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Small sample properties of tests on homogeneity

in one{way Anova and Meta{analysis

Joachim Hartung, Do~gan Arga�c, Kepher H. Makambi

Department of Statistics, University of Dortmund

D{44221 Dortmund, Germany

In the present Monte Carlo study, the empirical Type I error properties

and power of several statistics for testing the homogeneity hypothesis in

a one{way classi�cation are examined in the case of small sample sizes.

We compared these tests under several scenarios: normal populations

under heterogeneous variances, nonnormal populations under homoge-

neous variances, nonnormal populations under heterogeneous variances,

balanced and unbalanced sample sizes, and increasing number of popula-

tions. Overall, none of the tests considered is uniformly dominating the

others. Under normality and variance heterogeneity, the Brown{Forsythe

and the Welch test perform well over a wide range of parameter con�gura-

tions, the modi�ed Brown{Forsythe test by Mehrotra keeps generally the

level, but other tests may also perform well, depending on the constella-

tion of the parameters under study. The Welch test becomes liberal when

the sample sizes are small and the number of populations is large. We

propose a modi�ed version of Welch's test that keeps the nominal level

in these cases. With the understanding that methods are unacceptable if

they have Type I error rates that are too high, only the testing procedure

To appear in:
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associated with the modi�ed Brown{Forsythe test can be recommended

both for normal and nonnormal data. Under normality, the modi�ed

Welch test can also be recommended.

Key words: meta{analysis, balanced and unbalanced sample sizes, homo-

geneous and heterogeneous variances, nonnormality

1 Introduction

The problem of testing the homogeneity of several means in a one{

way layout of analysis of variance is one of the oldest problems in

statistics. This situation arises in many practical settings. For ex-

ample, a manufacturing company may wish to test whether several

machines on production lines produce items of the same quality, and

if the items produced are expensive, one can take only a sample

of small size for comparison. As a second example, consider the

meta{analysis of a series of independent experiments, which address

the same question of interest. Here, the goal is to summarize the

information provided by the di�erent experiments, see Whitehead

and Whitehead (1991), Normand (1999), and Hartung and Knapp

(2000). In meta{analysis, it is now common practice to combine

the information from the di�erent sources via a one{way model of

analysis of variance. A question of interest is to test whether all

the experiments share a common e�ect. This hypothesis is called

the homogeneity hypothesis of meta{analysis. According to Hardy

and Thompson (1998), the question of homogeneity is an important
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part of any meta{analysis. The hypothesis of homogeneity in meta{

analysis corresponds to testing the homogeneity of the means in the

one{way model of analysis of variance.

Under the classical assumptions (normality of the errors, homogene-

ity of the error variances, and independence of the errors), the Anova

F{test is known to be the optimal test, Lehmann (1986). However,

when one or more of these basic assumptions are violated, the F{

test becomes overly conservative or liberal, depending on the manner

and the degree to which these assumptions are violated. In his book,

Sche��e (1959) examines the e�ects of violating these assumptions.

He concludes that the e�ect of violating the normality assumption

is slight, at least asymptotically. Replacing the assumption of in-

dependence by a serial correlation, he �nds that the e�ect of serial

correlation can be disastrous and the F{test is no longer valid, see

also Lehmann (1986). The presence of heterogeneous variances can

also have a serious e�ect on the validity of the F{test, especially

when the sample sizes are unbalanced. The Type I error rate be-

comes vastly inated, when smaller variances are associated with

larger group sample sizes, and conversely, when the larger group

sample sizes are associated with the larger variances, the empirical

rejection rates fall below the nominal level, see e. g. De Beuckelaer

(1996). In practice, the assumption of homogeneous error variances

is rarely justi�ed, and in �elds like meta{analysis, the variances have

to be assumed to be heteroscedastic.

In the literature, several alternative tests have been proposed to
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account for the heterogeneity of the error variances. In the present

paper, we compare the performance of these tests and of the F{test

by way of simulation with respect to their attained signi�cance levels

and power in the case of small sample sizes under several scenarios:

normal data with homogeneous and heterogeneous variances, data

from a skew distribution with homogeneous variances, data from

a skew distribution under heterogeneity, balanced and unbalanced

sample sizes, and increasing number of populations.

The present simulation study di�ers, at least, in two ways from pre-

viously conducted simulation studies, e. g. Mehrotra (1997), De

Beuckelaer (1996), and Keselman and Wilcox (1999): we consider

tests which have been ignored by other authors and we also investi-

gate the e�ect of increasing the number of groups and the combined

e�ect of nonnormal data and heterogeneous variances on the validity

of the tests. Another goal is to bring all these tests to the attention

of researchers working in the area of meta{analysis, since in meta{

analysis the only test used for testing the homogeneity hypothesis is

Cochran's test. Furthermore, we propose a modi�ed version of the

well known Welch test, which is too liberal when the sample sizes are

small and the number of groups is large. In these cases the modi�ed

Welch test attains levels close to the nominal level.
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2 Tests in the one{way Anova model

Let y

ij

be the observation on the j{th subject of the i{th population,

i = 1; : : : ; K and j = 1; : : : ; n

i

, K � 2 and n

i

� 2,

y

ij

= �

i

+ e

ij

= �+ �

i

+ e

ij

; i = 1; : : : ; K; j = 1; : : : ; n

i

;

where � is the common mean for all the K populations, �

i

is the e�ect

of population i with

P

K

i=1

�

i

= 0; and e

ij

; i = 1; : : : ; K; j = 1; : : : ; n

i

,

are error terms which are assumed to be mutually stochastically

independent and normally distributed with

E(e

ij

) = 0; V ar(e

ij

) = �

2

i

; i = 1; : : : ; K; j = 1; : : : ; n

i

:

That is, e

ij

� N(0; �

2

i

) ; i = 1; : : : ; K; j = 1; : : : ; n

i

.

We consider the homogeneity hypothesis H

0

: �

1

= � � � = �

K

and

use parametric procedures to test this hypothesis. We have excluded

nonparametric tests such as the Kruskal{Wallis test or the inverse

normal scores test, since it is known that these tests are not robust

with respect to variance heterogeneity, cf. Lehmann (1975). Also,

and more importantly, the null hypothesis for the rank{transformed

data may be no longer the same as for the original scale data, as

pointed out by Fligner (1981) and Noether (1981) in comments on

Conover and Iman (1981). Keselman and Wilcox (1999) propose

to replace the hypothesis of homogeneity of the means by the ho-

mogeneity hypothesis of the trimmed means, but this concerns a

di�erent hypothesis.
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We will make use of the following test statistics:

(i) ANOVA F{test The F{test, F , is given by

F =

N �K

K � 1

�

P

K

i=1

n

i

(�y

i:

� �y

::

)

2

P

K

i=1

(n

i

� 1)s

2

i

;

with N =

P

K

i=1

n

i

, �y

i:

=

P

K

j=1

y

ij

=n

i

, �y

::

=

P

K

i=1

n

i

�y

i:

=N , and

s

2

i

=

P

n

i

j=1

(y

ij

� �y

i:

)

2

=(n

i

� 1). This test was originally meant to

test for equality of population means under variance homogeneity

and has an F distribution with K�1 and N�K degrees of freedom,

denoted by F

K�1;N�K

.

The null hypothesis H

0

is rejected at level � if F exceeds the corre-

sponding (1� �){quantile, i. e. if F > F

K�1;N�K;1��

. The ANOVA

F{test is not robust with respect to heterogeneity in the error vari-

ances, see e. g. Brown and Forsythe (1974).

(ii) Cochran test The statistic

C =

K

X

i=1

w

i

(�y

i:

�

K

X

j=1

h

j

�y

j:

)

2

;

where w

i

= n

i

=s

2

i

; h

i

= w

i

=

P

K

k=1

w

k

, was proposed by Cochran

(1937), and then modi�ed by James (1951) and Welch (1951).

Cochran's test is the standard test for testing homogeneity in meta{

analysis. Under H

0

, the Cochran statistic is distributed approxi-

mately as a �

2

-variable with K�1 degrees of freedom. Reject H

0

at

level � if C > �

2

K�1;1��

. James (1951) based his approximation also

on the �

2

{distribution, but his test is inferior to Welch's test given

below, see Brown and Forsythe (1974), hence we do not consider

James's test further.
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(iii) Welch test The Welch test is given by

W =

P

K

i=1

w

i

(�y

i:

�

P

K

j=1

h

j

�y

j:

)

2

(K � 1) + 2 � (K � 2) � (K + 1)

�1

�

P

K

i=1

(n

i

� 1)

�1

(1� h

i

)

2

;

and Welch (1951) proposed to approximate its distribution using

an F{variable. Under H

0

, the statistic W has an approximate F

distribution with K � 1 and �

W

degrees of freedom, where

�

W

=

K

2

� 1

3 �

P

K

i=1

(n

i

� 1)

�1

(1� h

i

)

2

:

The hypothesis H

0

is rejected at level � if W > F

K�1;�

W

;1��

.

(iv) Brown{Forsythe test This test is also known as the modi�ed

F{test and is given by

B =

P

K

i=1

n

i

(�y

i:

� �y

::

)

2

P

K

i=1

(1� n

i

=N)s

2

i

:

Brown and Forsythe use a Satterthwaite approximation to derive the

null distribution of the statistic B. When H

0

is true, B is distributed

approximately as an F variable with K�1 and � degrees of freedom

where

� =

h

P

K

i=1

(1� n

i

=N)s

2

i

i

2

P

K

i=1

(1� n

i

=N)

2

s

4

i

=(n

i

� 1)

:

We reject H

0

at level � if B > F

K�1;�;1��

.

(v) modi�ed Brown{Forsythe test Mehrotra (1997) developed

the following test

B

�

=

P

K

i=1

n

i

(�y

i:

� �y

::

)

2

P

K

i=1

(1� n

i

=N)s

2

i
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in an attempt to correct a "aw" in the original Brown{Forsythe

test. The "aw" in the Brown{Forsythe testing procedure, iden-

ti�ed by Mehrotra (1997), is in the speci�cation of the numerator

degrees of freedom. Speci�cally, Brown{Forsythe used K � 1 nu-

merator degrees of freedom whereas Mehrotra (1997) used a Box

(1954) approximation to obtain the numerator degrees of freedom,

�

1

, where

�

1

=

h

P

K

i=1

(1� n

i

=N)s

2

i

i

2

P

K

i=1

s

4

i

+

h

P

K

i=1

n

i

s

2

i

=N

i

2

� 2 �

P

K

i=1

n

i

s

4

i

=N

and � is given in (iv) above.

Under H

0

, B

�

is distributed approximately as an F variable with �

1

and � degrees of freedom. The null hypothesis H

0

is rejected at level

� if B

�

> F

�

1

;�;1��

.

(vi) approximate ANOVA F{test Asiribo and Gurland (1990)

based their test on

F

�

=

N �K

K � 1

�

P

K

i=1

n

i

(�y

i:

� �y

::

)

2

P

K

i=1

(n

i

� 1)s

2

i

:

This test gives an approximate solution to the problem of testing

equality of means of normal populations in case of heteroscedasticity

by making use of the classical ANOVA F{test.

Under H

0

, the test statistic F

�

=ĉ is distributed approximately as an

F-variable with �

1

and �

2

degrees of freedom where �

1

is as given in

(v) above,

ĉ =

N �K

N(K � 1)

P

K

i=1

(N � n

i

)s

2

i

P

K

i=1

(n

i

� 1)s

2

i

;
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�

2

=

h

P

K

i=1

(n

i

� 1)s

2

i

i

2

P

K

i=1

(n

i

� 1)s

4

i

;

and H

0

is rejected at level � if F

�

> ĉ �F

�

1

;�

2

;1��

. We notice that the

numerator degrees of freedom for F

�

and B

�

are equal. Also, F

�

=ĉ

equals B

�

, see appendix. The di�erence between the two test pro-

cedures is in the denominator degrees of freedom in the unbalanced

case. For balanced sample sizes, the denominator degrees of free-

dom of the statistics F

�

and B

�

are the same, and the test statistics

F;B; F

�

and B

�

coincide, see appendix. However, the associated

testing procedures are still di�erent, because they use di�erent ref-

erence distributions.

(vii) adjusted Welch test For small samples in the groups, the

Welch test becomes too liberal especially with increasing number of

groups. The Welch test uses weights w

i

= n

i

=s

2

i

. B�ockenho� and

Hartung (1998) have examined these weights, and making use of

their results, it follows that

E(w

i

) = E

�

n

i

s

2

i

�

= c

i

�

n

i

�

2

i

;

where c

i

= (n

i

�1)=(n

i

�3), see also Patel et al. (1976). Therefore, an

unbiased estimator of n

i

=�

2

i

is n

i

=(c

i

s

2

i

). Let '

i

= (n

i

+Æ

1

)=(n

i

+Æ

2

),

where Æ

1

and Æ

2

are real numbers chosen such that 1 � '

i

� c

i

; and

then de�ne the general weights by w

�

i

= n

i

=('

i

s

2

i

). That is, for the

Welch test, w

i

= w

�

i

with '

i

= 1 (Æ

1

= 0, and Æ

2

= 0) and if we

take the unbiased weights, w

i

= n

i

=(c

i

s

2

i

), then '

i

= c

i

, (Æ

1

= �1

and Æ

2

= �3). Also, in our experience, using the unbiased weights

in the Welch test makes the test too conservative. A reasonable
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compromise in this situation is to choose '

i

such that 1 < '

i

< c

i

.

This de�nes a new class of Welch type test statistics whose properties

can be adjusted accordingly by choosing the control parameter, '

i

,

appropriately. Our proposed test, which we shall henceforth call the

"adjusted Welch test", uses the weights w

�

i

= n

i

=('

i

s

2

i

) in the Welch

test, where 1 � '

i

� c

i

. That is the adjusted Welch test, W

�

, is

given by

W

�

=

P

K

i=1

w

�

i

(�y

i:

�

P

K

j=1

h

�

j

�y

j:

)

2

(K � 1) + 2 � (K � 2) � (K + 1)

�1

�

P

K

i=1

(n

i

� 1)

�1

(1� h

�

i

)

2

;

where h

�

i

= w

�

i

=

P

K

i=1

w

�

i

; i = 1; : : : ; K. Under H

0

, the adjusted

Welch statistic, W

�

, is distributed approximately as an F-variable

with K � 1 and �

�

W

degrees of freedom, with

�

�

W

=

K

2

� 1

3 �

P

K

i=1

(n

i

� 1)

�1

(1� h

�

i

)

2

;

and we reject H

0

at � level if W

�

> F

K�1;�

�

W

;1��

. When the sample

sizes are large, W

�

approaches the Welch test, i.e. (n

i

+ Æ

1

)=(n

i

+

Æ

2

)

n

i

!1

�! 1. With small sample sizes, our statistic will help correct

the liberality witnessed in the Welch test.

3 Monte Carlo results

We examined the performance of the above tests by way of simula-

tion (10 000 runs for each constellation). Using di�erent constella-

tions of the sample sizes and the error variances, we obtained the

simulated actual signi�cance levels for K = 3; K = 6, and K = 9

groups and the power for K = 3 and K = 6 groups. We started the
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simulation experiment with K = 3 groups. We considered balanced

and unbalanced sample sizes with homogeneous and heterogeneous

variances. In the case of unbalancedness, we paired the smallest sam-

ple size with the smallest variance, and also the smallest sample size

with the largest variance. To investigate the e�ect of the number of

groups, K, on the level of the tests, we replicated the experiment for

K = 3 groups two and three times to give the simulation experiment

for K = 6 and K = 9 groups, respectively. Under normality, the

F{test serves as a benchmark in the simulation experiments if the

variances are homogeneous. From our experience with the simula-

tions, the choice of the control parameter as '

i

= (n

i

+2)=(n

i

+1) in

the adjusted Welch test, W

�

, gives reliable results for small sample

sizes and a large number of populations.

Since the tests considered have di�erent empirical levels, a fair com-

parison of their power is not directly possible. A fair comparison

must adjust for the latter. This was done using simulated critical

values to ensure that all the tests attain the same level (5%). For

the sake of completeness, we also give the power of the tests at the

nominal unadjusted 5% signi�cance level. Two di�erent con�gura-

tions of mean di�erences were used when assessing the power of the

tests. In the �rst pattern, the mean of the �rst group was set to

�

1

= 2 with the remaining groups having equal means set to zero,

�

2

= �

3

= 0. In the second con�guration, the means were equally

spaced, �

1

= �1; �

2

= 0; �

3

= 1.

The e�ect of violating the normality assumption was examined using
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data from a skew distribution. We used the following approach: each

observation in the i{th group was generated from a �

2

�

i

� �

i

, that is

a centered �

2

{distribution, and since this is a location shifted �

2

{

distribution, the shape of the distribution is not a�ected. Using data

from this location shifted �

2

{distribution, we ensure that the means

of all the groups are the same, as it is needed under the null hypothe-

sis of homogeneity. Choosing the degrees of freedom in all the groups

to be equal, �

i

= �, we consider the case of homogeneous variances.

Now to investigate the dual e�ect of nonnormality and variance het-

erogeneity, the variances of the di�erent groups can be chosen to be

heteroscedastic by using di�erent degrees of freedom, �

i

, for each

group. The degrees of freedom were chosen in such a way that the

variance in each group is the same as in the corresponding case of

normal data, hence the only di�erence between the simulations with

the normal distribution and the skew distribution is the departure

from the normality assumption. In the simulations we have taken

the variances �

2

i

= 2; 4; 6; 10 which in the nonnormal case considered

here lead to shifted �

2

�

i

{distributions with (�

i

= �

2

i

=2) 1,2,3, and 5

degrees of freedom, having the skewness (2

p

2=

p

�

i

) 2:8; 2:0; 1:6; 1:3

and excess (12=�

i

) 12; 6; 4; and 2:4, respectively.
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TABLE I: Sample Designs for K=3 and K=6.

Pattern K=3 K=6

i 1 2 3 1 2 3 4 5 6

A n

i

5 5 5 5 5 5 5 5 5

�

2

i

4 4 4 4 4 4 4 4 4

n

i

5 5 5 5 5 5 5 5 5

�

2

i

2 6 10 2 6 10 2 6 10

B n

i

10 10 10 10 10 10 10 10 10

�

2

i

4 4 4 4 4 4 4 4 4

n

i

10 10 10 10 10 10 10 10 10

�

2

i

2 6 10 2 6 10 2 6 10

C n

i

5 10 15 5 10 15 5 10 15

�

2

i

4 4 4 4 4 4 4 4 4

n

i

5 10 15 5 10 15 5 10 15

�

2

i

2 6 10 2 6 10 2 6 10

n

i

5 10 15 5 10 15 5 10 15

�

2

i

10 6 2 10 6 2 10 6 2

D n

i

10 20 30 10 20 30 10 20 30

�

2

i

4 4 4 4 4 4 4 4 4

n

i

10 20 30 10 20 30 10 20 30

�

2

i

2 6 10 2 6 10 2 6 10

n

i

10 20 30 10 20 30 10 20 30

�

2

i

10 6 2 10 6 2 10 6 2

TABLE II: Sample Design for K=9.

Pattern K=9

i 1 2 3 4 5 6 7 8 9

A n

i

5 5 5 5 5 5 5 5 5

�

2

i

4 4 4 4 4 4 4 4 4

n

i

5 5 5 5 5 5 5 5 5

�

2

i

2 6 10 2 6 10 2 6 10

B n

i

10 10 10 10 10 10 10 10 10

�

2

i

4 4 4 4 4 4 4 4 4

n

i

10 10 10 10 10 10 10 10 10

�

2

i

2 6 10 2 6 10 2 6 10

C n

i

5 10 15 5 10 15 5 10 15

�

2

i

4 4 4 4 4 4 4 4 4

n

i

5 10 15 5 10 15 5 10 15

�

2

i

2 6 10 2 6 10 2 6 10

n

i

5 10 15 5 10 15 5 10 15

�

2

i

10 6 2 10 6 2 10 6 2

D n

i

10 20 30 10 20 30 10 20 30

�

2

i

4 4 4 4 4 4 4 4 4

n

i

10 20 30 10 20 30 10 20 30

�

2

i

2 6 10 2 6 10 2 6 10

n

i

10 20 30 10 20 30 10 20 30

�

2

i

10 6 2 10 6 2 10 6 2
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TABLE III: Actual Simulated Signi�cance Levels,

normal distribution (nominal level 5%) for K=3.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 5.0 4.8 3.3 4.1 3.8 3.8 12.2

6.0 5.0 3.6 4.6 4.3 4.3 12.8

B 5.1 4.9 3.9 4.9 4.6 4.6 8.4

5.7 5.1 4.1 5.3 4.7 4.7 8.3

C 5.0 5.3 4.2 5.1 4.8 5.4 10.2

2.5 4.6 3.6 5.4 4.6 4.6 8.6

13.4 5.9 4.7 5.8 5.5 6.9 11.6

D 5.2 5.3 4.5 5.1 4.9 5.3 7.7

2.3 4.9 4.3 5.5 4.6 4.6 6.5

13.4 5.2 4.2 5.5 5.1 5.8 7.9

TABLE IV: Actual Simulated Signi�cance Levels,

normal distribution (nominal level 5%) for K=6.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 5.2 6.2 4.1 4.1 3.3 3.3 22.1

6.4 6.0 4.4 4.8 3.6 3.6 22.6

B 5.1 5.1 3.7 4.8 4.2 4.2 11.4

6.1 5.1 3.7 5.5 4.2 4.2 11.6

C 5.0 6.3 4.7 4.7 4.0 4.5 15.5

2.7 5.7 4.1 5.9 4.4 4.4 13.5

15.6 6.3 4.7 5.7 4.8 5.7 16.8

D 5.5 5.7 4.8 5.2 4.7 4.9 9.7

2.3 4.7 3.8 6.1 4.5 4.4 8.2

15.2 5.2 4.3 5.8 4.6 5.1 9.7
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TABLE V: Actual Simulated Signi�cance Levels,

normal distribution (nominal level 5%) for K=9.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 5.3 7.3 4.7 4.3 3.2 3.2 28.6

6.5 7.9 5.5 4.9 3.3 3.3 29.2

B 5.1 6.2 4.3 4.9 4.0 4.0 14.8

6.6 5.9 4.2 5.9 4.3 4.3 14.5

C 5.3 7.0 4.9 4.9 4.1 4.5 19.3

2.4 6.3 4.4 6.5 4.4 4.3 17.9

18.4 7.7 5.5 5.6 4.3 5.2 20.6

D 4.9 5.5 4.1 4.8 4.3 4.4 10.7

2.2 5.0 3.9 6.2 4.3 4.3 9.7

18.1 5.5 4.3 5.9 4.5 5.0 10.8

TABLE VI: Actual Simulated Signi�cance Levels,

nonnormal distribution (nominal level 5%) for K=3.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 4.4 3.3 2.3 2.9 2.5 2.5 12.3

6.1 5.9 4.5 4.2 3.8 3.8 15.5

B 4.6 4.7 3.7 3.9 3.2 3.2 8.6

5.5 5.7 4.7 4.8 4.2 4.2 9.6

C 4.5 7.1 5.9 4.1 3.2 3.4 12.1

2.5 4.1 3.0 4.2 3.2 3.3 8.5

13.6 8.4 7.1 6.6 6.1 7.0 15.0

D 4.5 6.7 5.8 4.4 3.6 3.8 8.9

2.5 5.3 4.5 5.8 4.6 4.6 7.1

12.8 6.9 6.1 5.7 5.2 5.7 9.6
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TABLE VII: Actual Simulated Signi�cance Levels,

nonnormal distribution (nominal level 5%) for K=6.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 4.5 5.9 3.7 2.6 1.8 1.8 24.0

6.4 8.3 6.1 4.1 2.8 2.8 25.2

B 4.4 7.0 5.4 3.6 2.3 2.3 14.7

6.2 7.0 5.5 5.1 3.3 3.3 14.6

C 4.9 10.6 8.5 3.7 2.3 2.7 21.2

2.7 5.6 4.1 5.8 3.6 3.7 14.6

15.6 10.9 8.6 5.2 3.8 4.4 21.6

D 4.7 9.0 7.7 4.3 2.9 3.1 13.7

2.6 7.0 5.7 6.4 4.2 4.2 11.0

15.0 8.3 7.1 5.5 3.9 4.3 12.9

TABLE VIII: Actual Simulated Signi�cance Levels,

nonnormal distribution (nominal level 5%) for K=9.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 4.5 9.5 5.9 2.4 1.4 1.4 34.3

6.8 11.1 8.0 4.0 2.4 2.4 34.1

B 4.7 9.6 7.2 3.8 2.0 2.0 20.4

6.5 9.3 7.1 5.4 3.2 3.2 19.1

C 5.3 13.6 10.6 4.1 2.5 2.6 27.3

2.4 7.5 4.9 5.9 3.1 3.1 21.4

18.0 13.6 10.4 4.9 3.0 3.7 28.0

D 5.1 11.0 9.4 4.4 2.8 3.0 17.1

2.2 8.5 6.9 6.0 3.7 3.7 14.4

17.7 10.1 8.2 6.1 4.1 4.5 16.2
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TABLE IX: Simulated Power for K=3,

adjusted and unadjusted (cursive),

at �

1

= 2; �

2

= 0; �

3

= 0,

normal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 27.1 25.1 25.1 27.1 27.1 27.1 25.2

28.8 24.8 19.7 25.6 24.6 24.6 44.6

17.4 24.0 24.0 17.4 17.4 17.4 24.1

20.7 25.0 19.8 16.7 15.5 15.5 45.8

B 57.8 55.4 55.4 57.8 57.8 57.8 55.4

57.8 55.1 50.8 57.0 56.0 56.0 65.2

38.5 56.5 56.5 38.5 38.5 38.5 56.5

42.8 57.0 52.3 40.2 37.5 37.5 67.4

C 37.7 33.7 33.1 36.1 36.1 36.1 33.9

39.0 35.4 30.6 35.7 34.5 37.7 48.3

28.0 47.5 46.4 27.4 27.4 27.4 47.5

14.9 46.9 41.5 28.8 25.2 25.0 58.6

23.2 18.1 17.8 21.1 21.1 21.1 18.3

38.9 18.9 15.7 21.2 20.2 23.7 30.6

D 70.2 66.6 65.9 69.5 69.5 69.5 66.6

71.8 68.0 64.4 70.0 69.4 70.7 74.6

57.7 81.9 81.5 57.9 57.9 57.9 81.9

41.2 82.3 80.0 62.4 58.3 58.0 85.6

43.2 34.8 34.2 41.1 41.1 41.1 34.8

61.5 35.5 32.0 42.8 41.2 43.7 43.8
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TABLE X: Simulated Power for K=6,

adjusted and unadjusted (cursive),

at �

1

= �

4

= 2; �

2

= �

5

= 0; �

3

= �

6

= 0,

normal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 37.0 29.2 29.2 37.0 37.0 37.0 29.0

39.6 34.1 26.0 35.2 31.0 31.0 65.6

21.6 30.0 30.0 21.6 21.6 21.6 30.0

26.4 34.2 26.5 20.3 16.6 16.6 67.2

B 77.0 72.2 72.2 77.0 77.0 77.0 72.1

77.2 72.3 67.5 76.5 74.7 74.7 85.3

52.4 73.6 73.6 52.4 52.4 52.4 73.6

58.6 74.5 69.5 56.0 49.1 49.1 86.5

C 54.1 46.2 45.4 53.4 53.4 53.4 46.5

53.5 49.3 42.0 50.0 46.7 49.5 68.8

32.8 59.7 59.3 32.5 32.5 32.5 59.9

19.8 62.2 54.5 37.3 30.6 30.2 79.8

30.7 20.9 20.2 27.9 27.9 27.9 21.0

53.6 25.3 20.6 29.0 25.2 29.2 44.3

D 88.4 84.2 83.7 87.8 87.8 87.8 84.4

89.0 85.4 82.3 88.2 87.3 87.8 91.1

73.4 95.2 95.1 74.1 74.1 74.1 95.2

58.4 95.4 94.2 78.7 72.3 71.9 97.4

59.6 47.5 47.0 57.6 57.6 57.6 47.6

79.4 49.4 44.5 61.2 56.2 58.3 61.6
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TABLE XI: Simulated Power for K=9,

adjusted and unadjusted (cursive),

at �

1

= �

4

= �

7

= 2; �

2

= �

5

= �

8

= 0; �

3

= �

6

= �

9

= 0,

normal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 47.3 33.1 33.1 47.3 47.3 47.3 33.1

48.4 42.8 32.9 43.8 38.3 38.3 78.0

25.7 33.8 33.8 25.7 25.7 25.7 33.8

32.9 45.1 35.0 26.4 20.3 20.3 80.3

B 88.6 83.3 83.3 88.6 88.6 88.6 83.3

88.7 84.4 79.5 88.1 86.3 86.3 93.9

65.6 85.6 85.6 65.6 65.6 65.6 85.6

71.9 86.4 81.6 69.4 60.9 60.9 94.9

C 66.7 51.7 50.9 65.2 65.2 65.2 52.0

65.3 60.0 51.5 61.3 57.3 60.1 81.2

42.0 71.1 70.6 42.9 42.9 42.9 71.2

25.3 74.8 67.4 46.5 37.5 37.1 90.5

38.0 24.2 23.8 34.6 34.6 34.6 24.3

64.7 32.7 26.2 36.0 30.5 34.4 56.1

D 96.1 93.3 93.0 95.8 95.8 95.8 93.4

95.9 93.9 92.0 95.4 94.9 95.1 97.1

84.9 98.8 98.7 85.3 85.3 85.3 98.8

71.8 98.8 98.4 89.7 84.7 84.6 99.5

72.0 56.9 55.7 70.4 70.4 70.4 56.9

89.2 61.6 55.8 73.8 68.1 70.2 74.0
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TABLE XII: Simulated Power for K=3,

adjusted and unadjusted (cursive),

at �

1

= �1; �

2

= 0; �

3

= 1,

normal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 21.8 19.4 19.4 21.8 21.8 21.8 19.5

21.1 17.8 13.8 18.7 17.7 17.7 35.8

14.4 15.5 15.5 14.4 14.4 14.4 15.6

17.1 16.5 12.3 14.1 13.0 13.0 33.1

B 46.2 45.0 45.0 46.2 46.2 46.2 44.9

45.4 43.0 38.6 44.3 43.3 43.3 53.1

29.2 35.3 35.3 29.1 29.1 29.1 35.2

32.0 34.5 31.0 30.2 28.1 28.1 45.3

C 38.4 33.7 33.7 36.7 36.7 36.7 33.9

38.9 34.6 29.9 36.0 34.8 38.3 49.2

26.9 32.8 32.4 26.6 26.6 26.6 32.9

17.2 34.0 29.7 29.1 25.9 25.5 44.9

22.5 22.8 23.1 20.3 20.3 20.3 23.2

40.5 24.4 21.0 21.5 20.5 24.3 39.6

D 70.6 67.8 67.8 70.2 70.2 70.2 67.8

71.1 68.2 65.0 69.5 68.7 70.1 74.5

53.4 65.2 65.0 53.8 53.8 53.8 65.1

39.8 65.4 62.7 57.1 53.2 52.9 70.3

45.6 51.2 51.3 43.3 43.3 43.3 51.2

65.8 51.4 48.3 44.3 42.0 45.1 60.7
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TABLE XIII: Simulated Power for K=6,

adjusted and unadjusted (cursive),

at �

1

= �

4

= �1; �

2

= �

5

= 0; �

3

= �

6

= 1,

normal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 28.3 22.0 22.0 28.3 28.3 28.3 21.80

28.9 25.6 19.1 25.4 22.3 22.3 56.0

17.1 17.7 17.7 17.1 17.1 17.1 17.6

21.6 21.6 16.1 17.5 14.5 14.5 50.5

B 63.0 58.0 58.0 63.0 63.0 63.0 57.9

62.2 57.5 51.5 61.3 58.9 58.9 73.0

37.6 44.8 44.8 37.6 37.6 37.6 44.8

43.1 46.5 41.1 40.8 35.2 35.2 63.7

C 53.7 44.5 44.7 52.5 52.5 52.5 44.9

53.4 47.3 40.5 49.5 46.5 49.2 68.7

33.0 41.6 41.9 32.8 32.8 32.8 41.7

20.7 44.1 37.2 36.1 29.6 29.4 63.8

29.7 27.7 27.5 27.2 27.2 27.2 27.8

56.2 34.1 28.2 28.5 24.4 28.9 57.7

D 88.1 85.0 85.1 87.4 87.4 87.4 85.2

89.0 86.0 83.2 88.0 87.0 87.6 91.5

67.2 82.6 82.5 68.0 68.0 68.0 82.6

54.7 82.7 79.8 72.8 67.1 66.7 88.5

62.1 67.7 68.0 60.2 60.2 60.2 67.9

83.8 69.4 65.6 63.6 57.7 60.4 79.5
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TABLE XIV: Simulated Power for K=9,

adjusted and unadjusted (cursive),

at �

1

= �

4

= �

7

= �1; �

2

= �

5

= �

8

= 0; �

3

= �

6

= �

9

= 1,

normal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 36.6 25.3 25.3 36.6 36.6 36.6 25.3

35.6 32.8 24.5 31.4 26.9 26.9 69.1

19.8 19.4 19.4 19.8 19.8 19.8 19.3

25.5 28.2 20.7 20.3 15.4 15.4 63.6

B 74.8 67.7 67.7 74.8 74.8 74.8 67.7

75.6 70.9 64.1 74.9 72.1 72.1 85.4

47.5 56.0 56.0 47.5 47.5 47.5 56.0

53.1 56.9 50.0 51.0 43.2 43.2 77.1

C 67.0 49.7 49.8 65.0 65.0 65.0 49.9

65.9 59.6 51.2 62.2 58.3 60.9 81.4

41.0 50.2 50.6 41.9 41.9 41.9 50.3

26.3 54.3 46.6 45.4 37.8 37.4 76.8

36.9 32.6 33.1 33.2 33.2 33.2 32.8

67.2 43.4 35.9 36.1 29.7 34.2 69.2

D 96.0 93.6 93.5 95.7 95.7 95.7 93.6

96.3 94.4 92.7 95.9 95.4 95.7 97.5

78.6 91.3 91.3 79.0 79.0 79.0 91.4

67.2 92.5 90.5 84.3 79.3 79.1 96.0

76.5 80.0 79.8 74.6 74.6 74.6 80.0

92.9 81.9 78.2 76.8 70.6 72.6 89.8
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TABLE XV: Simulated Power for K=3,

adjusted and unadjusted (cursive),

at �

1

= 2; �

2

= 0; �

3

= 0,

nonnormal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 39.6 41.5 41.5 39.6 39.6 39.6 41.1

35.1 35.2 28.7 29.3 27.5 27.5 58.8

24.9 36.7 36.7 24.9 24.9 24.9 36.6

29.5 42.0 36.3 24.1 22.7 22.7 61.4

B 65.3 68.9 68.9 65.3 65.3 65.3 68.7

61.8 68.0 63.6 60.2 58.3 58.3 76.8

43.5 62.8 62.8 43.5 43.5 43.5 62.8

48.1 66.8 63.3 45.4 42.4 42.4 75.3

C 43.4 37.2 35.4 41.3 41.3 41.3 37.4

42.6 41.4 34.4 35.4 33.0 37.6 59.9

32.0 60.5 59.6 32.9 32.9 32.9 60.6

21.8 59.7 54.3 32.8 29.2 29.8 71.0

22.2 8.7 8.3 14.9 14.9 14.9 8.7

38.9 14.2 11.1 14.6 13.4 17.5 27.3

D 72.5 73.7 72.8 74.3 74.3 74.3 74.1

72.5 80.7 77.2 75.3 73.2 74.3 86.7

58.7 90.0 89.7 61.8 61.8 61.8 90.1

43.4 89.3 87.5 63.7 58.5 58.2 91.7

42.6 23.3 22.9 37.3 37.3 37.3 23.3

61.0 31.5 28.0 39.3 36.3 39.8 41.8
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TABLE XVI: Simulated Power for K=6,

adjusted and unadjusted (cursive),

at �

1

= �

4

= 2; �

2

= �

5

= 0; �

3

= �

6

= 0,

nonnormal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 46.2 50.3 50.3 46.2 46.2 46.2 49.8

43.9 54.5 45.3 35.6 29.2 29.2 82.3

28.8 47.6 47.6 28.8 28.8 28.8 47.6

33.6 57.8 50.5 26.2 21.2 21.2 81.4

B 80.1 81.3 81.3 80.1 80.1 80.1 81.1

78.6 86.8 83.3 76.6 71.5 78.6 93.9

54.5 78.3 78.3 54.5 54.5 54.5 78.3

61.3 83.7 80.6 57.9 50.0 50.0 91.3

C 55.6 41.8 40.6 56.6 56.6 56.6 42.5

54.1 61.9 53.3 48.6 41.4 45.1 82.5

34.7 76.0 75.5 35.9 35.9 35.9 75.6

24.7 77.7 72.5 38.7 30.4 30.6 89.7

30.7 8.8 8.5 24.9 24.9 24.9 8.8

52.1 21.2 15.8 22.9 18.2 22.2 42.0

D 88.4 89.0 88.4 91.5 91.5 91.5 89.1

87.9 95.4 93.5 90.5 87.9 88.3 97.8

70.9 97.6 97.6 73.2 73.2 73.2 97.6

58.3 98.2 97.7 78.1 69.9 69.7 99.2

59.3 33.5 32.5 58.9 58.9 58.9 33.5

79.1 47.9 42.1 61.2 53.9 56.6 61.7
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TABLE XVII: Simulated Power for K=9,

adjusted and unadjusted (cursive),

at �

1

= �

4

= �

7

= 2; �

2

= �

5

= �

8

= 0; �

3

= �

6

= �

9

= 0,

nonnormal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 54.6 56.3 56.3 54.6 54.6 54.6 55.9

51.9 69.1 59.3 42.5 33.8 33.8 92.2

33.0 54.1 54.1 33.0 33.0 33.0 54.2

38.7 70.3 62.9 29.7 22.0 22.0 90.6

B 89.2 90.6 90.6 89.2 89.2 89.2 90.6

87.9 94.7 92.5 86.3 81.0 81.0 98.5

66.2 88.2 88.2 66.2 66.2 66.2 88.1

71.5 92.9 90.5 68.0 57.8 57.8 97.2

C 64.7 49.0 47.4 66.8 66.8 66.8 49.6

65.1 75.7 66.2 60.9 50.7 54.4 92.9

43.4 86.0 85.8 44.9 44.9 44.9 85.8

28.2 88.2 84.1 47.3 34.9 35.0 96.4

37.5 9.2 8.9 32.8 32.8 32.8 9.2

63.1 28.8 21.8 30.4 22.3 26.8 55.1

D 95.2 95.4 95.2 97.0 97.0 97.0 95.4

95.3 99.1 98.6 96.8 95.2 95.5 99.7

82.8 99.5 99.4 85.0 85.0 85.0 99.5

70.4 99.7 99.6 88.2 81.3 81.1 99.9

72.1 40.5 39.5 72.7 72.7 72.7 40.5

89.1 60.4 53.6 74.6 66.5 68.7 75.7
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TABLE XVIII: Simulated Power for K=3,

adjusted and unadjusted (cursive),

at �

1

= �1; �

2

= 0; �

3

= 1,

nonnormal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 31.9 31.7 31.7 31.9 31.9 31.9 31.4

28.2 26.5 21.7 22.5 20.7 20.7 46.7

10.9 9.0 9.0 10.9 10.9 10.9 9.1

14.0 11.4 8.6 9.5 8.2 8.2 30.8

B 53.6 51.1 51.1 53.6 53.6 53.6 50.9

51.5 51.8 48.0 49.8 48.0 48.0 60.7

25.7 29.8 29.8 25.7 25.7 25.7 30.0

30.4 33.6 29.3 27.0 23.3 23.3 45.6

C 47.3 47.0 46.8 48.7 48.7 48.7 47.2

45.5 50.4 46.7 45.4 43.6 45.7 62.0

25.8 46.8 46.9 30.7 30.7 30.7 46.6

14.0 45.4 41.7 30.2 25.2 24.9 55.2

29.0 29.1 29.0 27.5 27.5 27.5 29.2

47.9 39.3 35.7 30.9 29.7 32.8 53.9

D 75.1 69.6 69.5 70.9 70.9 70.9 69.9

74.0 73.8 71.7 69.9 68.9 70.3 79.0

56.3 71.1 70.9 58.1 58.1 58.1 71.2

39.2 69.6 67.9 59.4 54.8 54.7 73.6

49.6 54.1 54.2 46.5 46.5 46.5 54.1

66.6 59.2 56.8 48.0 46.6 48.6 66.4
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TABLE XIX: Simulated Power for K=6,

adjusted and unadjusted (cursive),

at �

1

= �

4

= �1; �

2

= �

5

= 0; �

3

= �

6

= 1,

nonnormal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 36.1 38.2 38.2 36.1 36.1 36.1 37.8

33.2 40.7 33.5 25.6 20.6 20.6 69.5

15.3 12.0 12.0 15.3 15.3 15.3 12.2

19.3 20.7 14.4 12.1 8.7 8.7 54.8

B 68.0 62.7 62.7 68.0 68.0 68.0 62.5

65.0 69.2 64.7 62.4 57.0 57.0 81.3

36.6 42.2 42.2 36.6 36.6 36.6 42.2

42.3 51.8 45.8 38.3 29.0 29.0 68.4

C 59.1 55.4 55.7 58.9 58.9 58.9 55.9

59.0 68.9 64.2 54.4 49.2 51.6 82.9

30.3 62.5 62.7 33.9 33.9 33.9 62.2

19.8 64.8 60.3 37.2 28.0 27.8 78.3

36.2 36.4 36.5 35.6 35.6 35.6 36.3

60.2 55.1 49.9 34.4 29.9 33.3 72.0

D 90.2 84.9 84.8 86.6 86.6 86.6 84.9

89.2 90.5 89.0 84.7 81.9 83.0 93.7

69.2 85.7 85.6 68.9 68.9 68.9 85.7

55.3 87.0 85.3 73.1 66.3 66.1 91.1

64.3 70.1 70.2 62.0 62.0 62.0 70.1

82.9 78.8 76.1 63.4 57.4 59.6 85.5
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TABLE XX: Simulated Power for K=9,

adjusted and unadjusted (cursive),

at �

1

= �

4

= �

7

= �1; �

2

= �

5

= �

8

= 0; �

3

= �

6

= �

9

= 1,

nonnormal distribution.

Pattern �̂%

F W W

�

B B

�

F

�

C

A 42.7 41.8 41.8 42.7 42.7 42.7 41.5

40.3 53.2 43.8 30.6 22.7 22.7 82.6

19.0 13.6 13.6 19.0 19.0 19.0 13.8

23.2 30.6 21.7 15.2 9.6 9.6 70.1

B 78.3 73.2 73.2 78.3 78.3 78.3 73.1

75.6 81.7 76.9 73.5 66.4 66.4 91.7

47.0 53.0 53.0 47.0 47.0 47.0 52.8

53.4 66.0 59.6 49.2 37.8 37.8 82.6

C 68.3 64.5 64.5 66.0 66.0 66.0 64.8

68.9 81.1 76.8 61.6 54.8 57.2 92.1

40.3 74.5 74.7 42.5 42.5 42.5 74.3

24.0 78.0 73.4 44.8 33.2 33.1 89.9

43.1 41.8 42.1 41.4 41.4 41.4 41.9

69.7 66.5 60.5 40.0 33.5 36.9 83.5

D 96.2 92.1 92.1 93.9 93.9 93.9 92.1

96.0 96.7 95.9 92.7 90.4 91.1 98.4

81.9 92.7 92.7 81.1 81.1 81.1 92.8

68.9 95.2 94.3 84.2 78.5 78.4 97.4

76.8 80.1 80.2 73.3 73.3 73.3 80.1

91.5 88.6 86.5 74.4 67.3 69.3 93.4
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4 Discussion

First, we consider the attained signi�cance levels, and we observe

that the F{test is not robust with respect to variance heterogeneity,

especially when the sample sizes are unbalanced. When larger sam-

ple sizes are paired with the larger variances, the actual Type I error

rate falls below the nominal level, and if the smaller sample sizes

are paired with the larger variances, the actual Type I error rate be-

comes inated. Cochran's test, the standard test in meta{analysis,

should de�nitely not be used, since it is always liberal, confer also

the simulation results conducted for the example, Table XVII, where

the sample sizes are much larger. Under variance heterogeneity, both

the Welch and the Brown{Forsythe tests are suitable alternatives to

the F{test in most of the con�gurations considered in the simulation

experiments, but the other tests may also perform well, depending

on the con�guration of the parameters involved. When the vari-

ances are homogeneous, the F{test is the optimal test, see Lehmann

(1986), and should be used (the observed deviations from the nom-

inal level are due to simulation), the researcher should not follow

in this respect the recommendations of De Beuckelaer (1996) who

recommends the Brown{Forsythe test in these cases. With increas-

ing number of groups, from K = 3 to K = 9, the empirical Type

I error rates of the modi�ed Brown{Forsythe and the approximate

F{test become smaller, especially for small sample sizes, and the

tests may get conservative. The remaining tests attain higher Type

I error rates with increasing number of groups in most cases and
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can become liberal, except the modi�ed Welch test which attains

acceptable levels for small sample sizes.

Concerning the power of the tests, we discuss only the behaviour

of the test statistics with respect to the adjusted power, confer the

corresponding remarks in section 3. Since the test statistics of the

Brown{Forsythe, the modi�ed Brown{Forsythe, and the approxi-

mate Anova F{test are the same, see appendix, these tests have the

same (adjusted) power. There is no practically signi�cant di�erence

between the Cochran, the Welch, and the modi�ed Welch test with

respect to power in the simulations considered. As it was to be ex-

pected, the F{test is the most powerful test when the variances are

homogeneous. In the balanced case the Brown{Forsythe test, the

modi�ed Brown{Forsythe test, and the approximate Anova F{test

attain the same power as the F{test because the test statistics co-

incide. If the variances are homogeneous, the Cochran, the Welch,

and the modi�ed Welch test are slightly less powerful than the F{

test, when the sample sizes are balanced; in case of unbalancedness,

the di�erence between the power of the F{test and the latter tests

is larger. Under variance heterogeneity and balanced sample sizes,

the Cochran, the Welch, and the modi�ed Welch tests are always

more powerful than the other tests regardless of the alternative hy-

pothesis. In case of unbalancedness and variance heterogeneity, the

Cochran, the Welch, and the modi�ed Welch tests still continue to

be most powerful when the alternative is �

1

= �1; �

2

= 0; �

3

= 1.

If the alternative hypothesis considered is �

1

= 2; �

2

= �

3

= 0, the
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Cochran, the Welch, and the modi�ed Welch tests are most power-

ful when the smallest variance is associated with the smallest sample

size. If the smallest variance is paired with the largest sample size,

the Brown{Forsythe, the modi�ed Brown{Forsythe, the approximate

Anova F{test and the F{test are most powerful.

In the case of the nonnormal distribution and homogeneous vari-

ances, the F{test still gives acceptable levels, even for the small

sample sizes considered here. If the distribution is nonnormal and

the variances are heterogeneous, the F{test behaves the same way

as in the case of normal distributions with heterogeneous variances:

when the largest sample size is paired with the largest variance, the

F{test is conservative, and if the smallest sample size is paired with

the largest variance, the F{test is liberal. Hence, the departure from

the normality assumption seems to be a minor a�air compared to

the presence of variance heterogeneity. Among the remaining tests,

none gives acceptable levels for all cases considered: the tests can

become liberal or conservative or keep the nominal level, depending

on the particular con�guration of the parameters involved (sample

sizes and variances).

Now to summarize the above �ndings concerning the attained signif-

icance levels and the power of the tests, we �rst want to emphasize

that when judging the performance of tests by way of simulation, it

is necessary to consider �rst their Type I error properties. Overall,

the Welch test, the Brown{Forsythe test (especially for small sam-

ple sizes), and the modi�ed Welch test provide acceptable control

31



of Type I errors when the variances are heterogeneous. But with

the understanding that methods are unacceptable if they have Type

I error rates that are too high, only the testing procedure associ-

ated with the modi�ed Brown{Forsythe test can be recommended

both for normal and nonnormal data. Under normality, the modi�ed

Welch test can also be recommended.

As a last remark, we want to emphasize that the results from our

simulation studies should not be overgeneralized. The conclusions

drawn are limited to experimental settings where the sample sizes,

the variances, the number of groups, and the distributions do not

di�er markedly from those considered here, confer especially the fol-

lowing example.

5 Example

To illustrate the application of the various homogeneity tests dis-

cussed above, we give an example from clinical trials. The data are

taken from Li, Shi and Roth (1994). In eight randomized controlled

trials the e�ectiveness of a new drug, amlodipine, in the treatment

of angina was examined. The response variable, the change in work

capacity, was compared for patients who received either the drug or

placebo. The change in work capacity is the ratio of the exercise time

after the patient receives the intervention (drug or placebo) to before

the patient receives the intervention. The logarithms of the observed

changes are assumed to be approximately normally distributed. We

present here the data for the placebo group, and address in particular
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the homogeneity with respect to the placebo group, since this is also

recommended by Chalmers (1991) to investigate the homogeneity

question in a meta{analysis.

TABLE XV: Change in work capacity in the treatment of angina,

placebo group data, taken from Li, Shi and Roth (1994).

Study Sample size Mean Variance

1 48 �0:0027 0:0007

2 26 0:0270 0:1139

3 72 0:0443 0:4972

4 12 0:2277 0:0488

5 34 0:0056 0:0955

6 31 0:0943 0:1734

7 27 �0:0057 0:9891

8 47 �0:0057 0:1291

The samples are highly unbalanced, and since the variance esti-

mators di�er considerably, the assumption of variance homogeneity

seems not to be justi�ed. We perform now the tests presented above

to investigate the heterogeneity question among the studies. The

results are summarized in the next table, Table XVI.

The null hypothesis of homogeneity is only rejected by the Cochran

test, whereas the remaining tests do not reject the null hypothesis.

For illustration, we simulated the empirical levels of the tests using

the sample sizes and the variance estimators given in Table XV,

assuming that the variance estimators are the true values.

33



TABLE XVI: Value of the test statistics and corresponding

critical values (level � = 5%) for the data of TABLE XV.

Statistic Value of the statistic Critical value

F 0.41 2.04

W 2.06 2.13

W

�

1.93 2.13

B 0.44 2.11

B

�

0.44 2.71

F

�

=ĉ 0.44 2.68

C 15.17 14.07

We obtained the following empirical levels: 8.4. (F , ANOVA F{test),

5.1 (W , Welch), 4.4 (W

�

, adjusted Welch), 9.7 (B, Brown{Forsythe),

5.2 (B

�

, modi�ed Brown{Forsythe), 5.3 (F

�

=ĉ, approximate ANOVA

F{test), and 8.0 (C, Cochran). Note that, in general, the behaviour

of the tests in a particular example cannot be deduced from Monte

Carlo results, although the general impression of the tests obtained

in section 3 seems to be con�rmed in case of the placebo group data.

But of course it should be clear that here we could not simulate with

the true, unknown variances underlying the data.

Acknowledgements

The �nancial support of the Sonderforschungsbereich 475, projects

"Anova" and "Meta{Analysis", of the German Research Community

(DFG) is gratefully acknowledged.

Further, we would like to thank the referees for their valuable com-

ments on the �rst version of the paper.

34



Appendix

It will be shown that the test statistics of the approximate ANOVA

F{test, the Brown{Forsythe, and the modi�ed Brown{Forsythe are

the same both in balanced and unbalanced samples:

F

�

=ĉ =

N(K � 1)

N �K

�

P

K

i=1

(n

i

� 1)s

2

i
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K
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(N � n
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= B

�

= B:

Next, it will be shown that the denominator degrees of freedom

of the approximate ANOVA F{test and of the modi�ed Brown{

Forsythe test are the same if the sample sizes are balanced n

i

=

n; i = 1; : : : ; K:

�

2

=

h

P

K

i=1

(n

i

� 1)s

2

i

i

2

P

K

i=1

(n

i

� 1)s

4

i

=

h

P

K

i=1

(n� 1)s

2

i

i

2

P

K

i=1

(n� 1)s

4

i
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=

(n� 1)

h

P

K

i=1

s

2

i

i

2

P

K

i=1

s

4

i

= �:

Hence, in balanced cases the reference distributions of the approx-

imate ANOVA F{test and of the modi�ed Brown{Forsythe are the

same and since the test statistics are also the same, both test pro-

cedures coincide in balanced cases.

Also, for balanced sample sizes, N =

P

K

i=1

n

i

= Kn and we have:

ĉ =

N �K

N(K � 1)

�

P

K

i=1

(N � n

i

)s

2

i

P

K

i=1

(n

i

� 1)s

2

i

=
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i
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�
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2

i

P
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(n� 1)s

2

i

=

K(n� 1)
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�

(Kn� n)

P

K
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s

2

i

(n� 1)

P

K

i=1

s

2

i

=

(K � 1)n

(K � 1)n

= 1:

We conclude that in balanced samples the test statistics of the

approximate ANOVA F{test, the modi�ed Brown{Forsythe test,

the Brown{Forsythe test, and the ANOVA F{test are the same,

F

�

=ĉ = F

�

= B

�

= B = F .
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