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Small sample properties of tests on homogeneity

in one—way Anova and Meta—analysis

Joachim Hartung, Dogan Argac, Kepher H. Makambi
Department of Statistics, University of Dortmund

D-44221 Dortmund, Germany

In the present Monte Carlo study, the empirical Type I error properties
and power of several statistics for testing the homogeneity hypothesis in
a one—way classification are examined in the case of small sample sizes.
We compared these tests under several scenarios: normal populations
under heterogeneous variances, nonnormal populations under homoge-
neous variances, nonnormal populations under heterogeneous variances,
balanced and unbalanced sample sizes, and increasing number of popula-
tions. Overall, none of the tests considered is uniformly dominating the
others. Under normality and variance heterogeneity, the Brown—-Forsythe
and the Welch test perform well over a wide range of parameter configura-
tions, the modified Brown—Forsythe test by Mehrotra keeps generally the
level, but other tests may also perform well, depending on the constella-
tion of the parameters under study. The Welch test becomes liberal when
the sample sizes are small and the number of populations is large. We
propose a modified version of Welch’s test that keeps the nominal level
in these cases. With the understanding that methods are unacceptable if

they have Type I error rates that are too high, only the testing procedure
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associated with the modified Brown—Forsythe test can be recommended
both for normal and nonnormal data. Under normality, the modified

Welch test can also be recommended.

Key words: meta—analysis, balanced and unbalanced sample sizes, homo-

geneous and heterogeneous variances, nonnormality

1 Introduction

The problem of testing the homogeneity of several means in a one—
way layout of analysis of variance is one of the oldest problems in
statistics. This situation arises in many practical settings. For ex-
ample, a manufacturing company may wish to test whether several
machines on production lines produce items of the same quality, and
if the items produced are expensive, one can take only a sample
of small size for comparison. As a second example, consider the
meta—analysis of a series of independent experiments, which address
the same question of interest. Here, the goal is to summarize the
information provided by the different experiments, see Whitehead
and Whitehead (1991), Normand (1999), and Hartung and Knapp
(2000). In meta—analysis, it is now common practice to combine
the information from the different sources via a one—way model of
analysis of variance. A question of interest is to test whether all
the experiments share a common effect. This hypothesis is called
the homogeneity hypothesis of meta—analysis. According to Hardy

and Thompson (1998), the question of homogeneity is an important



part of any meta—analysis. The hypothesis of homogeneity in meta—
analysis corresponds to testing the homogeneity of the means in the
one—way model of analysis of variance.

Under the classical assumptions (normality of the errors, homogene-
ity of the error variances, and independence of the errors), the Anova
F-test is known to be the optimal test, Lehmann (1986). However,
when one or more of these basic assumptions are violated, the F—
test becomes overly conservative or liberal, depending on the manner
and the degree to which these assumptions are violated. In his book,
Scheffé (1959) examines the effects of violating these assumptions.
He concludes that the effect of violating the normality assumption
is slight, at least asymptotically. Replacing the assumption of in-
dependence by a serial correlation, he finds that the effect of serial
correlation can be disastrous and the F—test is no longer valid, see
also Lehmann (1986). The presence of heterogeneous variances can
also have a serious effect on the validity of the F—test, especially
when the sample sizes are unbalanced. The Type I error rate be-
comes vastly inflated, when smaller variances are associated with
larger group sample sizes, and conversely, when the larger group
sample sizes are associated with the larger variances, the empirical
rejection rates fall below the nominal level, see e. g. De Beuckelaer
(1996). In practice, the assumption of homogeneous error variances
is rarely justified, and in fields like meta—analysis, the variances have
to be assumed to be heteroscedastic.

In the literature, several alternative tests have been proposed to



account, for the heterogeneity of the error variances. In the present
paper, we compare the performance of these tests and of the F—test
by way of simulation with respect to their attained significance levels
and power in the case of small sample sizes under several scenarios:
normal data with homogeneous and heterogeneous variances, data
from a skew distribution with homogeneous variances, data from
a skew distribution under heterogeneity, balanced and unbalanced
sample sizes, and increasing number of populations.

The present simulation study differs, at least, in two ways from pre-
viously conducted simulation studies, e. g. Mehrotra (1997), De
Beuckelaer (1996), and Keselman and Wilcox (1999): we consider
tests which have been ignored by other authors and we also investi-
gate the effect of increasing the number of groups and the combined
effect of nonnormal data and heterogeneous variances on the validity
of the tests. Another goal is to bring all these tests to the attention
of researchers working in the area of meta—analysis, since in meta—
analysis the only test used for testing the homogeneity hypothesis is
Cochran’s test. Furthermore, we propose a modified version of the
well known Welch test, which is too liberal when the sample sizes are
small and the number of groups is large. In these cases the modified

Welch test attains levels close to the nominal level.



2 Tests in the one—way Anova model

Let y;; be the observation on the j-th subject of the i-th population,
1=1,...,Kand j=1,...,n;, K >2and n; > 2,

Yij = Hi+ €5

= :U’+61+€Z]7Z:177K7]:177n17

where p is the common mean for all the K populations, ; is the effect
of population 7 with Zfil Bi=0,ande;,i=1,...,K,j=1,...,n,
are error terms which are assumed to be mutually stochastically

independent and normally distributed with

E(eij) = O, Var(eij) == 0-2

)

ci=1,.. K, j=1,...,n.

That is, e;; ~ N(0,02);i=1,...,K,j=1,...,n;.

We consider the homogeneity hypothesis Hy : yy = -+ = ux and
use parametric procedures to test this hypothesis. We have excluded
nonparametric tests such as the Kruskal-Wallis test or the inverse
normal scores test, since it is known that these tests are not robust
with respect to variance heterogeneity, cf. Lehmann (1975). Also,
and more importantly, the null hypothesis for the rank—transformed
data may be no longer the same as for the original scale data, as
pointed out by Fligner (1981) and Noether (1981) in comments on
Conover and Iman (1981). Keselman and Wilcox (1999) propose
to replace the hypothesis of homogeneity of the means by the ho-
mogeneity hypothesis of the trimmed means, but this concerns a

different hypothesis.



We will make use of the following test statistics:

(i) ANOVA F—test The F-test, I, is given by

F

Y

_ N-K Zfil ni (7. — 7..)*
K—1 Y (n;—1)s?

=1

with N = Zfil Ny, Yi. = Zf:l Yij/Mis §.. = ZZI; n;¥i./N, and
s; = >i0(yij — 9i)?/(ni — 1). This test was originally meant to
test for equality of population means under variance homogeneity
and has an F distribution with K —1 and N — K degrees of freedom,
denoted by Fx_1 n_k-

The null hypothesis Hy is rejected at level « if F' exceeds the corre-
sponding (1 — a)—quantile, i. e. if F' > Fx_ | v k;1-o- The ANOVA
F—test is not robust with respect to heterogeneity in the error vari-

ances, see e. g. Brown and Forsythe (1974).
(ii) Cochran test The statistic

K K
C=>> wilyi =Y h;)’,
i=1 j=1
where w; = n;/s?, hy = w;/ Zszl wy, was proposed by Cochran

(1937), and then modified by James (1951) and Welch (1951).

Cochran’s test is the standard test for testing homogeneity in meta—
analysis. Under Hj, the Cochran statistic is distributed approxi-
mately as a y2-variable with K — 1 degrees of freedom. Reject H, at
level a if C' > X% _1.1_,- James (1951) based his approximation also
on the y?—distribution, but his test is inferior to Welch’s test given
below, see Brown and Forsythe (1974), hence we do not consider

James’s test further.



(iii) Welch test The Welch test is given by

W = Zzlil wZ(gl - Z]K:1 hjfgj.)2
(K — 1) +2- (K — 2) . (K + 1)*1 . Zf;(nz _ 1)71(1 _ hi)z

7

and Welch (1951) proposed to approximate its distribution using
an F—variable. Under Hy, the statistic W has an approximate F
distribution with K — 1 and vy degrees of freedom, where

K% -1
IED ORI

The hypothesis Hj is rejected at level a if W > Fge_ 1 110

w

(iv) Brown—Forsythe test This test is also known as the modified

F—test and is given by

Zfil ni (Ui — ﬂ..)z

= == .
S (= /N3
Brown and Forsythe use a Satterthwaite approximation to derive the

null distribution of the statistic B. When Hj is true, B is distributed
approximately as an F variable with K —1 and v degrees of freedom

where )
B Zi[il(l - ”Z'/N)Sz2
(= ni/N)2sE (i — 1)

We reject Hy at level aif B > Fx_1 .14
(v) modified Brown—Forsythe test Mehrotra (1997) developed

the following test

B — Zfil ni(Ji. — 7.)*
Zilil(l - ”Z/N)S?




in an attempt to correct a "flaw” in the original Brown-Forsythe
test. The "flaw” in the Brown-Forsythe testing procedure, iden-
tified by Mehrotra (1997), is in the specification of the numerator
degrees of freedom. Specifically, Brown-Forsythe used K — 1 nu-
merator degrees of freedom whereas Mehrotra (1997) used a Box
(1954) approximation to obtain the numerator degrees of freedom,

vy, where

SN

2
Zi[il 3;1 + [Zfil nis?/N} -2 Zfil ”iS?/N

vV =

and v is given in (iv) above.

Under H,, B* is distributed approximately as an F variable with 1
and v degrees of freedom. The null hypothesis Hj is rejected at level
aif B* > F, ,i—q-

(vi) approximate ANOVA F—test Asiribo and Gurland (1990)
based their test on

e N-K Y5 -5’
K—-1 55 (- 1)s]

7

This test gives an approximate solution to the problem of testing
equality of means of normal populations in case of heteroscedasticity
by making use of the classical ANOVA F-test.

Under Hy, the test statistic F*/¢ is distributed approximately as an
F-variable with v, and v, degrees of freedom where v, is as given in

(v) above,
N—K E (N —n)s?
NE=1) S5, (i - 15t

1=1

c =



Zz[;(”z - 1)53

Vo — 174
>t (i — 1)s;
and Hj is rejected at level o if F* > ¢-F),, ,,.1_o. We notice that the

7

numerator degrees of freedom for F* and B* are equal. Also, F*/é
equals B*, see appendix. The difference between the two test pro-
cedures is in the denominator degrees of freedom in the unbalanced
case. For balanced sample sizes, the denominator degrees of free-
dom of the statistics F™* and B* are the same, and the test statistics
F, B, F* and B* coincide, see appendix. However, the associated
testing procedures are still different, because they use different ref-
erence distributions.
(vii) adjusted Welch test For small samples in the groups, the
Welch test becomes too liberal especially with increasing number of
groups. The Welch test uses weights w; = n;/s?. Bockenhoff and
Hartung (1998) have examined these weights, and making use of
their results, it follows that

n; n;
where ¢; = (n;—1)/(n;—3), see also Patel et al. (1976). Therefore, an
unbiased estimator of n;/o? is n;/(c;s%). Let p; = (ni+01)/(n; +d2),
where ¢; and dy are real numbers chosen such that 1 < ¢; < ¢;; and
then define the general weights by w; = n;/(¢;s?). That is, for the
Welch test, w; = w with ¢; = 1 (6, = 0, and dy = 0) and if we
take the unbiased weights, w; = n;/(¢;s?), then ¢; = ¢;, (6 = —1
and J; = —3). Also, in our experience, using the unbiased weights

in the Welch test makes the test too conservative. A reasonable



compromise in this situation is to choose ¢; such that 1 < ¢; < ¢;.
This defines a new class of Welch type test statistics whose properties
can be adjusted accordingly by choosing the control parameter, ¢;,
appropriately. Our proposed test, which we shall henceforth call the
”adjusted Welch test”, uses the weights w} = n;/(p;s?) in the Welch
test, where 1 < ¢; < ¢;. That is the adjusted Welch test, W*, is
given by
. S wi (. — Y, higs)?
(K =142 (K—-2)- (K+1)71- 35 (= 1)7H(1 = h7)?

where hi = wi/SF wr i =1,...,K. Under Hy, the adjusted
Welch statistic, W*, is distributed approximately as an F-variable
with K — 1 and v}, degrees of freedom, with
. K% -1
T - R

and we reject Hy at « level if W* > FKfLV;V;lfa- When the sample
sizes are large, W* approaches the Welch test, i.e. (n; 4+ d1)/(n; +
92) "8 1. With small sample sizes, our statistic will help correct

the liberality witnessed in the Welch test.

3 Monte Carlo results

We examined the performance of the above tests by way of simula-
tion (10 000 runs for each constellation). Using different constella-
tions of the sample sizes and the error variances, we obtained the
simulated actual significance levels for K = 3, K = 6, and K = 9

groups and the power for K = 3 and K = 6 groups. We started the

10



simulation experiment with K = 3 groups. We considered balanced
and unbalanced sample sizes with homogeneous and heterogeneous
variances. In the case of unbalancedness, we paired the smallest sam-
ple size with the smallest variance, and also the smallest sample size
with the largest variance. To investigate the effect of the number of
groups, K, on the level of the tests, we replicated the experiment for
K = 3 groups two and three times to give the simulation experiment
for K = 6 and K = 9 groups, respectively. Under normality, the
F—test serves as a benchmark in the simulation experiments if the
variances are homogeneous. From our experience with the simula-
tions, the choice of the control parameter as ¢; = (n;+2)/(n;+1) in
the adjusted Welch test, W*, gives reliable results for small sample
sizes and a large number of populations.

Since the tests considered have different empirical levels, a fair com-
parison of their power is not directly possible. A fair comparison
must adjust for the latter. This was done using simulated critical
values to ensure that all the tests attain the same level (5%). For
the sake of completeness, we also give the power of the tests at the
nominal unadjusted 5% significance level. Two different configura-
tions of mean differences were used when assessing the power of the
tests. In the first pattern, the mean of the first group was set to
(1 = 2 with the remaining groups having equal means set to zero,
to = p3 = 0. In the second configuration, the means were equally
spaced, uy = —1, uo =0, ug = 1.

The effect of violating the normality assumption was examined using

11



data from a skew distribution. We used the following approach: each
observation in the i—th group was generated from a Xi — v;, that is
a centered y?-distribution, and since this is a location shifted y?—
distribution, the shape of the distribution is not affected. Using data
from this location shifted y2-distribution, we ensure that the means
of all the groups are the same, as it is needed under the null hypothe-
sis of homogeneity. Choosing the degrees of freedom in all the groups
to be equal, v; = v, we consider the case of homogeneous variances.
Now to investigate the dual effect of nonnormality and variance het-
erogeneity, the variances of the different groups can be chosen to be
heteroscedastic by using different degrees of freedom, v;, for each
group. The degrees of freedom were chosen in such a way that the
variance in each group is the same as in the corresponding case of
normal data, hence the only difference between the simulations with
the normal distribution and the skew distribution is the departure
from the normality assumption. In the simulations we have taken
the variances o? = 2,4, 6,10 which in the nonnormal case considered
here lead to shifted x —distributions with (v; = 07/2) 1,2,3, and 5
degrees of freedom, having the skewness (2\/5/\/12) 2.8,2.0,1.6,1.3
and excess (12/v;) 12,6,4, and 2.4, respectively.

12



TABLE I: Sample Designs for K=3 and K=6.

Pattern K=3 K=6
i 1 2 3 1 2 3 4 5 6
A n; | 5 5 5 5 5 5 5 5 5
oZ | 4 4 4 4 4 4 4 4 4
n;g | 5 5 5 5 5 5 5 5 5
oZ | 2 6 10 | 2 6 10 2 6 10
B n; | 10 10 10 | 10 10 10 10 10 10
oZ | 4 4 4 4 4 4 4 4 4
n; | 10 10 10 | 10 10 10 10 10 10
oZ | 2 6 10 | 2 6 10 2 6 10
C ng | 5 10 15| 5 10 15 5 10 15
oZ | 4 4 4 4 4 4 4 4 4
n; | 5 10 15| 5 10 15 5 10 15
oZ | 2 6 10 | 2 6 10 2 6 10
n; | 5 10 15| 5 10 15 5 10 15
oZ | 10 6 2 |10 6 2 10 6 2
D n; | 10 20 30 | 10 20 30 10 20 30
o2 | 4 4 4 4 4 4 4 4 4
n; | 10 20 30 | 10 20 30 10 20 30
o | 2 6 10 | 2 6 10 2 6 10
n; | 10 20 30 | 10 20 30 10 20 30
oz | 10 6 2 | 10 6 2 10 6 2
TABLE II: Sample Design for K=9.
Pattern K=9
i 1 2 3 4 5 6 708 9
A n; | 5 5 5 5 5 5 5 5 5
o2 | 4 4 4 4 4 4 4 4 4
ng | 5 5 5 5 5 5 5 5 5
o2 2 6 10 2 6 10 2 6 10
B m; | 10 10 10 10 10 10 10 10 10
o2 | 4 4 4 4 4 4 4 4 4
n; | 10 10 10 10 10 10 10 10 10
o2 2 6 10 2 6 10 2 6 10
C ng | 5 10 15 5 10 15 5 10 15
o2 | 4 4 4 4 4 4 4 4 4
ng | 5 10 15 5 10 15 5 10 15
o2 2 6 10 2 6 10 2 6 10
n; | 5 10 15 5 10 15 5 10 15
oZ | 10 6 2 10 6 2 10 6 2
D n; | 10 20 30 10 20 30 10 20 30
o2 | 4 4 4 4 4 4 4 4 4
n; | 10 20 30 10 20 30 10 20 30
oZ | 2 6 10 2 6 10 2 6 10
n; | 10 20 30 10 20 30 10 20 30
oZ | 10 6 2 10 6 2 10 6 2

13



TABLE III: Actual Simulated Significance Levels,

normal distribution (nominal level 5%) for K=3.

Pattern a%
F w w* B B* F* c
A 50 48 33 41 38 38 122
6.0 50 36 46 43 43 128
B 51 49 39 49 46 46 84
5.7 51 41 53 47 47 83
C 50 53 42 51 48 54 10.2

25 46 36 54 46 46 86
134 59 47 58 55 69 116
D 9.2 53 45 51 49 53 1.7
23 49 43 55 46 46 6.5
134 52 42 55 51 58 79

TABLE IV: Actual Simulated Significance Levels,

normal distribution (nominal level 5%) for K=6.

Pattern &%
F w w* B B* F* c
A 52 62 41 41 33 33 221
64 60 44 48 36 36 226
B 5.1 51 3.7 48 42 42 114
6.1 51 3.7 55 42 42 116
C 50 63 47 47 40 45 155

27 57 41 59 44 44 135
156 63 47 57 48 57 16.8
D 55 5.7 48 52 47 49 97
23 47 38 61 45 44 82
152 52 43 58 46 51 97

14



TABLE V: Actual Simulated Significance Levels,

normal distribution (nominal level 5%) for K=9.

Pattern a%
F w w* B B* F* c
A 53 73 47 43 32 32 286
6.5 79 55 49 33 33 292
B 51 62 43 49 40 40 148
66 59 42 59 43 43 145
C 53 70 49 49 41 45 193

24 63 44 65 44 43 179
184 7.7 55 56 43 52 206
D 49 55 41 48 43 44 107
22 50 39 62 43 43 9.7
181 55 43 59 45 50 108

TABLE VI: Actual Simulated Significance Levels,

nonnormal distribution (nominal level 5%) for K=3.

Pattern &%
F w w* B B* F* c
A 44 33 23 29 25 25 123
6.1 59 45 42 38 38 155
B 46 47 37 39 32 32 86
5.0 b7 47 48 42 42 96
C 45 71 59 41 32 34 121

25 41 30 42 32 33 85
136 84 71 66 6.1 7.0 150
D 45 67 58 44 36 38 89
25 53 45 58 46 46 7.1
128 69 6.1 57 52 57 96

15



TABLE VII: Actual Simulated Significance Levels,

nonnormal distribution (nominal level 5%) for K=6.

Pattern a%
F w w* B DB* F* C
A 4.5 5.9 3.7 26 18 18 240
6.4 83 6.1 41 28 28 252
B 4.4 70 54 36 23 23 147
6.2 70 55 51 33 33 146
C 49 106 85 3.7 23 2.7 212

27 56 41 58 36 3.7 146
15,6 109 86 52 3.8 44 216
D 4.7 90 77 43 29 31 137
26 70 57 64 42 42 11.0
150 83 71 55 39 43 129

TABLE VIII: Actual Simulated Significance Levels,

nonnormal distribution (nominal level 5%) for K=9.

Pattern &%
F w w* B B* F* C
A 4.5 9.5 59 24 14 14 343
6.8 11.1 80 4.0 24 24 341
B 47 9.6 72 38 20 20 204
6.5 9.3 71 54 32 32 19.1
C 53 136 106 4.1 25 26 273

24 75 49 59 31 31 214
180 13.6 104 49 3.0 3.7 280
D 51 11.0 94 44 28 30 171
22 85 69 6.0 37 37 144
17.7 101 82 6.1 41 45 16.2

16



TABLE IX: Simulated Power for K=3,
adjusted and unadjusted (cursive),
at M1 = 27:“’2 = 07:“/3 = 07

normal distribution.

Pattern a%

F w w* B B Fr c

A 271 251 251 271 271 271 252
28.8 2/.8 19.7 256 246 2.6 4.6

174 240 240 174 174 174 24.1
20.7 25.0 19.8 16.7 155 155 456.8

B 57.8 554 554 578 578 578 554
57.8 651 50.8 570 66.0 56.0 65.2

385 96.5 565 385 385 385 56.5
42.8 57.0 52.3 402 875 375 674

C 377 33.7 331 36.1 361 36.1 339
39.0 854 30.6 357 34.5 377 48.3

28.0 475 464 274 274 274 475
14.9 46.9 41.5 28.8 252 250 58.6

232 181 178 21.1 211 21.1 183
38.9 18.9 157 21.2 202 23.7 30.6

D 70.2 66.6 659 69.5 695 695 66.6
71.8 68.0 64.4 70.0 69.4 70.7 7T4.6

577 8L9 8L5 579 579 579 819
41.2  82.8 80.0 624 588 58.0 856

432 34.8 342 411 411 411 348
61.5 35.5 32.0 42.8 41.2 43.7 438

17




TABLE X: Simulated Power for K=6,
adjusted and unadjusted (cursive),
at i = pra = 2,0 = pi5 = 0, 3 = pg = 0,

normal distribution.

Pattern a%

F w w* B B Fr c

A 370 292 292 370 370 370 29.0
39.6 34.1 260 352 3810 31.0 65.6

21,6 30.0 300 216 216 216 30.0
26.4 34.2 265 20.3 16.6 16.6 67.2

B 7.0 722 722 770 770 770 721
712 12.3 6756 165 U7 747 85.3

524 736 736 524 524 524 736
58.6 746 69.5 56.0 49.1 49.1 86.5

C 4.1 46.2 454 534 534 534 46.5
53.5  49.8  42.0 50.0 46.7 49.5 68.8

32.8  59.7 593 325 325 325 599
19.8 62.2 54.5 373 306 30.2 179.8

30.7 209 202 279 279 279 21.0
53.6 253 20.6 29.0 252 29.2 44.3

D 884 84.2 837 87.8 87.8 878 844
89.0 854 82.3 882 878 878 91.1

734 952 951 741 741 741 952
58.4 954 94.2 187 728 719 974

99.6 475 470 576 576 576 47.6
79.4  49.4 44.6 61.2 56.2 5683 61.6

18




TABLE XI: Simulated Power for K=9,
adjusted and unadjusted (cursive),
at py = pg = pir = 2, pip = pis = pg = 0, pu3 = pg = g = 0,

normal distribution.

Pattern a%

F w W B B* F* c
A 473 33.1 33.1 473 473 473 33.1
48.4  42.8 32.9 438 883 388.3 78.0
257 33.8 33.8 257 257 257 338
32.9 451 35.0 264 20.3 20.83 80.3
B 88.6 833 833 886 886 88.6 &83.3
88.7 844 T79.5 881 86.3 86.83 93.9
65.6 856 85.6 656 656 656 &85.6
71.9 86.4 81.6 69.4 60.9 60.9 949
C 66.7 51.7 509 652 652 652 520
65.3 60.0 51.5 61.3 573 60.1 81.2
420 71.1 706 429 429 429 712
25.3 748 674 46.5 375 371 90.5
38.0 242 238 346 346 346 243
64.7 32.7 26.2 36.0 305 34.4 56.1
D 96.1 933 93.0 958 958 95.8 934
95.9 939 92.0 954 94.9 951 97.1
849 98.8 987 853 853 853 988
71.8 98.8 98.4 89.7 84.7 84.6 99.5
72.0 56.9 55.7 704 704 704 569
89.2 61.6 558 738 68.1 T70.2 T4.0
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TABLE XII: Simulated Power for K=3,
adjusted and unadjusted (cursive),
at p11 = _17/J’Q = 07“3 =1,

normal distribution.

Pattern a%

F w w* B B Fr c

A 218 194 194 218 21.8 21.8 195
21.1 178 138 187 117 117 385.8

144 155 155 144 144 144 156
17.1 165 12.3 14.1 130 13.0 33.1

B 46.2 45.0 45.0 46.2 46.2 46.2 449
45.4  43.0 38.6 44.8 438 433 63.1

29.2 353 353 291 291 291 352
32.0 384.6 381.0 302 281 28.1 45.3

C 384 33.7 337 36.7 36.7 36.7 339
38.9 84.6 29.9 36.0 348 383 49.2

269 328 324 266 266 266 329
172 84.0 29.7 29.1 259 255 44.9

225 228 231 203 203 203 232
40.5  24.4 21.0 21.5 205 243 39.6

D 70.6 678 678 702 702 702 67.8
71.1 68.2 650 695 687 70.1 T4.5

534 652 650 538 338 538 651
39.8 654 627 571 532 52.9 70.3

456 512 51.3 433 433 433 512
65.8 514 8.8 44.8 42.0 5.1 60.7
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TABLE XIII: Simulated Power for K=6,

adjusted and unadjusted (cursive),

at py = pg = =1, o = p5s = 0, u3 = pg = 1,

normal distribution.

Pattern a%
F W W B B* F c
A 283 220 220 283 283 283 21.80
28.9 25.6 19.1 25.4 22.83 22.83 56.0
vy 1vr 1v7o 171 171 171 17.6
21.6 216 16.1 17.5 14.5 14.5 50.5
B 63.0 580 580 63.0 63.0 630 579
62.2 576 51.5 61.3 5689 689 73.0
376 448 448 376 376 376 448
431 465 411 40.8 352 352 63.7
C 03.7 445 44.7 525 525 525 449
534 47.8  40.5 49.5 46.5 49.2 687
33.0 416 419 328 328 328 41.7
20.7 44.1 38372 36.1 29.6 29.4 63.8
29.7 277 275 272 272 272 278
56.2 34.1 282 285 24.4 28.9 577
D 88.1 8.0 851 874 874 874 852
89.0 86.0 832 880 870 876 91.5
672 826 825 68.0 68.0 680 826
54.7 827 79.8 728 671 66.7 885
62.1 67.7 68.0 60.2 60.2 602 679
83.8 069.4 656 636 577 60.4 79.5
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TABLE XIV: Simulated Power for K=9,
adjusted and unadjusted (cursive),
at pn = pa = pr = =1t = p5s = pg = 0, i3 = pg = g = 1,

normal distribution.

Pattern a%

F w W B B* F* c
A 36.6 253 253 366 366 36.6 253
35.6 32.8 245 3814 269 26.9 69.1
19.8 194 194 198 198 19.8 193
25.5 28.2 207 20.83 154 15.4 636
B 748 67.7 67.7 748 T4.8 748 67.7
75.6 70.9 64.1 T4{9 T2.1 721 854
475 56.0 56.0 475 475 475 56.0
53.1 56.9 50.0 51.0 43.2 43.2 771
C 67.0 49.7 498 65.0 650 65.0 499
65.9 59.6 51.2 62.2 583 60.9 814
41.0 50.2 506 419 419 419 50.3
26.3 54.3 46.6 454 378 374 768
36.9 326 33.1 332 332 332 328
67.2 43.4 359 36.1 29.7 34.2 69.2
D 96.0 93.6 93.5 957 957 957 93.6
96.83 94.4 927 959 954 957 975
786 91.3 913 79.0 79.0 7v9.0 914
67.2 92.5 90.5 84.3 79.3 79.1 96.0
76.5 80.0 79.8 746 746 746 80.0
92.9 81.9 782 76.8 70.6 72.6 89.8
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TABLE XV: Simulated Power for K=3,

adjusted and unadjusted (cursive),

at H1 :27:“2:07/1/3:07

nonnormal distribution.

Pattern a%
F w W B B* F* c
A 39.6 415 415 396 396 396 41.1
35.1 35.2 287 29.3 275 275 588
249 36.7 36.7 249 249 249 36.6
29.5 42.0 836.3 24.1 22.7 22.7 614
B 65.3 689 689 653 653 653 68.7
61.8 068.0 63.6 60.2 583 5683 76.8
43.5 62.8 628 435 435 435 628
481 66.8 633 454 424 424 753
C 434 372 354 413 413 413 374
426 414 844 854 330 376 59.9
32.0 60.5 59.6 329 329 329 60.6
21.8 59.7 54.3 3828 29.2 29.8 71.0
22.2 8.7 8.3 149 149 149 87
38.9 14.2 11.1 14.6 184 1750 273
D 725 73.7 728 743 743 743 741
72.5 80.7T 772 753 732 T,.8 86.7
58.7 90.0 89.7 618 61.8 61.8 90.1
43.4 89.8 875 637 585 582 91.7
42.6 233 229 373 373 373 233
61.0 31.5 280 39.3 86.3 39.8 41.8
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TABLE XVI: Simulated Power for K=6,

at py = pg = 2, 2 = ps = 0, 3 = pg = 0,

adjusted and unadjusted (cursive),

nonnormal distribution.

Pattern a%
F w W B B* F* c
A 46.2 50.3 50.3 46.2 46.2 46.2 49.8
43.9 54.5 456.3 8356 29.2 29.2 82.%
288 476 476 288 28.8 288 476
33.6 578 505 26.2 21.2 21.2 814
B 80.1 81.3 81.3 80.1 &80.1 &80.1 81.1
78.6 86.8 83.3 T6.6 715 786 93.9
54.5 783 783 545 545 545 783
61.85 83.7 80.6 579 50.0 50.0 91.8
C 55.6 41.8 40.6 56.6 56.6 56.6 425
501 61.9 538 486 414 45.1 82.5
347 76.0 755 359 359 359 756
24.7 71T 72.5 387 304 30.6 89.7
30.7 88 8.5 249 249 249 88
52.1 21.2 158 22.9 18.2 22.2 42.0
D 88.4 89.0 884 915 915 915 8&89.1
87.9 954 935 90.5 879 88.3 978
709 976 976 732 732 732 976
58.8 982 917 781 69.9 69.7 99.2
59.3 335 325 589 589 589 335
79.1 47.9 42.1 61.2 53.9 56.6 61.7
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TABLE XVII: Simulated Power for K=9,
adjusted and unadjusted (cursive),
at py = pg = pir = 2, pip = pis = pg = 0, i3 = pg = g = 0,

nonnormal distribution.

Pattern a%

F w W B B* F* c
A 54.6 56.3 56.3 546 546 546 559
51.9 69.1 59.3 425 33.8 338 92.2
33.0 54.1 541 330 330 330 542
387 70.3 62.9 29.7 22.0 22.0 90.6
B 89.2 90.6 90.6 89.2 89.2 89.2 90.6
87.9 94.7 925 86.3 81.0 81.0 98.5
66.2 88.2 88.2 66.2 66.2 66.2 &88.1
71.5 92.9 90.5 68.0 57.8 578 972
C 64.7 49.0 474 66.8 66.8 66.8 49.6
65.1 757 66.2 60.9 50.7 54.4 92.9
434 86.0 858 449 449 449 858
28.2 88.2 84.1 47.83 349 350 964
375 9.2 89 328 328 328 9.2
63.1 288 21.8 304 22.3 26.8 55.1
D 95.2 954 952 970 970 97.0 954
95.8 99.1 986 96.8 952 955 99.7
82.8 99.5 994 85.0 850 8.0 995
70.4  99.7 99.6 88.2 81.83 81.1 99.9
72.1 40.5 39.5 727 727 7277 405
89.1 60.4 536 746 66.5 68.7 157
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TABLE XVIII: Simulated Power for K=3,

adjusted and unadjusted (cursive),

at M1:_17N2:07N3:17

nonnormal distribution.

Pattern a%
F w W B B* F* c
A 319 31.7 317 319 319 319 314
28.2 26.5 21.7 22.5 207 20.7 46.7
109 9.0 9.0 109 109 109 91
4.0 114 86 95 82 82 30.8
B 53.6 51.1 511 53.6 536 53.6 509
51.5 51.8 480 49.8 48.0 48.0 60.7
25.7 29.8 29.8 257 257 257 300
30.4 336 29.3 270 233 23.83 46.6
C 473 47.0 46.8 487 487 487 472
45.5  50.4  46.7 454 43.6 457 62.0
25.8 46.8 46.9 30.7 30.7 30.7 46.6
1.0 454 417 302 252 249 55.2
29.0 29.1 29.0 275 275 275 292
47.9 39.8 357 30.9 29.7 328 53.9
D 75.1 696 69.5 709 709 709 699
7.0 73.8 717 69.9 689 T70.3 79.0
56.3 711 70.9 581 581 581 712
39.2 69.6 679 59.4 54.8 54.7 736
49.6 54.1 542 46.5 46.5 46.5 54.1
66.6 59.2 56.8 480 46.6 486 66.4
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TABLE XIX: Simulated Power for K=6,

adjusted and unadjusted (cursive),

at py = pg = =1, o = ps = 0, u3 = pg = 1,

nonnormal distribution.

Pattern a%
F w W B B* F* c
A 36.1 382 382 36.1 36.1 36.1 37.8
33.2  40.7 335 256 20.6 20.6 69.5
153 120 120 153 153 153 12.2
19.9 207 144 121 87 87 548
B 68.0 62.7 627 68.0 680 680 62.5
65.0 09.2 064.7 624 570 570 81.8
36.6 42.2 422 366 366 36.6 422
42.8  51.8 456.8 883 29.0 29.0 068.4
C 59.1 554 55.7 589 589 589 559
59.0  68.9 642 544 49.2 516 82.9
303 625 627 339 339 339 622
19.8 64.8 60.3 372 28.0 278 7183
36.2 364 365 356 356 356 36.3
60.2 55.1 49.9 344 29.9 333 72.0
D 90.2 849 848 866 86.6 86.6 84.9
89.2 90.5 89.0 84.7 81.9 83.0 93.7
69.2 85.7 856 689 689 689 85.7
56.8 870 853 731 66.3 66.1 91.1
64.3 70.1 70.2 620 620 620 70.1
82.9 788 T6.1 634 574 59.6 855
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TABLE XX: Simulated Power for K=9,
adjusted and unadjusted (cursive),
at py = pa = pr = =1, 2 = pis = pg = 0, 3 = pg = pig = 1,

nonnormal distribution.

Pattern a%

F w W B B* F* c
A 42.7 41.8 41.8 427 4277 427 415
40.8  53.2 43.8 30.6 22.7 22.7 82.6
19.0 136 136 19.0 19.0 19.0 13.8
232 80.6 21.7 152 9.6 9.6 70.1
B 783 732 732 783 783 7783 731
75.6 81.7T 76.9 7356 66.4 66.4 91.7
47.0 53.0 53.0 470 470 470 528
53.4 66.0 59.6 49.2 378 37.8 82.6
C 68.3 645 645 66.0 66.0 66.0 64.8
68.9 81.1 76.8 61.6 548 5672 92.1
40.3 745 747 425 425 425 743
24.0 780 734 44.8 332 331 89.9
43.1 41.8 42.1 414 414 414 419
69.7 066.5 60.5 40.0 335 36.9 83.5
D 96.2 92.1 92.1 939 939 939 921
96.0 96.7 959 92.7 90.4 91.1 98.4
819 927 927 811 81.1 811 928
68.9 95.2 94.83 84.2 785 784 974
76.8 &80.1 80.2 733 733 733 80.1
91.5 886 86.5 744 673 69.3 934
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4 Discussion

First, we consider the attained significance levels, and we observe
that the F—test is not robust with respect to variance heterogeneity,
especially when the sample sizes are unbalanced. When larger sam-
ple sizes are paired with the larger variances, the actual Type I error
rate falls below the nominal level, and if the smaller sample sizes
are paired with the larger variances, the actual Type I error rate be-
comes inflated. Cochran’s test, the standard test in meta—analysis,
should definitely not be used, since it is always liberal, confer also
the simulation results conducted for the example, Table XVII, where
the sample sizes are much larger. Under variance heterogeneity, both
the Welch and the Brown-Forsythe tests are suitable alternatives to
the F—test in most of the configurations considered in the simulation
experiments, but the other tests may also perform well, depending
on the configuration of the parameters involved. When the vari-
ances are homogeneous, the F—test is the optimal test, see Lehmann
(1986), and should be used (the observed deviations from the nom-
inal level are due to simulation), the researcher should not follow
in this respect the recommendations of De Beuckelaer (1996) who
recommends the Brown-Forsythe test in these cases. With increas-
ing number of groups, from K = 3 to K = 9, the empirical Type
I error rates of the modified Brown—Forsythe and the approximate
F—test become smaller, especially for small sample sizes, and the
tests may get conservative. The remaining tests attain higher Type

I error rates with increasing number of groups in most cases and
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can become liberal, except the modified Welch test which attains
acceptable levels for small sample sizes.

Concerning the power of the tests, we discuss only the behaviour
of the test statistics with respect to the adjusted power, confer the
corresponding remarks in section 3. Since the test statistics of the
Brown—Forsythe, the modified Brown—Forsythe, and the approxi-
mate Anova F-test are the same, see appendix, these tests have the
same (adjusted) power. There is no practically significant difference
between the Cochran, the Welch, and the modified Welch test with
respect to power in the simulations considered. As it was to be ex-
pected, the F—test is the most powerful test when the variances are
homogeneous. In the balanced case the Brown—Forsythe test, the
modified Brown—Forsythe test, and the approximate Anova F-test
attain the same power as the F—test because the test statistics co-
incide. If the variances are homogeneous, the Cochran, the Welch,
and the modified Welch test are slightly less powerful than the F-
test, when the sample sizes are balanced; in case of unbalancedness,
the difference between the power of the F—test and the latter tests
is larger. Under variance heterogeneity and balanced sample sizes,
the Cochran, the Welch, and the modified Welch tests are always
more powerful than the other tests regardless of the alternative hy-
pothesis. In case of unbalancedness and variance heterogeneity, the
Cochran, the Welch, and the modified Welch tests still continue to
be most powerful when the alternative is p; = —1, ps = 0, pg = 1.

If the alternative hypothesis considered is p; = 2, pus = psz = 0, the
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Cochran, the Welch, and the modified Welch tests are most power-
ful when the smallest variance is associated with the smallest sample
size. If the smallest variance is paired with the largest sample size,
the Brown—Forsythe, the modified Brown—Forsythe, the approximate
Anova F-test and the F-test are most powerful.

In the case of the nonnormal distribution and homogeneous vari-
ances, the F—test still gives acceptable levels, even for the small
sample sizes considered here. If the distribution is nonnormal and
the variances are heterogeneous, the F—test behaves the same way
as in the case of normal distributions with heterogeneous variances:
when the largest sample size is paired with the largest variance, the
F-test is conservative, and if the smallest sample size is paired with
the largest variance, the F—test is liberal. Hence, the departure from
the normality assumption seems to be a minor affair compared to
the presence of variance heterogeneity. Among the remaining tests,
none gives acceptable levels for all cases considered: the tests can
become liberal or conservative or keep the nominal level, depending
on the particular configuration of the parameters involved (sample
sizes and variances).

Now to summarize the above findings concerning the attained signif-
icance levels and the power of the tests, we first want to emphasize
that when judging the performance of tests by way of simulation, it
is necessary to consider first their Type I error properties. Overall,
the Welch test, the Brown—Forsythe test (especially for small sam-
ple sizes), and the modified Welch test provide acceptable control
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of Type I errors when the variances are heterogeneous. But with
the understanding that methods are unacceptable if they have Type
[ error rates that are too high, only the testing procedure associ-
ated with the modified Brown—Forsythe test can be recommended
both for normal and nonnormal data. Under normality, the modified
Welch test can also be recommended.

As a last remark, we want to emphasize that the results from our
simulation studies should not be overgeneralized. The conclusions
drawn are limited to experimental settings where the sample sizes,
the variances, the number of groups, and the distributions do not
differ markedly from those considered here, confer especially the fol-

lowing example.

5 Example

To illustrate the application of the various homogeneity tests dis-
cussed above, we give an example from clinical trials. The data are
taken from Li, Shi and Roth (1994). In eight randomized controlled
trials the effectiveness of a new drug, amlodipine, in the treatment
of angina was examined. The response variable, the change in work
capacity, was compared for patients who received either the drug or
placebo. The change in work capacity is the ratio of the exercise time
after the patient receives the intervention (drug or placebo) to before
the patient receives the intervention. The logarithms of the observed
changes are assumed to be approximately normally distributed. We

present here the data for the placebo group, and address in particular
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the homogeneity with respect to the placebo group, since this is also
recommended by Chalmers (1991) to investigate the homogeneity

question in a meta—analysis.

TABLE XV: Change in work capacity in the treatment of angina,
placebo group data, taken from Li, Shi and Roth (1994).

Study | Sample size = Mean  Variance
1 48 —0.0027 0.0007
2 26 0.0270 0.1139
3 72 0.0443 0.4972
4 12 0.2277 0.0488
5 34 0.0056 0.0955
6 31 0.0943 0.1734
7 27 —0.0057 0.9891
8 47 —0.0057 0.1291

The samples are highly unbalanced, and since the variance esti-
mators differ considerably, the assumption of variance homogeneity
seems not to be justified. We perform now the tests presented above
to investigate the heterogeneity question among the studies. The
results are summarized in the next table, Table XVI.

The null hypothesis of homogeneity is only rejected by the Cochran
test, whereas the remaining tests do not reject the null hypothesis.
For illustration, we simulated the empirical levels of the tests using
the sample sizes and the variance estimators given in Table XV,

assuming that the variance estimators are the true values.
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TABLE XVTI: Value of the test statistics and corresponding
critical values (level o« = 5%) for the data of TABLE XV.

Statistic | Value of the statistic Critical value
F 0.41 2.04
w 2.06 2.13
w* 1.93 2.13
B 0.44 2.11
B* 0.44 2.71
F*/é 0.44 2.68
c 15.17 14.07

We obtained the following empirical levels: 8.4. (F'; ANOVA F-test),
5.1 (W, Welch), 4.4 (W*, adjusted Welch), 9.7 (B, Brown-Forsythe),
5.2 (B*, modified Brown—Forsythe), 5.3 (F*/¢, approximate ANOVA
F-test), and 8.0 (C, Cochran). Note that, in general, the behaviour
of the tests in a particular example cannot be deduced from Monte
Carlo results, although the general impression of the tests obtained
in section 3 seems to be confirmed in case of the placebo group data.
But of course it should be clear that here we could not simulate with

the true, unknown variances underlying the data.
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Appendix
It will be shown that the test statistics of the approximate ANOVA
F—test, the Brown—Forsythe, and the modified Brown—Forsythe are

the same both in balanced and unbalanced samples:

N(K -1 K (n;—1)s2 N-K
F*/é — ( ). Z;(:l(n )SZ .

Nziil ni (7. — 7..)*
z’I;(N - ”z’)sz

7

S (G — 5.)?
S =/ N)s?

= B*=B.

Next, it will be shown that the denominator degrees of freedom
of the approximate ANOVA F-test and of the modified Brown—
Forsythe test are the same if the sample sizes are balanced n; =

n,t=1,...,K:

(=K, 1)s2]

PRRCERIE
ZZI;(” —1)s}
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(-1 [SE ]
Zz’l; si

= V.

Hence, in balanced cases the reference distributions of the approx-
imate ANOVA F—test and of the modified Brown—Forsythe are the
same and since the test statistics are also the same, both test pro-
cedures coincide in balanced cases.
Also, for balanced sample sizes, N = Zf; n; = Kn and we have:
N-K Zi[;(N - ”1)312
NE-1) YK (n,— 1)

=1 7

K-l (En-n)¥E 8

=171

(K —1)n
= m:l.

We conclude that in balanced samples the test statistics of the
approximate ANOVA F-test, the modified Brown—Forsythe test,
the Brown—Forsythe test, and the ANOVA F-test are the same,

F*/¢=F*=B*=B=F.
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