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On the existence of moments � With an

application to German stock returns

by Ralf Runde and Axel Sche�ner
Department of Statistics� University of Dortmund

D������ Dortmund� Germany

Abstract

Stock returns are often modeled as having in�nite second or fourth
moments� with consequences for test statistics which have not yet
been fully explored	 Conclusions on the existence of moments are
usually drawn from a generalized Pareto or simple Pareto tail in�
dex estimate	 In a recent study McCulloch 
����
 demonstrated
that this estimator indicates distributions with even �nite fourth
moments� although the samples were drawn from in�nite�variance
stable laws� which points out the doubtful role of the tail index
estimate as evidence for the �niteness of moments	 Based on an
fQ�System for continuous unimodal distributions� introduced by
Sche�ner 
����
� we derive an alternative condition for the exi�
stence of moments	 An estimation algorithm for the fQ�parameters
is proposed and an application to the �� most busy German stocks
shows that daily returns can be modeled as being at least approxi�
mately fQ�distributed with �nite second moments	

Key words� Tail estimation� fQ�System� Distribution of stock re�
turns

JEL classi�cation� C��
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� The problem

Let

Xi �� ln
Pi�Pi��
 � i � �� � � � � n � 
�


be the returns of some common stock� where ln
�
 is the natural logarithm

and Pi is the price in period i� adjusted for dividends� stock splits etc		 Since

returns are the cumulative outcome of a large number of individual decisions

arriving continuously in time� they can be regarded as the sum of iid random

variables	 Following the Central Limit Theorem the limiting distribution of

the returns� after suitable shifting and scaling� must be a member of the stable

class 
Zolotarev� ����� chap	�
	 Since the sum of returns as de�ned in 
�


should belong to the same class of distributions as the returns themselves� it is

reasonable to assume that stock returns are at least approximately governed

by a stable law	

Most statistical analyses of stock returns assume a normal distribution� which

is the most familiar stable distribution	 However� distributions of observed

returns are much more leptokurtic than is consistent with normality� and since

Mandelbrot 
����
 and Fama 
����
 stock returns have often been modelled

as having a tail behaviour of the asymptotic Pareto�L�evy form� i	e	

lim
x���

P
Xi � x
 � c��
�jxj���� � o
�
� � x � � � 
�


lim
x��

P
Xi � x
 � c��
�jxj���� � o
�
� � x � � � 
�


as jxj � �� where � is a scale parameter� and the symmetry parameters c�

and c� satisfy c�� c� � �� c�� c� � �	 The most important parameter is the tail

�



index or shape parameter �� which is the maximal moment exponent of the

distribution� i	e	

� � supf 	 � � � EjXij
� ��g � 
�


Note that when � � � � �� 
�
 and 
�
 are necessary and su�cient conditions

for Xi to belong to the normal domain of attraction of a stable law with cha�

racteristic exponent � 
Ibragimov and Linnik� ����� p	���
	 Of course stable

random variables themselves follow 
�
 and 
�
 and therefore they lie in their

own domain of attraction	 When � � �� Xi is in the domain of attraction of a

normal distribution� and when � � � � � it is important to note that X�
i lies

in the normal domain of attraction of a stable law with characteristic expo�

nent ��� � �� so that the partial sums of X�
i � appropriately standardized� no

longer converge weakly to a normal distribution 
Phillips and Loretan� ����
	

For further information about domains of attraction� normal domains of at�

traction� and stable distributions see e	g	 Ibragimov and Linnik 
����� chap	�


or Zolotarev 
����
	

However� the nonexistence of moments of returns or squared returns of order

	 � � in 
�
 is of crucial relevance for the asymptotic distribution of test

statistics� of which the asymptotic theory in the standard case relies on �nite

second or fourth moments	 Based on fundamental results by Davis and Resnick


����a� ����b� ����
� who provide a general theory for sample covariances

when the tail behaviour of the underlying distribution satis�es 
�
 and 
�


with � � � � � and � � � � �� respectively� asymptotic null distributions of

several tests have been dicussed in recent years� Phillips and Loretan 
����


consider the Durbin�Watson and the von Neumann ratio� Kr�amer and Runde


����
 the autocorrelation coe�cient� and Phillips and Hajivassiliou 
����


and Kr�amer and Runde 
����
 focus on the t�statistic under these nonstandard

assumptions	 The asymptotic null distribution of the F �statistic and the Box�

�



Pierce Q�statistic is derived by Runde 
����� ����
� and that of the 
��statistic

by Mittnik et al	 
����
	 Loretan and Phillips 
����
 suggest a procedure to

test for covariance stationarity� and tests for cointegration and Dickey�Fuller

unit root tests are investigated by Caner 
����
 and Mittnik and Kim 
����
�

respectively� to mention only some of the results	

From practical point of view all these methods are adaptive tests� where the

value of the tail index � has to be speci�ed from a given series of returns on

the �rst stage of the procedure	 Concluding from this result on the existence of

moments� either the standard tests or the modi�ed procedures have to be app�

lied on the second stage� depending on whether the second or fourth moments

are �nite or not	

A well established method in empirical work is to estimate the tail index �

directly from the data and to conclude from 
�
 that all moments of order

	 � �� exist	 A convenient� easy to implement� and therefore most favoured

estimator in empirical �nance is

��k�u �

���
k

kX
j��

�
ln
X�n�j���
� ln
X�n�k�


����� � 
�


where k is some integer and X��� � X��� � � � � � X�n� are the ascending or�

der statistics corresponding to the sample of n consecutive stock returns	 This

estimator was originally proposed by Hill 
����
 as conditional maximum li�

kelihood estimator of the maximum moment exponent �	 The index �u� in

��k�u points out that 
�
 only estimates the upper tail shape	 For asymmetric

distributions the lower tail must be considered separately� and it is usually

concluded that all moments of order 	 � min
 ��k�u� ��k�l 
 are �nite� where ��k�l

is the analogue to 
�
� applied to the absolute values of the �rst k order sta�

tistics	 Note that ��GP � ����k�u is an estimator for the upper tail index of a

generalized Pareto distribution 
for details see DuMouchel� ����
	 For symme�

�



tric or approximately symmetric distributions �GP is estimated by merging the

upper sample fraction with the absolute values of the lower sample fraction	

Applying the Hill estimator for tail index estimation leads to the question

how to choose the cut�o� value k in 
�
	 Some empirical applications use the

��� upper observations 
DuMouchel� ����� Akgiray and Booth� ����
� while

others just try di�erent sample fractions 
Hols and de Vries� ����� Loretan and

Phillips� ����
	 A recent study by Lux 
����
 reports an almost steady decrease

of ��k�u with increasing values of k	 Tail shape estimates from �	�� at the �	��

tail size to �	�� at the ��� tail size indicate that ��k�u � � could be obtained

using larger sample fractions� which may lead to considerable consequences

for the test procedures mentioned above	 However� this element of uncertainty

seems to be eleminated by Beirland et al	 
����
� who propose an algorithm

to �nd an optimal sample fraction k�	

Dewachter and Gielens 
����
 showed that the Hill estimator 
�
 provides a

biased estimator of the degrees of freedom when the true distribution is Stu�

dent�s t� and in a recent study McCulloch 
����
 demonstrated that tail index

estimates in excess of � are to be expected for iid symmetric stable samples

with � as low as �	��� i	e	 ��k�u indicates a �nite second moment although the

true distribution is stable with in�nite variance	 McCulloch stated that the

results of the works which estimate the maximal moment exponent above �

are therefore in no way inconsistent with a stable distribution for asset re�

turns and recommended the maximum likelihood estimator if the distribution

is truly stable	

Given any return series� these �ndings now result in an uncertainty in deciding

whether the second or fourth moment of the underlying distribution exists� The

apriori assumption of a stable law is too restrictive� while a tail index estimate

above � is far from evidence for a �nite variance	 Assuming returns only to

be continuous and unimodal� we show a way out of this dilemma� Based on

�



an fQ�System which is introduced in Section � we derive a nessecary and

su�cient condition for the existence of moments in Section �	 An algorithm to

estimate the fQ�parameters is proposed in Section � and Section � reports an

application to the �� most busy German stocks	

� The fQ�System

Let X be a continuous unimodal distributed random variable with density f

and distribution function F � where unimodality means that there exists a point

xmod� such that the density function f
x
 is monotone increasing for x � xmod

and monotone decreasing for x � xmod	 Note that this de�nition of unimodality

also includes e	g	 the exponential and the uniform distributions	 Let � be the

location parameter and � the scale parameter of X� which are not nessecarily

the expectation and the variance� respectively	

Figure �� f �F �plots of various well�known distributions

�



Considering an f �F �plot� where the density f
x
 is plotted against the distri�

bution function F 
x
� one always obtains curves similar to those in �gure ��

which shows f �F �plots of some selected distributions	 All curves in �gure �

look similar to density functions of Beta distributions 
see e	g	 Johnson et al	�

����a� p	 ���
� so we suggest to �t a common parametric function to these

curves of the form

F �
x
 � f
x
 � �F 
x
���� F 
x
�� � x � IR � 
�


where � � �� 
� � � �� and F � denotes the derivative of F 	 This di�ers from

the beta distribution in that we have to take the additional parameter � into

account� since F 
x
����F 
x
�� is not nessecarily a density	 Replacing the un�

known parameters by their estimates and solving the di�erential equation 
�


numerically provides a nonparametric density estimator� which can be shown

to be in some sense superior to kernel density estimates 
Sche�ner and Runde�

����
	 However� substituting x � Q
p
 �� F��
p
� we get

fQ
p
 �� f
Q
p

 � �p�
�� p
� � � � p � � � 
�


This generalisation of Parzen�s 
����
 fQ�tail�representation is called the fQ�

function in what follows	

Let QX
p
 and QY 
p
 be the quantile functions of two continuous random

variables X and Y �� a�X� a � IR	 Then

QY 
p
 � a�QX
p
 �

which implies

Q�
Y 
p
 � Q�

X
p
 �

�



Therefore�

Q�
p
 �
�

fQ
p

� 
�


and hence

fQY 
p
 � fQX
p
 � �a � IR �

which shows that the fQ�function is independent of the location parameter	

Without loss of generality we therefore set � � Q
���
� which will later turn

out to be an appropriate choice for the representation of the quantile function	

DEFINITION �	�	 Let X � IR be a continuous unimodal random variable� X

is said to be fQ�distributed with parameters � � IR� � � �� 
� � � �� in short

X 	 F
�� �� 
� �
� if the fQ�function of X is given by

fQ
p
 � �p�
�� p
� � � � p � � � and Q
���
 � � � 
�


DEFINITION �	�	 The set of all fQ�distributions

FQ �� fX � IR � X 	 F
�� �� 
� �
� � � IR� � � �� 
� � � �g

is called fQ�System�

Table � gives the density functions f
x
 and the fQ�functions fQ�
p
 of some

well�known distributions 
for details see e	g	 Johnson et al	� ����a� ����b
	

Only four distributions in table � �t exactly into the fQ�System� � � ��


 � � � � results in the uniform distribution� � � �� 
 � � and � � � in

the exponential distribution� � � 
 � � � � in the logistic distribution� and

� � c��� 
 � � and � � c� �� c � �� in the Pareto distribution	

�



Table �� Densities and fQ�functions for various distributions

Distribution f
x
 fQ�
p
 � p � ��� ��

Uniform � � x � ��� �� �

Exponential e�x � x � � �� p

Logistic ex
� � ex
�� � x � IR p
�� p


Weibull cxc��e�x
c

� x � �� c � � c
�� p
 ln
 �
��p


����c

Gumbel e�xe�e
�x

� x � IR 
�� p
 ln
 �
��p




Normal 
��
����e�x
��� � x � IR 
��
����e����j�

���p�j

Cauchy 
�
� � x�

�� � x � IR ���
cos
�
p� ���


�

Pareto 
cx����c
�� � x � �� c � � c��
�� p
��c

From the last column in table � it is obvious that the fQ�functions of most of

the well�known distributions can only be approximated by the three�parametric

function given in 
�
	 For a short�tailed� a skewed and a heavy�tailed distribu�

tion� �gure � shows the fQ�functions and their approximations� obtained by

minimizing the distance

d
fQ� fQ�
 ��
�Z �

�

fQ
p
� fQ�
p

� dp

����


��


over all fQ�functions of the form 
�
 with respect to �� 
 and � 
for details see

Sche�ner� ����
	 For the distributions considered here the exact and approxi�

mated fQ�functions are hardly distinguishable	 Figure � gives the di�erences

between these two curves	

�



Figure �� fQ�functions 
solid line
 and their approximations 
dashed line

for various distributions

Figure �� Di�erences between fQ�functions and their approximations

Since any returns as de�ned in 
�
 can safely be assumed continuous and uni�

modal distributed� their distribution can be approximated by an fQ�distribution

as given in de�nition �	�	 In fact in section � it is shown that the daily returns

considered here seem to follow fQ�distributions	 Even if returns are not ex�

actly fQ�distributed� the fQ�System provides an approximation of the true

underlying distribution	 This approximation generally produces a bias� but as

�gure � points out� this bias is negligible compared to the gain of a given pa�

rametric fQ�function	 In particular� the fQ�parameters 
 and � can be used

to decide upon the existence of moments	

��



� A condition for the existence of moments

Let X 	 F
�� �� 
� �
 with quantile function Q
p
	 The relations 
�
 and 
�


imply that

Q�
p
 �
�

fQ
p

� ���p��
�� p
�� � 
��


from which the quantile function of an fQ�distribution is obtained by nume�

rical integration as

Q
p
 � ��
�

�

Z ���

p
x��
�� x
��dx � p � 
�� ���� � 
��


Q
p
 � ��
�

�

Z p

���
x��
�� x
��dx � p � 
���� �
 � 
��


The following lemma gives lower and upper bounds for the quantile function

in 
��
 and 
��
 which are needed for the central theorem in this section	

LEMMA �	�	 Let X 	 F
�� �� 
� �
 with quantile function Q
p
� Then for

p � �
�
and

�a� � 
� ��


�� p
��� � ����

�
� � �

� Q
p
� � �

���
�� p
��� � �����

�
� � �

� 
��


�b� � � ��

�

�
�ln
���
� ln
�� p
� � Q
p
� � �

��

�
�ln
���
� ln
�� p
� � 
��


For p � �
�
and

�c� 
 
� ��

���� � p���

�

 � �

� Q
p
� � �

������� � p����

�

 � �

� 
��


��



�d� 
 � ��

�

�
�ln
p
� ln
���
� � Q
p
� � �

��

�
�ln
p
� ln
���
� � 
��


PROOF	 We only prove the �rst part of the lemma	 The case p � ��� is

proved along the same lines	 For p � ��� the quantile function is given by


��
�

Q
p
 � ��
�

�

Z p

���
x��
�� x
��dx �

Since x�� is monotone decreasing if x� �� we have for x � ���

� � x�� � �� �

which implies

�

�

Z p

���

�� x
��dx � Q
p
� � �

��

�

Z p

���

�� x
��dx �

With

Z p

���

�� x
��dx �

	
�
�
���p���������

������
� � 
� �

ln
���
� ln
�� p
 � � � �

the �rst part of the lemma is proved	 �

Let X be a continuous random variable with density f
x
 and g
x
 is a con�

tinuous function on IR	 Substituting x � Q
p
 and using the relation 
�
� we

have

E�g
X
� �
Z �

��
g
x
f
x
 dx

�
Z �

�
g
Q
p

 dp �

��



which implies that moments of X are easily expressed in terms of the quantile

function

E
X	
 �
Z �

�
�Q
p
�	dp � 
��


Together with lemma �	� this leads to a nessecary and su�cient condition for

the existence of moments of fQ�distributed random variables	

THEOREM �	�	 Let X 	 F
�� �� 
� �
� then

E
X	
 �� � max

� �
 �
�� �

�
� � � IN � 
��


PROOF	 Since we are only interested in the tail behaviour we set without

loss of generality � � � and � � �	 From 
��
 we have

EjX	j �� �
Z �

�
j�Q
p
�	j dp ��

�
Z ���

�
j�Q
p
�	j dp�

Z �

���
j�Q
p
�	j dp ��

�
Z �

���
j�Q
�� p
�	j dp�

Z �

���
j�Q
p
�	j dp �� � 
��


Since Q
p
 �
R p
��� x

��
� � x
��dx for p � ���� it is su�cient to consider the

second integral in 
��
 and then transfering the conditions obtained for 

� �


to 
�� 

	 We have to distinguish three cases�

�	 � � �� From 
��
 we have

Z �

���
j�Q
p
�	j dp �

��

� � �

Z �

���
j�
�� p
��� � 
���
����	j dp

�
��

� � �

Z ���

�
j�q��� � 
���
����	j dq

�
��

� � �

Z ���

�
j

	X
j��


��
j


�

j

�
q������	�j�� �z �

��


���
�����jj dq

�
����

� � �

	X
j��



�

j

�

���
�����j dq

� � � 
 � �� � � IN �

��



�	 � � �� From 
��
 we have

Z �

���
j�Q
p
�	j dp � ��

Z �

���
�ln
���
� ln
�� p
�	 dp

� ����
Z �

�
u	e�u du

� ������

� � � 
 � �� � � IN �

�	 � � �� From 
��
 we have

Z �

���
j�Q
p
�	j dp � lim

t��

��

� � �

Z t

���
j�
�� p
��� � 
���
����	j dp

� lim
t��

��

� � �

Z ���

t
j

	X
j��


��
j


�

j

�
q������	�j�� �z �
�q������


���
�����jj dq

�
��

� � �
�
	X

j��



�

j

�

���
�����j�

� �z �

� ����� ���� 	�IN

lim
t��

Z ���

t
q�����	 dq �

With

lim
t��

Z ���

t
q�����	 dq �� � 
�� �
� � ��

� � � � �
�

�

the theorem is proved� since with 
��
 and 
��
 the �rst integral in 
��
 can

be computed similar to the second� which gives the condition 
 � � � ���	 �

EXAMPLE �	�	 Consider the distance d
fQ� fQC
 in 
��
� where fQC

is the fQ�function of the Cauchy distribution given in table �	 Minimizing

d
fQ� fQC
 over all fQ�functions of the form fQ
p
 � �p�
� � p
� with re�

spect to �� 
 and �� i	e


�C � 
C � �C
 � arg min
�������

�Z �

�
��p�
�� p
� � ���
cos
�
p� ���


��� dp

����

�

��



results in 
C � �C � �����	 This leads to �max � �� where �max is the maximal

�nite moment� i	e	

�max � supf� � IN � max

� �
 �
� � �

�
g � 
��


Minimizing d
fQ� fQN
� where fQN is the fQ�function of the standard normal

distribution� provides 
N � �N � ����� with �max ��	

� Parameter estimation

Since the particular de�nition of the fQ�distribution renders the maximum

likelihood and the method of moments estimation techniques impracticable�

an iteration algorithm is used to estimate the parameters of the fQ�System	

Starting with some initial values 
��� and ���� we obtain estimates for � and

� based on the Least�Squares�Method	 Minimizing the sum of the weighted

squared residuals over 
 and � provides 
��� and ���� with which the next

iteration step is started	 Finally� estimates ��� ��� �
 and �� are obtained when

the iteration algorithm terminates	

��� Moments of order statistics

The Least�Squares estimation of � and � requires the expectation and the

variance of the i�th order statistic and the covariance of the i�th and j�th

order statistics of the underlying distribution	 Let X�i� denote the i�th order

statistic of a sample Xi� i � �� � � � � n	 To obtain representations of E
X�i�
 and

Cov
X�i�� X�j�
 in the case of fQ�distributions� we refer to Blom 
����
	

��



THEOREM �	�	 Let Xi 	 F
�� �� 
� �
� i � �� � � � � n� Then for 
�� � i �

n� �� ��� we have

E
X�i�
 � Q
�i
 �O
n�	��
 � 
��


where

�i ��
i� �

�

n � �� ���
�

� 
��


PROOF	 From Blom 
����� p	��
� the expectation of the i�th order statistic

is given by

E
X�i�
 � Q
�i
 � n��R
�i� ai� bi
 �O
n�	��
 �

where

R
�i� ai� bi
 ��
�

�
�i
�� �i
Q

��
�i
 � 
ai
�� �i
� bi�i
Q
�
�i
 � 
��


�i ��
i� ai

n � �� ai � bi
� 
��


and where ai� bi are some scalars depending on i	 From 
��
 we have

Q�
p
 �
�

fQ
p

� ���p��
�� p
��

� Q��
p
 � �
fQ�
p


fQ�
p

�

In view of

fQ�
p
 � fQ
p







p
�

�

�� p

�

��



it follows immediately that

Q��
p


Q�
p

� �

fQ�
p


fQ
p

�

�

�� p
�




p
� 
��


Substituting 
��
 into 
��
� we have

R
�i� ai� bi
 �
�

�
�i
�� �i
Q

�
�i




�

�� �i
�




�i

�
� 
ai
�� �i
� bi�i
Q

�
�i


� Q�
�i





�� �i

ai �




�

 � �i


�

�
� bi


�
�

Therefore

R
�i� ai� bi
 � �

� ai �



�
and bi �

�

�
�

Substituting these coe�cients into 
��
 proves the theorem	 The restriction on

the index i is nessecary to ensure �i � 
�� �
	 �

A similar result is obtained for the covariances of order statistics	

THEOREM �	�	 Let Xi 	 F
�� �� 
� �
� i � �� � � � � n� Then for 
�� � i �

n� �� ��� we have

Cov
X�i�� X�j�
 �
�i
�� �j


n� �� ���
�

Q�
�i
Q
�
�j
 �O
n��
 � i � j � 
��


with �i given in �	
��

PROOF	 With the reprensentation of Cov
X�i�� X�j�
 given in Blom 
�����

p	��
� the proof is analoguous to that of theorem �	�	 �

The representations of E
X�i�
 and Cov
X�i�� X�j�
 in theorem �	� and theorem

�	�� respectively� have the advantage that the coe�cients ai and bi in 
��
 are

��



given as a function of the fQ�parameters� independently of i and n	 Based

on the good approximations by fQ�functions� 
��
 and 
��
 therefore produce

very good approximations of the moments of order statistics for any continuous

unimodal distribution 
for details see Sche�ner� ����
	

��� ABLU estimates for � and �

To robustify the estimation procedure� we use a k� trimmed sample� which

remains after deleting the k�� smallest and k�� largest values in the sample�

where k� � k� � k and k� and k� depend on the initial values 
��� and ����	

The following de�nition simpli�es the notation	

DEFINITION �	�	 Let  Xi 	 F
�� �� 
���� ����
� i � �� � � � �  n and let

i� �� �
������ � � and i
n �� � n� �� ������� � 
��


then X�� � � � � Xn with X��� ��  X�i��� X��� ��  X�i����� � � � � X�n� ��  X�i�n� is called

the 

���� ����
�trimmed sample�

Suppose Xi 	 F
�� �� 
���� ����
� i � �� � � � � n be an 

���� ����
�trimmed sample

of iid random variables with any given 
��� and ����� and let X�i� be the i�th

order statistic of the subsample	 Consider the standardized variables Yi ��


Xi � �
��� i	e	 Yi 	 F
�� �� 
���� ����
� then Y�i� � 
X�i� � �
��� i � �� � � � � n	

Loyd 
����
 suggests to estimate � and � via Least�Squares based on order

statistics	 For that purpose let Y �� 
Y���� � � � � Y�n�

�� a �� E
Y
 and B ��

Cov
Y
� i	e	

ai � E
Y�i�
 and

bij �� B�i�j� � Cov
Y�i�� Y�j�
 �

��



where B�i�j� denotes the element in the i�th row and j�th column of the cova�

riance matrix B	

This implies for the order statistic X�i� that

E
X�i�
 � �� �ai �

Cov
X�i�� X�j�
 � ��bij �

and the parameters � and � can be estimated using the generalized linear

model

X � A�� e � 
��


where X � 
X���� � � � � X�n�

�� A � 
�n� a
� � � 
�� �
� and e 	 
�� ��B
	 The

best linear unbiased estimator 
BLUE
 for � is given by

�� � 
A�B��A
��A�B��X � 
��


With

� ��
B��
�na

� � a��
n

B��


a�B��a

��
n
B���n
� 
a�B���n
�


��


the estimates for � and � can be given directly	

LEMMA �	�	 The best linear unbiased estimators for � and � in the genera�

lized linear model �	�� are given by

�� � �a��X � 
��


�� � �n�X � 
��


PROOF	 Starting with 
��
 the representations 
��
 and 
��
 for �� and �� are

obtained by simple matrix operations	 For details see e	g	 Balakrishnan and

Cohen 
����� p	���	
	 �

��



To estimate � and � by 
��
 and 
��
� both a andB have to be computed� which

generally raises non�trivial numerical problems 
see e	g	 Arnold et al	� �����

chapter �	��
	 However� for fQ�distributions� a and B can be approximated

with theorem �	� and theorem �	� by

E
Y�i�
 
 Q���
�
���
i 
 ��  ai and 
��


Cov
Y�i�� Y�j�
 

�
���
i 
�� �

���
j 


n � �� 

��� � ����
��

Q���
�
�

���
i 

Q���
�
�

���
j 


��  bij � i � j � 
��


where Q��� and 
Q���
� is the quantile function and its derivative� respectively�

when 
 and � are replaced by 
��� and ����� and

�
���
i ��

i� 
�����

n� �� 

��� � ����
��
� 
��


Remember that we consider the 

���� ����
�trimmed sample and not the ori�

ginal sample� so that the choice of the smallest and largest value in 
��
 en�

sures that �
���
i � 
�� �
	 The approximately best linear unbiased estimators


ABLUE
 for � and � are now given by lemma �	�� when ai and bij are repla�

ced by  ai and  bij� respectively	

THEOREM �	�	 Let Xi 	 F
�� �� 
���� ����
� i � �� � � � � n be an 

���� ����
�

trimmed sample of iid random variables with any given 
��� and ����� Let further

V� ��
nX
i��

f
���
i 
ci � ci��
 � V� ��

nX
i��

 aif
���
i 
di � di��
 �

V	 ��
nX
i��

f
���
i 
di � di��
 �

Z� ��
nX
i��

f
���
i 
ci � ci��
x�i� � Z� ��

nX
i��

f
���
i 
di � di��
x�i� �

��



ci �� f
���
i � f

���
i�� and di ��  aif

���
i �  ai��f

���
i�� � i � �� � � � � n� � �

where  ai is given by ��
� and

f
���
i �� fQ���
�

���
i 
 � 
�

���
i 
�

���


�� �
���
i 
�

���

�

with �
���
i given by ���� and f

���
� � f

���
n�� �  a�f

���
� �  an��f

���
n�� �� �	 Then the

approximately best linear unbiased estimators for � and � are given by

� � �
V�Z� � V	Z�

V�V� � V �
	

� 
��


� � �
V�Z� � V	Z�

V�V� � V �
	

� 
��


PROOF	 Since the element in the i�th row and j�th column of the covariance

matrix B is approximated by

eB�i�j� ��  bij �
�
���
i 
�� �

���
j 



n��� � �
f
���
i f

���
j

� i � j �

where n��� �� n� 

��� � ����
��� the inverse eB��
of eB is a tri�diagonal matrix

given by

eB��

�i�j� �

	




�




�
�
n��� � �

n��� � �

f

���
i 
� � j � i

�
n��� � �

n��� � �
f
���
i f

���
j � j � i� � or j � i� �

� � otherwise

� 
��


With Lemma �	�� straightforward calculations lead to the ABLU estimators

given by 
��
 and 
��
	 �

Note that in view of the special structure of the tri�diagonal matrix eB��
the

very time expensive computation of the inverse of the n � n matrix eB is not

nessecary	

��



��� The iteration algorithm

Given some initial values 
����� ����� 
���� ����
 �� ����� the parameters ���� �


����� ����� 
���� ����
 as starting values for the next step of the iteration al�

gorithm are obtained by applying the Gauss�Newton method to minimize

�e�
 eB���

���e with respect to 
 and �� i	e	



���� ����
 � argmin
���

�e�
 eB���

���e � 
��


with �ei � 
x�i� � � �� � � ai
� � � �� � � � � n� where the ABLU estimators � � and � ��

depending on 
��� and ����� are given by 
��
 and 
��
� respectively	 The values

���� and ���� are provided in the last step of the minimization procedure	

Note that the elements eB��

�i�j� of
eB��

in 
��
� which depend on 
 and �� change

in each step of the Gauss�Newton minimization algorithm� while 
 eB���

�� in


��
 is kept �xed until the next iteration	

The next step of the iteration starts with ����� and ���� is the solution of 
��
�

when 
 eB���

�� is replaced by 
 eB���


��� i	e	 in the s�th step ��s� is obtained by

minimizing �e�
 eB�s���

���e with respect to 
 and �	 The procedure terminates

on the r�th step if jj��r�� ��r���jj� � �� where � can be chosen arbitrarily small	

Finally� 
��� ��� �
� ��
 is given by ��r�	

��� Choosing initial values

To start the iteration� initial values ���� � 
����� ����� 
���� ����
 have to be de�

termined to compute the approximations 
��
 and 
��
 in the �rst step of the

algorithm	 For extreme parameter constellations� for instance skewed distri�

butions with large variances� the Gauss�Newton method is very susceptible to

badly chosen initial values	 We therefore suggest a data�driven choice for ����	

��



Since � and � are not involved in the minimization algorithm� we set ���� to

the median m� ���� to the empirical standard deviation s and consider the

standardized data yi � 
xi �m
�s� i � �� � � � � n	

With gj � j�
l � �
� j � �� � � � � l� a simple kernel estimation is applied to

estimate the density function of the underlying distribution at the points

Q
gj
 � y��ngj ����� i	e	 to obtain

dfQ
gj
 � �f
y��ngj����
 �
�

nh

nX
i��

K

y��ngj ���� � yi

h

 � j � �� � � � � l �

We use the Gauss kernel K
u
 � 
��
���� exp
�u���
� but any other kernel

will do as well	 The bandwidth h has to be chosen such that at least three points

Q
gj
 are covered	 For details concerning kernel estimation see e	g	 Silverman


����
	 In practice it has been shown that the number of points l � min
n� ��


is su�cient to obtain good initial values	

Since dfQ
gj
 can be regarded as the density estimation of a Beta
a� b
�distribution

at points gj� its empirical moments are

m� �
lX

j��

gjgfQ
gj
 and m� �
lX

j��


gj �m�

�gfQ
gj
 �

where gfQ
gj
 �� dfQ
gj
 �
Pl

j��
dfQ
gj
 to obtain a density	 Following Johnson

et al	 
����a� p	���
� the moment estimators of a Beta
a� b
�distribution are

given by

�a �
m�

�
��m�


m�
�m� and �b �

�a
��m�


m�
�

which �nally leads to the initial values


��� � �a� � and ���� � �b� � �

where the di�erent parametrizations of the fQ�function and the Beta distri�

bution are taken into account	

��



� Empirical application

Tail shape estimation in empirical �nance can generally be divided into two

groups� The �rst assumes a priori Paretion stable distributions or distributions

in the domain of attraction of stable laws� and �nds characteristic exponents

� � � for stock returns 
Buckle� ����
� excess bond returns 
McCulloch� ����
�

foreign�exchange�rate changes 
So� ����
� commodity�price movements 
Liu

and Borsen� ����
� and real�estate returns 
Young and Gra�� ����
� to mention

some recent studies	 Since the prior commitment to a tail index � � � is

too restrictive� the second group assumes a generalized Pareto distribution

which also permits Paretian tail behaviour with � � �� Shape parameters have

been estimated along the lines of 
�
 for stock returns 
Jansen and de Vries�

����
� the Canadian!U	S	 dollar exchange rate 
Hols and de Vries� ����
� U	S	

stock returns and exchange�rate returns for di�erent currencies 
Loretan and

Phillips� ����
� and high�frequency data of the German share price index DAX


Lux� ����
	 All the latter studies provide tail index estimates above �� which

has been cited as evidence against in�nite�variance laws� so that Loretan and

Phillips 
����
 state that stock returns are better modeled by �nite variance

distributions	

In this section we report an empirical application of our results to German

stock returns	 We include all stocks that make up the DAX� except Lufthansa�

Henkel� Veba and Viag� for which no uninterrupted series of returns could be

obtained	 Time ranges from January �th� ���� until September ��th� �����

comprising n � ���� trading days on the Frankfurt stock exchange	 The data

was provided by the Deutsche Finanzdatenbank 
DFDB
 in Karlsruhe	

Figure � shows the fQ�density estimations of the BASF and BMW returns�

which are obtained by solving the di�erential equation 
�
 numerically when

the parameters are replaced by their estimators	 For comparison� normal den�

��



sities with expectations and variances estimated from the returns are super�

imposed	 As for all stocks the well�known leptocurtic behaviour of return dis�

tributions is obvious� not illustrated here	

Figure �� fQ�density estimation 
solid line
 and normal density 
dotted


Figure �� Q�Q�plots for various returns

��



Figure � shows some Q�Q�plots� where the quantiles of the fQ�distributions

with parameters estimated along the lines of section � with � � ���� are plotted

against the returns	 For all returns the estimation algorithm terminated after

less than four iterations	 Figure � shows that the fQ�distribution provides very

good approximations of the true return distributions	

Table �� Empirical results for German stock returns

Company �
 �� �max

BASF �	��� �	��� �
BMW �	��� �	��� �
Continental �	��� �	��� �
Daimler �	��� �	��� �
Deutsche Babcock �	��� �	��� �
Degussa �	��� �	��� �
Bayer �	��� �	��� �
Hoechst �	��� �	��� �
MAN �	��� �	��� �
Karstadt �	��� �	��� �
Linde �	��� �	��� �
Mannesmann �	��� �	��� �
Metallgesellschaft �	��� �	��� �
Preussag �	��� �	��� �
RWE �	��� �	��� �
Schering �	��� �	��� �
Siemens �	��� �	��� �
Thyssen �	��� �	��� �
VW �	��� �	��� �
Kaufhof �	��� �	��� �
Bayr	 Hypo	 �	��� �	��� �
Bayr	 Vereinsbank �	��� �	��� �
Commerzbank �	��� �	��� �
Deutsche Bank �	��� �	��� �
Dresdner Bank �	��� �	��� �
Allianz �	��� �	��� �

��



The theoretical results applied to daily stock returns are summerized in table

�� which reveals several things� The second and third row give the estimates

of the fQ�parameters 
 and �� respectively	 For all stocks� �� is greater than �


which shows that the underlying distributions are slightly positive skewed	 The

last row shows the maximal �nite moments �max � IN given in 
��
	 All stock

returns can be modeled with �nite variance and in most of the cases� even the

third moments exist	 The largest values of �max are obtained for BASF� Bayer

and Hoechst� which are known to be less volatile than the remaining stocks

that make up the DAX	
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