support for kernel estimation.

knearn Support for kernel estimation.

knearn2 Support for kernel estimation.

mindst Minimum distance within a point pattern.

mrpp Multi-response permutation procedures testing for

nonrandomness.

mrppa Multi-response permutation procedures testing for

spatial association.

neyman Fit a Neyman-Scott clustering process.

neyman1 Support for neyman().

nppset Invisibly returns x and y coordinates of currently de-

�ned region.

pielou Pielou's index on nonrandomness.

pplik Pseudo likelihood estimation for �tting a Strauss pro-

cess.

ppsetsd Sets seed for Fortran random number generator.

predker Kernel estimate of intensity function.

predknn Kth nearest neighbor estimates of intensity.

predknn2 Kth nearest neighbor estimates of intensity.

ppregion Initialize variables in Fortran code to set up domain

for SPP.

ppset See ppregion().

psim Simulate binomial process.

qcir Quadrat sampling with circular plot.

qsquare Quadrat sampling with rectangular plot.

quad Estimates density and spatial distribution of a point

pattern using quadrat sampling.

quadadd Produce additional rectangles or circles for sampling.

Table 13: Library spatCSU { SPP (cont.)

27

Function Action

quadencr Check if rectangles (or circles) overlap.

quadgen Generate random center points of new rectangles or

circles.

quadplot Plot ractanlges or circles from quadrat sampling.

quadrat Estimates density and spatial distribution of a point

pattern using quadrat sampling.

quadsmpl Check how many points fall into sampled rectangles

(or circles) and eventually plot data and sampled re-

gions.

softcore Simulates regular spatial pattern using a soft- core in-

teraction.

ssi Simulate sequential inhibition process (Mat�ern).

strau1 Support for ftstrau().

strauss Simulate Strauss process.

Table 13: Library spatCSU { SPP

7.6 Data Sets

The library spatCSU contains all data sets that come with the library spatial

described above, plus three more that come with the mass library. The latter

are used for illustrative purposes in the chapter on spatial statistics in Ven-

ables and Ripley (1997). All these data sets are stored as ASCII-�les with

extension *.dat in the directory were spat98.zip was unzipped. Information

on data sources can be found in �le pp.�l in the same directory. Additional

data sets are given in the table below.

bu�alo.asc bu�spa.asc col.asc colspa.asc

denv1.asc denv2.asc denv3.asc denv4.asc

denv5.asc denv6.asc denv7.asc hardwood.asc

denver.asc grass.asc bu�alo.asc bu�spa.asc

col.asc colspa.asc denv1.asc denv2.asc

denv3.asc denv4.asc denv5.asc denv6.asc

denv7.asc hardwood.asc denver.asc grass.asc

loblolly.dat bb.dat range.dat

Table 14: Library spatCSU { Data Sets

7.7 Other Features

There is a very comprehensive manual describing functions and un-

derlying theory. See http://www.stat.colostate.edu/�rdavis/protec-

ted/manual.pdf for further information.

28

8 The Module S+SpatialStats

8.1 General Concepts

The version of S-Plus currently used at the statistics department is version

4.5, release 2 under Windows NT 4.0. There is a commercial add-on module

available for spatial statistics called S+SpatialStats (Mathsoft, 1997), version

1.1, release 1. It is described in detail in Kaluzny et al. (1998).

The S+SpatialStats module makes intensive use of the concepts of object

oriented programming implemented in S-Plus. It is designed particularly for

geographers. A manual is available written by Kaluzny et al. (1998). It con-

tains a special chapter to describe the use of S+SpatialStats together with

Geographical Information Systems, exempli�ed by ARC/INFO.

The following subsections describe what functions are available in the

S+SpatialStats module.

8.2 Working with Data

The table below shows the functions available for im- and export of data in

the S+SpatialStats module

3

. The basic function to use is read.neighbor()

which reads in an ASCII-�le with one line for each region containing at least

a region identi�er and neighborhood information. There are also functions

read.geoeas() and write.geoeas() to read and write �les in GEO-EAS

format.

Function Action

read.neighbor Reads in Ascii-Files containing neighboring information.

read.geoeas Read �les in the GEO-EAS �le format.

write.geoeas Write data out to �le in GEO-EAS �le format.

Table 15: S+SpatialStats { Working with Data

Other S-Plus base functions for data import and export are scan(),

write(), read.table(), import.data() and export.data(). The ad-

vantage of read.neighbor() is that it directly creates an object of

class spatial.neighbor, which is required by several other functions in

3

To transfer data between S-Plus and ARC/INFO use the module S+GISLINK. This

module is not described here.

29

S+SpatialStats. If base functions are used to read in data, objects of

class spatial.neighbor must be created explicitly using the function

spatial.neighbor().

8.3 Geostatistics

Geostatistics basically comes down to smoothing data over a grid. A crucial

role play the spatial correlations observed in the data. The are analyzed

using theoretical tools like the variogram, covariogram and correlogram (see

functions with corresponding names). S+SpatialStats allows for calculations

in prede�ned directions to check for geometric anisotropy. In many cases,

median polishing or some other technique is used for detrending. Theoretical

covariance models like the exponential, gaussian or spherical model can

be �t. The function model.variogram() enables the user to change the

�tting parameters interactively. The results can be saved in objects of class

variogram, covariogram or correlogram which have their own plotting

methods. If geostatistical data are to be simulated, use rfsim(). This

function creates an isotropic random �eld.

Note that the models in S+SpatialStats are usually stated in terms of

so-called S-Plus formulas. Within the formula, the loc() function may be

used to identify the location variables and to correct for geometric anisotropy.

The following table summarizes what is available in S+SpatialStats for geo-

statistical data analysis.

Function Action

boxplot.vgram.cloud Boxplot of variogram cloud, binned by distance.

correlogram Estimate empirical correlogram.

covariogram Estimate empirical covariogram.

exp.cov Theoretical covariance based on exponential

model.

exp.vgram Theoretical variogram based on exponential co-

variances.

gauss.cov Theoretical covariance based on gaussian model.

gauss.vgram Theoretical variogram based on gaussian covari-

ances.

identify.vgram.cloud identify()-method for class vgram.cloud.

krige Ordinary and universal kriging in 2D.

Table 16: S+SpatialStats { Geostatistics (cont.)

30

Function Action

linear.vgram Theoretical isotropic linear variogram.

loc Correct for spatial anisotropy.

model.variogram Plots empirical variogram object with theoret-

ical �t. allows for interaction.

panel.gamma0 Panel function to add loees curves.

predict.krige Compute kriging predictions.

print.krige Print-method for class krige.

plot.correlogram Plot-method for correlograms (class

correlogram).

plot.covariogram Plot-method for covariograms (class covario-

gram).

plot.variogram Plot-method for variograms (class vario-

gram).

plot.vgram.cloud Plot-method for variogram clouds (class

vgram.cloud).

power.vgram Theoretical isotropic power variogram.

rfsim Simulation of geostatistical data.

scaled.plot Scatterplot with axes scaled to a given ratio (de-

fault is 1).

spher.cov Theoretical covariance based on spherical

model.

spher.vgram Theoretical isotropic spherical variogram.

summary.variogram Call and parameters for variogram object.

twoway Estimate row, column and grand e�ects. Default

estimates from median polishing.

twoway.default See twoway().

twoway.formula Formula-method of twoway().

variogram Empirical variogram in 2D. Generic.

variogram.cloud Compute all pairwise di�erences.

variogram.default See variogram().

variogram.formula See variogram().

Table 16: S+SpatialStats { Geostatistics

8.4 Lattice Data

Basic assumptions for the analysis of Lattice Data in S+SpatialStats are mul-

tivariate normality and stationarity. Data including neighborhood informa-

tion can be read into a neighborhood matrix with read.neighbor(). If this

information is to be added later, use neighbor.grid() or find.neighbor()

31

and quad.tree(). Neighborhood information should be stored in objects

of class "spatial.neighbor". The function with the corresponding name

allows for construction of such objects. Redundancy may be removed by

spatial.condense(). A spatial.neighbor -object can contain several

neighborhood matrices at once. Since neighborhood information is stored

in sparse matrix form, some special functions are needed to perform math-

ematical operations. These are spatial.cg.solve(), spatial.solve(),

spatial.determinant(), spatial.multiply() and spatial.sum().

Moran's and Geary's measures of spatial correlation are found by

spatial.cor(). Spatial linear models are �t by slm(). The class of the

returned object is of the same name (\slm") and may be tested in a likeli-

hood ratio test using lrt.slm(). Possible models for the covariance structure

are given by conditional autoregression (CAR), simultaneous autoregression

(SAR) or moving average (MA) models.

The functions for variogram estimation are also helpful for analysis of Lattice

Data. See sectionGeostatistics above for a list.

Function Action

check.islands Detects isolated regions in object of class

spatial.neighbor.

find.neighbor Find nearest neighbor in quad.tree -object.

lrt.slm Likelihood ratio test for spatial linear model.

neighbor.grid Create spatial.neighbor -object from reg-

ular grid.

print.lrt.slm Print-method for LRT on slm -object.

print.slm Print-method for slm -object.

print.spatial.cor Print-method for spatial.cor -object.

print.spatial.neighbor Print-method for spatial.neighbor -object.

print.summary.slm Print-method for object of class

summary.slm.

quad.tree Reorder matrix to become a quad.tree -

object.

rayplot Add rays to existing plot.

slm Fit a spatial linear model.

slm.nlminb Fit a pro�le likelihood.

spatial.cg.solve Solves linear system with sparse matrix.

spatial.condense Remove redundant elements of spatial

.neighbor -object.

spatial.cor Compute measures of spatial correlation.

Table 17: S+SpatialStats { Lattice Data (cont.)

32

Function Action

spatial.determinant Find determinant of spatial.neighbor -

matrix.

spatial.multiply Matrix multiplication with spatial

.neighbor -matrix.

spatial.neighbor Creates objects of class spatial.neighbor.

spatial.solve Solve linear system with spatial.neighbor

-matrix.

spatial.subset Extract subset of spatial units from

spatial.neighbor -object.

spatial.sum Sum up two objects of class spatial

.neighbor.

spatial.weights Find matrix of spatial weights.

summary.slm Summary of a spatial linear regression model

object.

triangulate Delaunay's triangulation.

Table 17: S+SpatialStats { Lattice Data

8.5 Spatial Point Patterns

Data on Spatial Point Patterns should be stored in an object of class "spp".

This is essentially a data frame containing columns of coordinates plus some

additional attributes. The constructing function spp() is accompanied by

is.spp() and as.spp().

Several functions are related to the construction or checks on polygons,

like bbox(), is.convex.poly(), points.in.poly(), poly.expand() and

poly.grid(). In terms of statistical analysis, complete spatial randomness

may be tested using nearest neighbor methods. The empirical distribution

functions of point-to-point or origin-to-point nearest neighbor distances are

calculated and plotted by Ghat() and Fhat(), respectively. Ripley's K-

function is calculated in Khat() and Kenv(). Its scaled version (which is

linear for a homogeneous Poisson process) is implemented in Lhat() and

Lenv().

33

Function Action

Fhat EDF for origin-to-point nearest neighbor distances,

^

F.

Ghat EDF for point-to-point nearest neighbor distances,

^

G.

Khat Ripley's K function.

Kenv Compute simulations for Khat.

Lhat Ripley's K function.

Lenv Compute simulations for Khat().

as.spp Create object of class spp.

bbox Bounding box for object of class spp.

intensity Estimate the intensity of a spatial point pattern.

is.spp Check for class spp.

is.convex.poly Tests for convexity of polygon.

kern2d Kernel smoother in 2D.

make.pattern Generate random points in 2D.

plot.spp Plot-method for spp-objects.

points.in.poly Checks if xy-coordinates given are in polygon.

points.spp Add points to plot from plot.spp().

poly.area Compute area within polygon.

poly.expand Expand polygon by small fraction to truly contain all

points.

poly.grid Determine lattice of points within polygon.

spp Create spp-object which represents a spatial point

pattern.

summary.spp Summary of a spatial point pattern object.

Table 18: S+SpatialStats { Point Patterns

8.6 Data Sets

The following data sets come with the S+SpatialStats module as S-Plus-

objects. Short descriptions follow Kaluzny (1997, Appendix B).

Data set Contents

aquifer Wolfcamp aquifer data.

bramble Bramble cane data.

coal.ash Coal ash data.

iron.ore Iron ore data.

lansing Lansing Woods tree data.

quakes.bay Bay area earthquakes.

Table 19: S+SpatialStats { Data Sets (cont.)

34

Data set Contents

quakes.wash Washington State earthquakes in 1980.

scallops Scallop abundance data.

sids Sudden infant death syndrome data 1974-1978.

sids2 Sudden infant death syndrome data 1979-1984.

sids.neighbor Neighbors for sids data.

wheat Wheat grain and straw yield.

Table 19: S+SpatialStats { Data Sets

8.7 Other Features

There are a couple of other functions in S+SpatialStats not related directly

to any of the topics above, but still valuable tools in statistical analysis.

They are mostly related to mathematical calculations or to plotting, e.g.

hexagonal binning. An exception is lrt() which performs a likelihood ratio

test on �tted objects.

Function Action

hessian Hessian of a function of several parameters.

hexbin Creates object of class hexbin for hexagonal binning.

lrt Perform likelihood ratio test.

plot.hexbin Plots hexbin object.

powers Find powers of variables in term (i.e. product) given.

Table 20: S+SpatialStats { Other Features

9 Other Functions for Spatial Statistics

There are a few functions in the S-Plus base distribution that may be also

used for spatial statistics. The loess() function may be used to �t local

trend surfaces in 2D. The function interp() uses a method proposed by

Akima (c.f. Akima,1978). The library delauney (see statlib) computes the

Dirichlet-tessalation and the Delaunay triangulation. For some more detail,

see Venables and Ripley (1997). Besides that, the usual graphical functions

are a valuable tool in any spatial analysis.

35

10 Summary

This paper gives an overview of the functions available for spatial statistics

in S-Plus. Most of these are part of the public libraries splancs (by B. Rowl-

ingson and P. Diggle), sgeostat (by J.J. Majure), spatial (By B.D. Ripley)

and spatCSU (compiled by R.Reich and R.Davis). Others are implemented

in the commercial add-on module S+SpatialStats.

In terms of the number of functions available, the smallest library is sgeostat.

It concentrates on geostatistics, i.e. on variogram estimation and surface

�tting. This includes trend estimation as well as kriging. The library sgeostat

is the newest public library currently available and the only one that makes

use of the concept of object oriented programming.

The �eld of application of splancs are spatial point patterns. The library

o�ers many functions for analysis involving one or two populations. Also,

some methods for space-time analysis are implemented. Several graphical

functions come as convenient extra features.

The most comprehensive public library is spatCSU. The name spatCSU is

chosen somewhat ad lib, but reects the location where it was collected and

partly written. The library was originally based on Ripley's spatial library,

but is extended considerably by now. It o�ers not only the tools from spatial

for geostatistics and spatial point patterns, but extends them, and adds func-

tionality for the analysis of lattice data. It is even more comprehensive than

the the module S+SpatialStats. In addition, this library is well described in

a detailed manual.

The module S+SpatialStats also covers all three major areas of spatial statis-

tics. It makes intensive use of object oriented programming and is well struc-

tured and easy to use. The well-de�ned classes and methods allow for exten-

sion by the user. The manual (Kaluzny et al., 1998) describes the handling

very well and gives many examples and references. It includes many refer-

ences to statistical texts, notably Cressie (1993).

In summary, there is a wide range of functions and methods already available

for the analysis of spatial data in libraries and modules. Some additional work

should be done in implementing methods for spatio-temporal data analysis

to close a gap that is still open.

36

11 References

Akima, H. (1978). A method of bivariate interpolation and smooth surface

�tting for irregularly distributed data points. ACM Transactions on Mathe-

matical Software 4, 148-159.

Cressie, N. (1993). Statistics for Spatial Data, Wiley.

Haining, R. (1990). Spatial Data Analysis in the Social and Environmental

Sciences, Cambridge University Press, Cambridge.

Kaluzny, S.P., Vega, S.C., Cardoso, T.P. and Shelly,A.A. (1998).

S+SpatialStats: User's manual for Windows and Unix, Springer.

Mathsoft (1997). S+SpatialStats 1.1, Release 1. Mathsoft, Inc., Seattle.

Mathsoft (1998). S-Plus 4.5, Release 2. Mathsoft, Inc., Seattle.

Ripley, B.D. (1981). Spatial Statistics. John Wiley and Sons, New York.

Ripley, B.D. (1988). Statistical Inference for Spatial Processes. Cambridge

University Press, Cambridge.

Venables, W.N. and Ripley, B.D. (1997). Modern applied statistics with S-

Plus, 2nd edition. Springer, New York.

37

List of Tables

1 Library splancs { Working With Data 11

2 Library splancs { SPP (cont.) 12

2 Library splancs { SPP Data 13

3 Library splancs { Other Features 14

4 Library sgeostat { Object Classes 15

5 Library sgeostat { Geostatistics (cont.) 16

5 Library sgeostat { Geostatistics 17

6 Library spatial { Working with Data 19

7 Library spatial { Geostatistics 20

8 Library spatial { SPP . 20

9 Library spatial { Data sets 21

10 Library spatCSU { Working with Data 23

11 Library spatCSU { Geostatistics (cont.) 23

11 Library spatCSU { Geostatistics 24

12 Library spatCSU { Lattice Data 25

13 Library spatCSU { SPP (cont.) 26

13 Library spatCSU { SPP (cont.) 27

13 Library spatCSU { SPP 28

14 Library spatCSU { Data Sets 28

15 S+SpatialStats { Working with Data 29

16 S+SpatialStats { Geostatistics (cont.) 30

16 S+SpatialStats { Geostatistics 31

17 S+SpatialStats { Lattice Data (cont.) 32

17 S+SpatialStats { Lattice Data 33

18 S+SpatialStats { Point Patterns 34

19 S+SpatialStats { Data Sets (cont.) 34

19 S+SpatialStats { Data Sets 35

20 S+SpatialStats { Other Features 35

38

