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ABSTRACT

In modern statistical process control, intelligent alarm systems have to be

constructed which extract the important information from multivariate time

series and detect critical "out-of control" states of the underlying mecha-

nism quickly and reliably. Regarding high-dimensional time series, statisti-

cal methods for dimension reduction can help to compress the data into a

few relevant variables before characteristic patterns in the data are searched

for. In this paper we apply graphical models as a preliminary step preceding

a factor analysis of the vital signs of critically ill patients in intensive care.

Then a procedure for the online-detection of change points in univariate time

series is applied to the original series and to each of the factors and the re-

sults are compared to the judgment of an experienced physician.
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1 Introduction

Statistical process control aims at the extraction of important information

from observed data and at the construction of alarm systems which detect

critical "out-of control" states of the underlying mechanism quickly and re-

liably. Classical control charts consider mostly independent observations of

one variable. Nowadays, increasing technical possibilities allow an online

recording of many variables with high sampling frequencies. Often both au-

tocorrelations and cross-correlations are found in the data which have to be

regarded as high-dimensional time series.

In intensive care, for instance, clinical information systems (CIS) acquire

and store physiological and device parameters online at least every minute.

Physicians can be confronted with more than 200 variables of the critically

ill patient during a typical morning round. Intelligent automatic monitoring

procedures are needed to cope with this ood of information and to support

decision-making at the bedside in time critical situations.

In process control of industrial manufacturing processes (weak) stationarity

and the existence of a target value for the data may be assumed. It is often

suggested to estimate the model parameters from past data. However, in

the clinical application of monitoring vital signs neither stationarity can be

assumed nor should a target value be speci�ed because of natural changes of

the data generating mechanism caused by the biorhythm for instance (H�ogel,

2000). Moreover, parameter estimation from past data is diÆcult regarding

vital signs of human beings because of fundamental di�erences between in-

dividuals.

In intensive care, usually changes of a variable over time are more important

than a single pathological value at the time of observation. Hence, the on-

line detection of qualitative patterns such as outliers, level changes or trends

in physiological variables is important for assessing the patient's state. In

clinical practice, alarm systems based on �xed thresholds are used. However,

their rate of false alarms is extremely high (between 70% and 99%, O'Carroll

(1986), Wiklund et al. (1994)) and they have diÆculties in detecting slow

monotone trends. Alternatively, qualitative data abstraction has been devel-

oped using deviations of the measurements from the target range (Miksch

et al. (1996)) or so-called trend templates (Haimowitz and Kohane (1996)).

However, these methods do not consider autocorrelations or they demand a

prede�nition of expected behaviour, which is hard to specify in advance in
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critical care.

Statistical time series analysis has shown to be useful for online detection of

characteristic patterns in univariate time series. It allows to consider autocor-

relations, leads to interpretable descriptions of complex underlying dynamics,

provides forecasts, gives con�dence bounds and allows the assessment of the

clinical e�ects of therapeutic interventions (Hill and Endresen (1978), Imho�

and Bauer (1996)). For pattern detection in single variables dynamic linear

models (Gordon and Smith (1990)), ARIMA-models (Hepworth, Hendrickson

and Lopez (1994), Imho� et al. (1997)), and models based on a multivariate

embedding (Bauer, Gather and Imho� (1999)) have already been applied.

Pattern detection in multivariate time series is much more diÆcult than in

univariate series since there are much more directions for deviations from

the steady-state. Even an experienced physician is not able to develop a sys-

tematic response to any problem involving more than seven variables (Miller

(1956)). Moreover, human beings are not able to judge the degree of related-

ness between more than two variables (Jennings, Amabile and Ross (1982)).

Further problems arise from the curse of dimensionality since we do not have

suÆcient data to estimate the model parameters reliably, particularly if the

series can only be considered to be locally stationary (Dahlhaus (1997)).

Moreover, in high dimensions the computational e�ort can exceed any avail-

able computational power (Huber (1999)). This problem becomes even more

serious in online monitoring where fast and robust algorithms are needed.

The necessity of robustness against disturbances such as sequences of patchy

outliers is obvious since outliers can a�ect the correct classi�cation of pat-

terns. Therefore, reliable procedures for analyzing multivariate time series

have to be developed and validated with real data.

In clinical practice, the physician typically selects the most important vari-

ables (according to his experience) and bases his decisions on the patterns

found in these variables. Statistics o�ers alternative ways to reduce the di-

mension of the variables. Factor analysis can be applied for instance to �nd

a few latent variables which capture most of the variability in the observed

data. However, we have to ensure that the latent factors can be interpreted

by the physician so that he is able to understand the alarm signals and to

base his decision on them. This can be achieved by imposing a suitable struc-

ture on the loading matrices using physiological knowledge and the results

obtained from data analysis with graphical models.

In Section 2 we summarize a procedure for the online-detection of patterns
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in univariate time series and apply it to the measurements of ten vital signs

(several blood pressures, heart rate, pulse, blood temperature) of a critically

ill patient observed in intensive care. The detected patterns are compared

to the judgment of an experienced senior physician. In Section 3 we ap-

ply dynamic factor analysis to the multivariate time series by analyzing the

eigenstructure of the autocovariance matrices. In Section 4 we use graphical

models for time series to detect associations between the vital signs and com-

pare the results to the factors found before. In view of these results, in Section

5 we partition the variables into several subsets and analyze these subsets

individually for common factors. These common factors are monitored and

the patterns detected are compared to the judgment of the physician and

the patterns found in the original series. We �nally give a discussion of our

results and an outline of future work.

2 Univariate Monitoring

Statistical time series methods so far have been mainly developed for retro-

spective applications. For the retrospective detection of patterns like outliers

and level shifts Fox (1972) and Chang, Tiao and Chen (1988) propose like-

lihood ratio tests, while Pe~na (1990) and De Jong and Penzer (1998) apply

inuence statistics (see Hotta and Neves (1992) for an overview). Such meth-

ods are diÆcult to use online since they demand information on the future

development of the time series as well. This problem is illustrated in Gather,

Fried and Imho� (2000).

For the online recognition of patterns of change in a dynamical system, we

should estimate the dependence structure of the underlying process during

the equilibrium or steady state from past data and �nd a measure to detect

deviations from this steady state. Experience from earlier studies of physi-

ologic variables (Lambert et al. (1995), Imho� et al. (1997), Imho� et al.

(1998)) shows that physiological time series can typically be described ade-

quately by low order AR(p)-models. The choice p = 2 seems to be suÆcient

in most cases. An intuitive rule for the detection of an outlier is to compare

the incoming observation to the one-step ahead prediction based on such

models.

Bauer, Gather and Imho� (1999) use an alternative approach to develop

an automatic procedure for the online detection of outliers and level shifts

in time series. They transfer rules for outlier identi�cation in multivariate
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data to the time series context by modeling the marginal distribution of

m-dimensional vectors

x

t

=

�

x(t); x(t� 1); x(t� 2); : : : ; x(t�m + 1)

�

0

;

x

t

2 R

m

; t = m; : : : ; N;

where the components are the time delayed elements of the observed time

series fx(t)g

t2f1;:::;Ng

of length N with m 2 Nnf0g; m � N . In this way

the dynamical information of the univariate time series is transformed into

a spatial information within an m-dimensional space R

m

. The embedding

dimension m should be chosen according to the dependence structure of the

underlying process. Since most physiological time series can be described by

AR(2)-models, m = 3 is an obvious choice.

For a linear stationary Gaussian process the time-delay vectors x

m

; : : : ; x

N
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m

; : : : ; X

N

from a

multivariate normal distribution. Hence they should form an m-dimensional

elliptical cloud during the steady state and a control ellipsoid can be con-

structed based on the Mahalanobis distance
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N
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); h = 0; : : : ; m � 1;

where

�

X

N

=

1

N

P

N

t=1

X(t). It is obvious that MDTS(t) can be replaced by

its robust counterparts.

In a simulation study, Bauer, Gather and Imho� (1999) compare this ap-

proach to forecast based detection rules for ARMA(p; q)-models as mentioned

above. They �nd the latter approach to perform better in case of a single

outlier, while the former approach seems to be preferable in case of a change

a�ecting several subsequent observations because of a level shift, for instance.

This is according to the intuition that using one-step ahead prediction means
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to consider only the possibility of the �rst outlier to occur at time t. In case

of a patch of outliers or a level shift this approach fails with high probability

if the �rst outlier is not detected and not replaced by a prediction. This

de�ciency will become even more serious in case of biological systems like

the dynamic health state of a human being, which often shows a step-wise

reaction to disturbances. In contrast to this, using the marginal distribution

means to judge m subsequent observations simultaneously. The power of

the rule based on the Mahalanobis distance should be increasing with the

number of subsequent outliers since they move the time-delay vector further

out of the control ellipsoid than a single outlier does. For this reason the

time-delay technique suggested in Bauer, Gather and Imho� (1999) will be

better than an approach based on ARMA(p,q) prediction for patchy outliers

and level shifts at the slight expense of lower power against a single outlier,

which is clinically a much less relevant phenomenon.

Similar to control charts from quality control one can either choose the level �

using probability limits or some kind of control limits. Choosing probability

limits means specifying a �xed value �. In practical monitoring situations

it is diÆcult to keep the number of false alarms low when the variability

of the process uctuates and a �xed probability limit is used. Often only

a deviation from the process level by more than 100k%, k 2 [0; 1], is of

interest, where k may be �xed by the physician, engineer, or operator. If the

variability of the process is small then the probability limits are very sensitive

and too many outliers are detected. On the other hand, if the variability is

large the procedure is very insensitive. Hence, an alternative approach in

such situations is to choose the level � depending on the process variance.

Bauer, Gather and Imho� (1999) suggest to use an adaptive signi�cance limit

by inscribing a control ellipsoid into the m-dimensional cuboid having side

lengths 100k% which is centered at the current location. The current center

and the current autocovariances can be estimated by moving a time window

of length N through the time series assuming local stationarity (see Dahlhaus

(1997) for a theoretical treatment of this concept). Concerning the choice

of N , a balance between bias because of a too long window and variance

because of a too short window should be searched for.

In any case the reliable distinction between patterns such as trends, level

changes and outliers in physiological time series is diÆcult since often com-

binations of several patterns occur. In our case-study we use the di�erenced

series fd(t)g

t2f2;:::;Ng

, where d(t) = x(t)�x(t�1). Di�erencing removes linear
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trends and allows simpler rules for distinguishing between outliers and level

shifts. For a single outlier in the original series, we get two subsequent out-

lying di�erences, while for a level shift occurring in one step we get a single

outlying di�erence. Hence, disturbances can be detected by the movement of

the a�ected vectors in the m-dimensional space outside the control ellipsoid.

However, the procedure described above is not suitable for the detection of

slow trends. Fried, Gather and Imho� (2000) adapt a rule for retrospective

trend detection proposed by Abelson and Tukey (1963) for independent data

and by Brillinger (1989) for time series. Under the assumption that there

is an underlying signal S(t), which is disturbed by a possibly autocorrelated

noise E(t), such that

X(t) = S(t) + E(t); t 2 Z;

a weighted sum

P

N

t=1

c(t)X(t) of the observations is used to test for any

form of monotone increase of S(t) during the time interval t = 1; : : : ; N ,

i.e., S(1) � S(2) � : : : � S(N) with S(t) < S(t+ 1) for at least one t 2

f1; : : : ; N � 1g. The same considerations hold for a monotone decrease of

S(t). Since the weights c(1); : : : ; c(N) must have mean c = 0, the weighted

sum has mean zero if S(t) is constant over time. Writing S = N

�1

P

S(t),

the weights are then determined to solve
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c
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S
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P
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2

P
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2

P
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2

;

i.e., to have a worst case discriminatory power for an extremely unfavorable

trend which is as high as possible. This results in
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t

�
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and the corresponding worst case is a single step change. Thus, the hypoth-

esis of a constant mean should be rejected in favor of a monotone increasing

(decreasing) mean if

P

N

t=1

c(t)X(t) is large (small) in comparison to its vari-

ance.

During the steady state the variance of

P

N

t=1

c(t)X(t) is

V ar

 

N

X

t=1

c(t)X(t)

!

=

N

X

t=1

N

X

s=1

c(t)c(s)(t� s) : (2)
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Hence, parameter estimation can be accomplished easily if we have reliable

estimates of (0); : : : ; (p) from a time window of lengthN . However, a trend

has a serious impact on the usual sample autocovariances. For this reason

Fried, Gather and Imho� (2000) suggest to eliminate a (local) linear trend

at+ b by usual regression methods �rst and to estimate the autocovariances

from the residuals.

time

0 100 200 300 400

0

50

100

150

200

Figure 1: Vital signs of a critically ill patient, where ���������� : arterial pressures

in mmHg (APD > APM > APS), ����� : pulmonary artery pressures

and central venous pressure in mmHg (PAPS > PAPM > PAPD > CVP),

� � � � � � � � � : heart rate and pulse in 1/min, �rst 400 observations.

In the following we apply a combined procedure for the online detection

of change points in univariate time series to the following vital signs of a

critically ill patient observed during extended hemodynamic monitoring: di-

astolic, systolic and mean arterial pressure (APD, APS, APM), diastolic, sys-

tolic and mean pulmonary artery pressure (PAPS, PAPD, PAPM), central

venous pressure (CVP), heart rate (HR), pulse, blood temperature (temp).

In the analysis 3804 subsequent observations measured in one-minute inter-

vals are included. Figure 1 shows the �rst 400 observations of this multivari-

ate time series.
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The procedure combines the detection rule for outliers and level changes and

the weighted sum chart of the original observations for the detection of mono-

tone trends. We calculate both the Mahalanobis distance and the weighted

sum from a time window consisting of N = 30 subsequent observations.

Since experience tells us that most physiological time series can adequately

be described by AR(2)-models, we choose the embedding dimension m = 3

for the detection of outliers and level shifts, and add a rule using the embed-

ding dimension m = 5 to detect patterns such as level changes occurring in

several steps during some subsequent observation times. For trend detection

we choose the critical value c = 5:0 according to the insights gained in a sim-

ulation study (Fried, Gather, Imho� (2000)), and consider a trend to happen

if at least three subsequent values of the weighted sum exceed �ve times the

estimated standard deviation of the test statistic since the weighted sum is

not robust against outliers.

The results of this combined procedure are compared to the classi�cations

given by an experienced senior physician who judged the individual time se-

ries plots and indicated outliers, level changes and trends which are clinically

important or at least interesting. The Mahalanobis distance turns out to be

much too sensitive in comparison to the judgment of the physician when a

�xed signi�cance level like � = 0:005 is chosen. This reects the problems

with a �xed � which have already been mentioned. For this reason we use

an adaptive signi�cance level to detect changes of at least 10% of the current

mean of the series. Furthermore, we call a level change critical if it is still

detected when this adaptive signi�cance level is divided by 10. A trend is

called critical if it is detected even after increasing the critical value to 7.0.

Table 1 summarizes the results of our comparisons. The results for the blood

temperature are not reported since there is only one pattern, an upward trend

at the beginning of the series which is quickly recognized. Obviously, most

of the patterns are detected correctly, and using a larger control ellipsoid

and a higher critical value even allows to di�erentiate between relevant and

interesting patterns in most of the cases. Almost all relevant patterns are

detected using the smaller control bounds. However, these narrower bounds

result in about 33% (45%) falsely detected outliers for arterial pressures,

heart rate and pulse (for pulmonary artery pressures). In two cases the au-

tomatic procedure misspeci�ed a level change as an outlier, and a few trends

are not detected because of high variability with increasing and decreasing

sequences during this period. The automatic procedure has some diÆculties

9



Outlier Lev. Ch. Trend

AP phys. 60 60 19 25 8 27

det. 52 54 16 21 3 26

fals. 11 30 2 10 2 27

HR phys. 76 76 6 17 7 24

det. 61 68 6 17 5 22

fals. 23 41 3 5 7 6

PAP phys. 106 125 10 29 34 69

det. 104 125 8 29 27 68

fals. 67 99 0 4 12 7

Table 1: Number of patterns labeled by the physician (phys.), number of

cases detected correctly by our procedure (det.), and "falsely" identi�ed pat-

terns (fals.) summarized in blocks corresponding to the arterial pressures

AP (APD, APM and APS), the pulmonary artery pressures PAP (PAPD,

PAPM, PAPS, CV) and heart rate and pulse HR. The left column indicates

the numbers of clinically relevant patterns, while the right column indicates

all patterns.

in distinguishing between large outlier patches and level shifts (not reported

in the table), which are both indicated by a signal from the detection rule

for m = 5. This is an inherent problem of the online analysis of the irreg-

ular patterns which are found in the vital signs, since decisions are needed

very quickly. We should point out that the classi�cations of the physician

should not be treated as the gold standard, but as a subjective and so far

only available judgment.

3 Multivariate Monitoring

In the following it is always assumed that we observe a multivariate station-

ary time series X(t) = (X

1

(t); : : : ; X

k

(t))

0

; t 2 Z; of dimension k and with

autocovariance function



ab

(h) = Cov(X

a

(t+ h); X

b

(t)); 1 � a; b � k; h 2 Z

which is absolutely summable with respect to all time lags h for all pairs

a; b 2 f1; : : : ; kg. As pointed out by Tsay, Pe~na and Pankratz, the proper
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classi�cation of outliers and level changes in multivariate time series is more

diÆcult than in univariate time series, and multivariate detection rules are

superior to simple combinations of univariate rules. The procedure for the

detection of outliers and level shifts described in the last section can be

extended to monitor a few, say k = 3, variables simultaneously. To do this

we construct the 3m-dimensional vectors

x

t

= (x

1

(t); x

2

(t); x

3

(t); : : : ; x

1

(t�m + 1); x

2

(t�m+ 1); x

3

(t�m+ 1))

0

and estimate the corresponding control ellipsoid. For instance, if we include

m = 2 observations for each variable, we have to compute an estimate of

the (6 � 6){covariance matrix. Thereafter we move a time window of e.g.

N = 60 observations through the data and compare the incoming observation

at each point in time with the boundaries of the control ellipsoid. If the

incoming observation is inside the ellipsoid, we include it in the time interval,

reestimate the ellipsoid and move the time window to the next observation.

If an observation is outside the ellipsoid, we compare the observations of

each of the variables to the corresponding critical ellipsoid calculated for the

individual variable at a time. All values which turn out to be univariate

artifacts are replaced by the univariate prediction. After these replacements,

the corrected observations are compared again to the multivariate critical

ellipsoid. If they are inside the ellipsoid, we go on to the next observation.

If they are outside an alarm should be given as there seems to be a change

in structure.

If more than three variables are monitored simultaneously, we run into prob-

lems because of the curse of dimensionality. Possibly we do not have suÆcient

data to estimate the shape of the con�dence ellipsoid reliably. However, the

described procedure can still be applied if we �rst reduce the dimension of

the variables.

Factor analysis aims at the reduction of the dimension of multivariate data

by searching for unobservable, latent variables. Here it is assumed that there

are a few, say l, latent variables called factors which drive the series and

cause the correlations between the observable variables. In order to achieve

good interpretability the factors can be rotated in the l-dimensional space.

Pe~na and Box (1987) suggest the following model for dynamic factor analysis

of multivariate time series. For a k-dimensional time series fX(t) : t 2 Zg

they assume

X(t) = �Z(t) + �(t) (3)
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to hold for each point in time t, where � is a k � l-matrix of loadings,

Z(t) are l-dimensional vectors of latent factors following a VARMA(p,q)-

model, and f�(t) : t 2 Zg is a k-dimensional process of Gaussian white noise

with zero mean and arbitrary covariance matrix �

�

, which is independent of

fZ(t) : t 2 Zg. To get identi�ability of the parameters, �

0

� can be restricted

to be the identity.

If model (3) holds with independent factors, i.e, Z(t) follows a VARMA(p,q)-

model where all coeÆcient matrices are diagonal, then the time-lagged au-

tocovariance matrices �

X

(h) of fX(t) : t 2 Zg are symmetrical for h � 1

and the columns of � will be the common eigenvectors of �

X

(h) while the

corresponding eigenvalues 

i

(h); i = 1; : : : ; l; are the diagonal elements of

the autocovariance matrices �

Z

(h) of fZ(t) : t 2 Zg. Pe~na and Box (1987)

suggest to identify factor models using these �ndings.

An important criticism of this approach is that for time series with trend

patterns the matrices �

X

(h); h � 1, are dominated by �

X

(0), which causes

them to be symmetric with similar eigenvalues such that actually a static

principal component analysis is performed (Tiao and Tsay (1989)). Since

our main interest is the detection of non-stationarities like sudden changes

and trends, this is reasonable in our case. To understand this, let us assume

that (3) is replaced by a deterministic analogue

X(t) = �z(t) + �(t); (4)

where z(t) is an l-dimensional deterministic trend inuencing the observ-

able series via the matrix �, l � k, and f�(t) : t 2 Zg is a stationary

VARMA(p,q)-process of random deviations from this common trend. As-

suming that the series is already centered to have the arithmetic mean zero,

the sample autocovariance matrices result in

^

�

X

(h) =

1

N

N�h

X

t=1

h

�z(t)z(t+ h)

0

�

0

+�z(t)�(t+ h)

0

+ �(t)z(t + h)

0

�

0

+�(t)�(t + h)

0

i

(5)

having expectation

E[

^

�

X

(h)] =

1

N

N�h

X

t=1

�z(t)z(t + h)

0

�

0

+

N � h

N

�

�

(h) ; (6)

which is a sum of two symmetric positive-semide�nite matrices. The rank of

the �rst summand is equal to the number of common trends. Hence, if we
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�nd l < k factors when analyzing the autocovariance matrices and there are

deterministic trends as we have assumed in model (4), then we can describe

this deterministic structure by l common trends. Moreover, either the noise

variances are negligible in comparison to the deterministic variation imposed

by the trends, or the autocovariance matrices of the noise themselves show

a similar factor model structure.

The physiologic time series considered in our case-study show very distinct

variability. Therefore we �rst standardize them to have zero mean and sample

variance 1. Then we try to identify a factor model by analyzing the eigenval-

ues and eigenvectors of the cross-covariance matrices �

Y

(1); : : : ;�

Y

(H) of the

standardized series fY (t) : t 2 Zg, or, equivalently, of the cross-correlation

matrices of the original series for the time lags h = 1; : : : ; H. To get an idea

about the appropriate choice of H we simulate a factor model (3) with ten

observable variables and four factors of the same length as our original time

series. The loading matrix and the error variances used in these simulations

were chosen according to the �rst eigenvectors and eigenvalues obtained by

an analysis of

^

�

X

(1) for our data. We �nd the eigenvectors of the covariance

matrices up to time lag 5 to be fairly stable and hence decide to set H = 5.

However, it is also found that in our simulation setup we need as much as

1000 subsequent observations to guarantee the stability of the eigenvectors.

To check stationarity we analyze our time series data in four blocks of 951

subsequent observations each. By examining the corresponding eigenvalues

we notice that four factors seem to be suitable for each period. The obtained

eigenvectors are rotated by the 'varimax' procedure and the results are com-

pared. Generally, the eigenvectors of the four periods are rather similar. For

all time periods, we can identify one factor corresponding to the pulmonary

artery pressures and the central venous pressure, one to the arterial pres-

sures, one to the heart rate and the pulse, and one factor representing the

blood temperature alone. These �ndings point at common behaviour within

some subgroups of the variables. It should be noted, however, that in the

fourth time period the loading vectors of the second and the third factor are

interchanged in terms of size of the corresponding eigenvalues. For further

investigation of the associations between the variables we apply graphical

models before we proceed further.

13



Variable fact. 1 fact. 2 fact. 3 fact. 4 fact. 1 fact. 2 fact. 3 fact. 4

Time period 1 Time period 2

PAPD .5569 -.0679 -.0888 -.1145 .4507 .0318 -.0001 -.0908

PAPM .4906 .0381 -.0033 .1345 .5111 -.0126 .0739 .0209

PAPS .4485 .0609 .0538 .1402 .5752 -.0504 .0171 .3520

CVP .4995 -.0246 .0343 -.1675 .4391 .0503 -.1266 -.2706

APD -.0008 .5007 .0347 -.2967 -.0250 .5445 .0158 -.2339

APM -.0245 .6144 -.0282 .0127 .0343 .5852 -.0128 .0204

APS .0335 .6029 -.0079 .1611 .0010 .5918 .0013 .1950

HR -.0051 .0041 .7105 .0107 -.0531 .0505 .7459 -.0527

PULS .0115 -.0106 .6994 -.0127 .0681 -.0428 .6528 .0409

TEMP .0140 .0227 .0034 .9024 -.0765 .0480 -.0312 .8389

Time period 3 Time period 4

PAPD .5238 -.0052 .0013 -.1736 .4436 -.0901 .1052 -.0518

PAPM .5115 .0099 -.0006 .0655 .5348 .0571 -.0245 -.0361

PAPS .4499 .0417 -.0165 .2680 .4939 .1357 -.1065 -.0429

CVP .5085 -.0329 .0162 -.0528 .5241 -.0948 .0271 .1487

APD -.0489 .5311 .2075 .0785 .0532 .0103 .5261 -.1112

APM .0329 .6051 -.0058 -.0030 -.0156 -.0018 .6006 -.0753

APS .0017 .5923 -.1771 -.0696 -.0411 .0106 .5975 .2560

HR .0004 .0035 .6820 -.0011 -.0136 .7031 .0116 -.0031

PULS .0120 -.0040 .6800 -.0149 -.0028 .7020 .0109 .0086

TEMP -.0338 -.0136 -.0129 .9394 -.0021 .0102 -.0506 .9435

Table 2: Factor loadings calculated from four subsequent blocks of 951 obser-

vations each after varimax rotation. For each block, the factor found for the

largest eigenvalue corresponds to the intrathoracic pressures (PAPD, PAPM,

PAPS, CVP) and the factor found for the smallest of the four eigenvalues

corresponds to the temperature. The arterial pressures characterize the sec-

ond factor in the �rst three blocks, but the third one in the fourth block.

The remaining factor corresponds to the heart rate and the pulse. The factor

loadings are rather similar for all time periods.
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4 Graphical Models

In clinical practice physicians typically select a few vital signs to obtain

a manageable number of variables. For instance, they concentrate on the

arterial mean pressure and neglect the other arterial pressures since these

variables are closely related.

Graphical models allow a statistical investigation of the associations within

a multitude of variables (Cox and Wermuth (1996), Lauritzen (1996)). Dahl-

haus (2000) extends this concept to �nd linear, possibly time-lagged associa-

tions in multivariate time series by analyzing the partial spectral coherence.

Gather, Imho� and Fried (2000) appraise the practical value of this new

technique in a clinical study, where known associations within the hemo-

dynamic system are reliably identi�ed by graphical models for multivariate

time series. Separate analysis of patients in di�erent clinical states such as

congestive heart failure or pulmonary hypertension even results in charac-

terizations of the states by distinct association structures. However, for the

reliable estimation of the partial spectral coherences many observations are

needed and therefore this method can be used for online detection of critical

states only if the sampling frequency is much faster than one observation per

minute.

First we explain the concept of graphical models for time series. Under the

assumptions stated at the beginning of section 3, the cross-spectrum between

the time series fX

a

(t) : t 2 Zg and fX

b

(t) : t 2 Zg is de�ned as the Fourier-

transform of their covariance function 

ab

(h); h 2 Z,

f

ab

(�) = f

X

a

X

b

(�) =

1

2�

1

X

h=�1



ab

(h) exp(�i�h)

(see Brillinger, 1981, p. 232�). This de�nes a decomposition of the covariance

function 

ab

into periodic functions of frequencies �. The variables X

a

and

X

b

are uncorrelated at all time lags h i� f

ab

(�) equals zero for all frequencies.

To distinguish between direct and induced linear relations between two series

X

a

(t) and X

b

(t), the linear e�ects of the remaining variables on X

a

(t) and

X

b

(t) have to be eliminated. Let Y (t) = (X

1

(t); : : : ; X

k

)

0

; j 6= a; b; t 2

Z, denote the series of the other components. The partial cross-spectrum

between X

a

(t) and X

b

(t) is de�ned as the cross-spectrum between the series

f�

a

(t) : t 2 Zg and f�

b

(t) : t 2 Zg,

f

X

a

X

b

�Y

(�) = f

�

a

�

b

(�) ;
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where �

a

(t) and �

b

(t) are the residuals obtained by subtracting the linear

inuences of fY (t) : t 2 Zg from X

a

(t) and X

b

(t) respectively. In the

same way the (partial) cross-spectrum between two vector time series can

be de�ned. Brillinger (1981, Theorem 8.3.1) shows that the partial cross-

spectrum can be calculated by

f

X

a

X

b

�Y

(�) = f

X

a

X

b

(�)� f

X

a

Y

(�)[f

Y Y

(�)]

�1

f

Y X

b

(�) ; (7)

where the components of the vectors f

X

a

Y

(�) and f

Y X

b

(�) and the matrix

f

Y Y

(�) are cross- spectra between the corresponding variables.

The partial spectral coherency is a standardization of the partial cross-spectrum

R

X

a

X

b

�Y

(�) =

f

X

a

X

b

�Y

(�)

�

f

X

a

X

a

�Y

(�)f

X

b

X

b

�Y

(�)

�

1=2

: (8)

In a conditional correlation graph for a multivariate time series we draw a

vertex for each of the components a = 1; : : : ; k of the time series and connect

two vertices a and b by an edge whenever their partial spectral coherency

R

X

a

X

b

�Y

(�) is not identical to zero for all frequencies � 2 R. Hence, a miss-

ing edge indicates that the linear relation between these two variables given

all the others is zero. This is the pairwise Markov property for undirected

graphical models in case of Gaussian disturbances.

For the empirical analysis of multivariate time series data, one can �rst es-

timate the cross-spectra from the data and then use versions of the equa-

tions (7) and (8) for the empirical functions to estimate the partial spectral

coherencies. Thereafter we have to decide whether the partial spectral co-

herency may equal zero because sampling variability always causes estimates

to be distinct from zero. For our calculations we used the program "Spec-

trum" (Dahlhaus and Eichler (2000)) which estimates the cross-spectrum by

a nonparametric kernel estimator.

It is well-known that di�erent associations between physiological variables

may have distinct strengths. Therefore, we decide not to use the approximate

joint �% test that the partial spectral coherence jR

X

a

X

b

�Y

j

2

equals zero at all

frequencies since this allows a "yes - no" judgment only. Instead we classify

the associations in high, medium, low and zero correlation on the basis of

the area under the estimated partial spectral coherence. This area can be

measured by the partial mutual information between the time series fX

a

g

and fX

b

g, which is de�ned by

�

1

2�

Z

logf1� jR

X

a

X

b

�Y

(�)j

2

gd�
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(Granger and Hatanaka (1964), Brillinger (1996)) or by variants of this.

The graphical correlation model which results from the analysis of the mul-

tivariate time series of vital signs already considered in the last sections is

shown in Figure 2. As expected, strong partial correlations exist between the

systolic, diastolic and mean arterial pressure (APS, APD and APM), between

the heart rate and the pulse (HR and Puls), as well as between the systolic,

diastolic and mean pulmonary artery pressure (PAPS, PAPD, PAPM). The

central venous pressure is mainly related to the pulmonary artery pressures.

Furthermore, many weak associations exist. The blood temperature seems

to be rather isolated. Neglecting the weak associations we can identify the

same groups from the graph as we have found in our factor analysis in the

last section. The factor loadings calculated in a factor analysis of all vari-

ables "identify" each of the factors to belong to one of these groups, while

the temperature is somewhat isolated. Hence, the results of both analyses

coincide.

These results do also agree with medical knowledge. In order to obtain a

manageable number of variables, physicians often select the mean pressures

APM and PAPM as well as the heart rate. Hence, they select exactly that

variable out of each of the subgroups identi�ed by our graphical correlation

model, which has the strongest association to the other variables. This is due

to the nature of the mean pressures, which are "in between" the diastolic and

systolic pressures.

APD

HR

PAPD

Puls

Temp CVP

APS

weak

significant

strong

PAPMAPM

PAPS

Figure 2: Partial correlation graph for the hemodynamic system.
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5 Factor Analysis after Partitioning

For the construction of an intelligent alarm system based on a dynamical fac-

tor analysis of the vital signs it is important that the factors are interpretable

for the physician and that they contain the important patterns found in the

observable variables. Then we can simply monitor the factors and a sum-

mary measure of the model errors like the sum of the squared residuals for

each time point.

The simulations in Section 3 show that in order to extract common factors

from a high-dimensional time series we need a large number of observations.

Pe~na and Box (1987) extract two common factors from a �ve-dimensional

time series with 126 observation times. In Section 3 we �nd four interpretable

factors for a ten-dimensional time series of vital signs using about 900 time

points. Hopefully this number can be reduced if we use medical knowledge

and analyze existing data by graphical models to subdivide the variables into

strongly associated subsets. For instance, we can simplify the task of factor

extraction in the hemodynamic system if we consider the subsets consisting

of the arterial pressures, of the pulmonary artery pressures including the

central venous pressure, and of the heart rate and the pulse respectively,

compare Figure 2. In the following the blood temperature is neglected since

it is not strongly related to the other variables, cf. sections 3 and 4.

This justi�es a separate analysis of common factors for each group of vari-

ables. Since the variables of each group are measured on the same scale, we

can use the sample covariance matrices up to time lag H = 4 and calculate

the eigenvalues and the eigenvectors for each group. We �nd one factor to

be suÆcient for each group. The resulting factor loadings are provided in

Table 3. Very similar loadings are obtained if we analyze the joint sample

covariance matrices of all variables. Comparing the factors with each of the

variables in the same group by taking di�erences reveals that the factors are

really mixtures of all variables and cannot be identi�ed with one of them.

Figure 3 shows the factor and the observed variable which typically is se-

lected as a representative for the corresponding group, i.e., the arterial mean

pressure, the pulmonary artery mean pressure and the heart rate.

Now we apply the combined online-monitoring procedure described in Section

2 to the factors and compare the results to the judgment of an experienced

senior physician. Almost all patterns which the physician considered to be

important in the observed variables are visible in the factor series, too. The
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Variable factor 1 factor 2 factor 3

PAPD 0.3671294 0 0

PAPM 0.5413648 0 0

PAPS 0.6849306 0 0

CVP 0.3209671 0 0

APD 0 0.2449040 0

APM 0 0.4775610 0

APS 0 0.8437787 0

HR 0 0 0.6964061

PULS 0 0 0.7177000

Table 3: Factor loadings after partitioning the variables into closely related

subgroups.

only exceptions are two slow trends detected only in the central venous pres-

sure CVP and the systolic pulmonary artery pressure PAPS respectively,

which were barely visible in the corresponding factor for the intrathoracic

pressures. Except for a few (clinically not relevant) cases, outliers occurring

only in a single variable are not visible any longer.

Table 4 compares the patterns detected by the physician and those detected

by our combined procedure. Again, almost every pattern judged to be clini-

cally relevant is also detected by our automatic procedure, and most of the

interesting patterns are detected, too. Often we can even classify correctly

whether a pattern is clinically relevant or interesting only. We get fewer

false-positives when monitoring the factors than we �nd when monitoring

the individual variables. This might be due to some smoothing e�ects since

the noise is diminished somewhat by constructing linear combinations of sim-

ilar variables.

6 Conclusion

Patterns in univariate physiological time series can be detected reliably us-

ing models from statistical time series analysis with corresponding detection

rules. Outliers and level changes can be detected using rules based on a Ma-

halanobis distance for the marginal distribution of subsequent observations.

Slow monotone trends can be identi�ed using a weighted sum of a larger
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Outlier Lev. Ch. Trend

AP phys. 60 60 19 25 8 23

det. 52 54 16 21 3 17

fals. 11 30 2 10 0 4

HR phys. 30 51 9 12 6 19

det. 18 40 8 12 2 15

fals. 8 3 4 2 2 2

PAP phys. 26 39 8 15 14 25

det. 25 37 8 14 10 21

fals. 14 19 0 0 2 1

Table 4: Number of patterns labeled by the physician (phys.), number of

cases detected correctly by our procedure (det.), and "falsely" identi�ed pat-

terns (fals.) for each of the factors corresponding to the arterial pressures AP,

the intrathoracic pressures PAP (PAPD, PAPM, PAPS, CV) and heart rate

and pulse HR. The left column indicates the numbers of clinically relevant

patterns, while the right column indicates all patterns.

number of subsequent observations. Automatic procedures for online moni-

toring of physiological time series are too sensitive if a �xed signi�cance level

is used because of changing variability. Substantial improvements can be ac-

complished if an automatically adjusted level is used. Many of the patterns

which have not been detected by our automatic procedure occurred during

the �rst few hours of online monitoring. The patterns within this time pe-

riod immediately after the operation are rather complicated and often several

patterns occur immediately one after the other. Hence they are diÆcult to

distinguish by any method. This does not pose a great problem for the real

world application since during this time period the sta� typically very closely

observes the new patient. On the other hand, the outliers which were de-

tected by the procedure and not by the physician stem from patterns which

do not contain extreme values but are unusual given the immediate past of

the process. Hence, they possibly contain information about irregularities in

the physiological mechanism, too.

A major diÆculty in online monitoring of physiological time series is the

proper distinction between patchy outliers and level shifts. In our case-

study, very often an alarm was given by the detection rule based on a �ve-

dimensional embedding of the time series. Such an alarm points at an unusual
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pattern with a duration of more than one observation, which can either

be a level shift occurring in several steps or a patch of outliers. Indeed,

the physician decided retrospectively that a lot of these patterns are patchy

outliers having a duration of about four or �ve observations. That this means

four or �ve minutes for a sampling rate of one observation per minute, which

is a long time needed anyway for distinguishing between a minor uctuation

and an important systematic change. A possibility to diminish the number

of false alarms could be to use distinct classi�cation rules for distinguishing

between the several patterns based on the amount of change found for the

�rst outlying time-delay vector: If the p-value of the Mahalanobis-distance is

very low a sudden decision should be taken considering the next observation

only, while for a signi�cant, but not extreme p-value corresponding to a

moderate change some subsequent observations should be considered to avoid

unnecessary false alarms.

For multivariate monitoring, statistical methods for dimension reduction

may be applied to compress the information into a few important variables.

Graphical models explore the associations between the variables. They can

be used to divide the variables into subgroups consisting of closely related

variables. Then we either can select one variable from each subgroup, which

is considered to be most important, or we can analyze the subgroups sepa-

rately further using other statistical techniques.

Factor analysis uses the associations between the variables to extract a set of

latent variables which captures most of the variability in the original data.

Hence, we can try to replace the observed variables by these latent factors in

the monitoring process. In our analysis, these factors have been calculated

retrospectively from a large number of observations to get interpretable re-

sults. This yields a problem for the online calculation of common factors

where only the observations up to the current time point are known. There-

fore we use a graphical correlation model to guarantee identi�able factors

calculated from subgroups of closely related variables. Then the calculation

of factors should require fewer observations and hence a much shorter initial

sequence for the estimation of a loading matrix. Like this we only lose the

information about the associations between the groups of variables, which

could even change over time depending on clinical states (Gather, Imho�

and Fried (2000)). Another possibility to overcome this problem could be to

analyze existing data of former patients and to calculate an 'average' loading

matrix. However, in this way we cannot achieve an individual assessment of
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patients.

In our case-study, almost all patterns which are deemed to be relevant or at

least interesting in the individual variables by the physician are visible in the

corresponding factor, too. Hence the factors found in our analysis can truly

be considered to be a lower dimensional summary of the multivariate time

series. The observable variable which contained the largest number of pat-

terns found in the other variables, i.e., which would be best for monitoring

because of the highest "coverage" of important patterns (i.e. level changes

and trends), are the mean pressures, which are usually also chosen for mon-

itoring by the physician. However, PAPM covered "only" about 70 % of the

patterns found in PAPS, PAPD or CVP (in comparison to more than 90%

coverage of all patterns found in any variable of this group for the factor).

Similarly, about 80% of the important patterns detected in APS and APD

could also be found in APM, while all important patterns detected in this

group are also visible in the factor.

For this case-study, we have chosen the variables representing the hemody-

namic system of the patient since it gives very important information about

the patient's state and because it is the basic set of variables for detecting

life-critical situations. Moreover, there is very profound medical knowledge

about this set of variables, about its associations and its basic reactions for

distinct clinical states. This allows validation of statistical tools for online

monitoring. The same partitioning of the variables into subgroups, which

is gained by graphical correlation models here, could also be done by the

physician without statistical analysis. Nevertheless, because of this agree-

ment between statistical analysis and medical knowledge there is an indica-

tion that our approach can be employed to other systems where we have less

background knowledge.

Methods for automatic online analysis of physiological variables o�er an op-

portunity for a more reliable evaluation of the individual treatment and lead

to intelligent alarm systems. A future task is the construction of intelligent

bedside decision support systems. Such a system could be based on tech-

niques of statistical time series analysis as we have outlined here. These

techniques could be combined with methods of arti�cial intelligence which

use the patterns found in the statistical analysis to assess the current state

of the patient. By classifying these patterns according to existing knowledge

gained from physicians and former data analysis (Morik et al. (2000)) the

physician in charge might then be advised how to respond properly.
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Figure 3: Extracted common factors of the analyzed subsets and one "rep-

resentative" observed time series.
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