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Optimal vs� Classical Linear

Dimension Reduction

Michael C� R�ohl� Claus Weihs

Lehrstuhl f�ur Computergest�utzte Statistik�
Universit�at Dortmund� D������ Dortmund� Germany

Abstract� We describe a computer intensive method for linear dimension re�
duction which minimizes the classi�cation error directly	 Simulated annealing

Bohachevsky et al	 
���
�� is used to solve this problem	 The classi�cation error
is determined by an exact integration	 We avoid distance or scatter measures
which are only surrogates to circumvent the classi�cation error	 Simulations 
in
two dimensions� and analytical approximations demonstrate the superiority of
optimal classi�cation opposite to the classical procedures	 We compare our pro�
cedure to the well�known canonical discriminant analysis 
homoscedastic case� as
described in Mc Lachlan 
����� and to a method by Young et al	 
����� for the
heteroscedastic case	 Special emphasis is put on the case when the distance based
methods collapse	 The computer intensive algorithm always achieves minimal
classi�cation error	

� Introduction

Classi�cation deals with the allocation of objects to g predetermined groups
G � f�� �� � � � � gg� say� The goal is to minimize the misclassi�cation rate
over all possible future allocations� characterized by the conditional densities
pi	x
 	i � �� �� � � � � g
� The minimal error is the so�called Bayes error 	Mc
Lachlan 	����

� Often we want to reduce the dimension of the classi�cation
problem to one or two dimensions in order to support human imagination
without signi�cantly increasing the misclassi�cation rate� This article deals
with linear combinations of the original variables to achieve this goal
 Lin�
ear Dimension Reduction� The next section reviews the classical approach
based on distance measures and presents the idea of Young et al� 	����

in a way that facilitates such a distance formulation� Section � introduces
computerintensive dimension reduction and simulated annealing� Section �
compares the classical and the computerintensive method�

�



� Classical Linear Dimension Reduction

The intuitive idea is to project the data in a way that maximizes the distance
between the groups �hopefully this will also minimize the misclassi�cation
rate�� The distance measure relates the between�group scatter matrix

SB �

gX
i��

p�i���i � �����i � ���� 	 �� �

gX
i��

p�i��i �
�

to the pooled within�group scatter matrix

SW �

gX
i��

p�i��i� ���

where p�i� �i � 
� �� � � � � g� denotes the apriori probability of the di
erent
groups� �i their means and �i their covariance matrices� The maximal rank
of SB is g�
� If we project on direction a� we have to maximize the quotient

a�SBa

a�SWa
���

by variation of a� The maximum is attained at the eigenvector v� cor�
responding to the largest eigenvalue �� of S��W SB�
Formula ��� is equivalent to

�� ��
a�SBa

a�SW a
�




g � 


gX
i��

��i � ����� ���

where

�i �
a��i

�a�SWa����
and �� �

a���

�a�SWa����
� ���

This expression is easier to analyze�

An idea of Young et al� �
���� incorporates di
erent covariance matrices for
di
erent groups� First we build the matrix

M � ��� � ��j � � � j�g � ��j�� � ��j � � � j�g � ���� ���

where M � Rd�s � s � �g � 
��d � 
� by juxtaposition of the vectors and
matrices� We assume �i �� �� for at least one i � G�

The analogon to ��� is

�� �� a�MM �a �

gX
i��

�a���i � ����
�

� �z �
mean portion

�

gX
i��

dX
j��

�a���j
i � �j

���
�

� �z �
covariance portion

� ���

�



where �j

i denotes the jth column vector of the ith covariance matrix� The
term is divided into a pure mean portion and a pure covariance portion�

We get a similiar result to �� �apart from a di�erent origin� �� in �� and �� in
��	 if all covariance matrices are identical and the variables are transformed
in such a way that �i 
 Id �identity matrix	� This corresponds to

M 
 ��� � ��j � � � j�g � ���� �
	

Further directions can be calculated by means of the eigenvectors of S��W SB
and MM � respectively�

� Computerintensive Dimension Reduction

and Optimization

��� Computerintensive Dimension Reduction

This section applies simulated annealing to the linear dimension reduction�
The algorithm optimizes the entries in the projection matrix� The optimiza�
tion problem is therefore

Minimizef � R
dimred�dim � R

� ��	

projection matrix �� error rate�

where dimred and dim denote the dimension of the lower dimensional space
and the original one� respectively�
We now sketch the simulated annealing algorithm used as an optimization
tool�

Simulated annealing does not need derivatives� a great advantage compared
to gradient methods� It can also be used if the function values are dis�
crete� On the other hand you need more function evaluations than common
gradient algorithms�

The computerintensive method achieves minimal misclassi�cation error if
adequately implemented�

��� Simulated Annealing

The freezing and crystallizing of liquids overcomes local energy minima� This
physical strategy serves as the prototype for a computer program� Simulated
Annealing �Bohachevsky ���
�		� To model the natural procedure� we need
a con�guration space �a discrete or continous domain	� a mechanism which
describes how to get from one con�guration to another and a cooling schedule
describing how to decrease the temperature T �T� � T� � � � � � Tn �
� � � 	� At each temperature � beginning at an optional con�guration x� �
we start a markov chain� Each trial point xp is accepted with probability
exp���f�xp	 � f�x�		�T 	� After a number of steps in the markov chain�

�



the temperature will be decreased� for example T
n
� �T

n�� �� � � � ���
and a new chain will be created �the starting point of the new chain is the
end point of the last one� see Figure ��� In a concrete optimization� the
temperature T is not a physical quantity but an abstract parameter which
controls the optimization�
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Figure �� Flow chart of the simulated annealing algorithm�

In our application of simulated annealing� the function to be optimized is the
misclassi�cation rate� In each optimization step we calculate the error by
exact integration using the conditional densities� that is for each group i � G�
we determine the regions where at least one of the other conditional densities
is greater� We integrate pi�x� over these regions and get the misclassi�cation
error conditional on this group i� The total error is calculated as an average
over all groups weighted by their apriori probability�

� Comparison with the Classical Approach

The optimization algorithm introduced in section � is now compared to the
classical approach� The classical procedures do not provide a direct link to
the misclassi�cation rate �that is� from a small perturbation of the direction
a� you can not analytically derive the corresponding variation in the misclas�
si�cation rate�� In fact� in some special cases �depending on constellation
of the groups� form of the covariance matrices�� a signi�cant di�erence be�
tween the two procedures can be detected� Apart from the pure comparison�
emphasis is put on the question when distance based 	analytical	 methods
collapse� In these cases only the algorithm in section � supplies valid results�






��� Equal Covariance Matrices and g � � Groups

In formula ���� assume

j�i � ��j � j�j � ��j �j �� i� ��	�

for one i
 Then the sum has one dominant term which is maximized at
the cost of the other summands� because the distances in ��� are squared

Therefore we get the approximation

�� ��
a�SBa

a�SW a
�

gX
i��

��i � ���� � �

a�
a
���i � ����a��� ����

Maximization yields the value

��i � ����
����i � ��� attained at a � 
����i � ���� ����

Henceforth� we project on a direction that is dominated by �i
 The other
means are only incorporated by ��
 This behaviour leads to suboptimality


To get a better understanding� we conduct some simulations
 First� we
transform the common covariance matrix 
 by the transformation xnew ��

��xold to the identitymatrix Id
 This does not increase the misclassi�cation
rate
 Because of the symmetry induced by three groups� it su�ces to take
d � �
 Therefore we set

�� � �	� 	��� �� � ��� 	�� and �� � �x� y��� ����

Mean �� only determines the origin and �� is somewhat arbitrary
 A vari�
ation of �� would only alter the misclassi�cation level� not the qualitative
conclusion
 The third mean contains two variables x and y
 This two di�
mensional surface can be conveniently plotted
 Once again because of the
symmetry of the constellation� it is enough to regard the positive quadrant

We take the range 	 � x � ��� and 	 � y � ���


Figures � and � show the misclassi�cation rates of the classical and the
optimized procedure� respectively �simulated annealing given the means and
the covariance matrix�
 Note the di�erent scales of the two graphs


The results of the classical procedure are qualitatively similiar in the �front�
range �	 � x � ��� and 	 � y � ����� whereas there is a signi�cant di�erence
in the �back�
 We now analyze the reason of the �mountain ridge� in the
classical case in more detail
 To achieve this goal� we calculate SB


A special situation arises� if the means of the three groups constitute a
regular triangle
 For that reason� we reparametrize the third mean� �� �
�� � �x�

p
� � �y�
 Then we have

SB �
�

�

�
��x� �

p
��x� �x�yp

��x� �x�y ��y � � � �
p
��y

�
� ����

�
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Figure �� Misclassi�cation rate classical procedure�

The special case �x � � yields

a�SBa

a�SWa
�

�

�

n
	 � a�

�

�

�y �

p
�
� � �

�o
� 
	�


and after maximization we get the following distinction of cases�


�y �
p
�
� � � � �y �

p
� � a� � �� a� � 	 
	�



�y �
p
�
� � � � � � �y �

p
� � a� � 	� a� � �


�y �
p
�
� � � � �y � � � a�� a� arbitrary�

The mean �� � 
	�
p
�
� results in a singularity 
projection vector a �


a�� a�

� not de�ned
� But this mean is realized with probability zero by

the empirical mean value and is therefore unimportant� But important is
the fact that the projection behaviour �turns over� at this value� Up to
�y �

p
�� the projection is onto the x�axis 
like the optimized procedure
�

then onto the y�axis� This causes a higher misclassi�cation rate compared
to the optimized procedure� because the projected �rst group coincides with
the second one� while the optimized method still projects onto the x�axis�
The classical approach even more often fails for more than g � � groups�
because there are more critical constellations�

�
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Figure �� Misclassi�cation rate optimized procedure�

��� Unequal Covariance Matrices and g � � Groups

The central formula ���

	� �
 a�MM �a 


gX

i��

�a���i � ����
� �

gX

i��

dX

j��

�a���j

i � �j
�
��� �
��

yields more possibilities for dominant terms than ����
For example� assume

j�j
i � �j

�
j � j�j�

i� � �j�

�
j � �i�� j �� �
 �i� j�� �
��

true for one i� then only the jth column in the ith group di�ers from the
pendant in the �rst group� Thus we get

	� � �a���j

i � �j
�
���� �
��

The inequality of Schwarz supplies the maximum at

a � ��j
i � �j

�
�� ����

This solution uses only a small part of the available information and we
therefore get � once again � a di�erence between the optimized and classical
solution�

A small simulation study in two dimensions demonstrates the key issue� The
means are now �xed at

�� 
 ��� ���� �� 
 ��� ��� and �� 
 �
� 
��� ��
�

�



The covariance matrices are

�� � I�� �� � I� and �� � diag�� � x� � � y�� ����

We take again the range 	 � x � ��
 and 	 � y � ��
� This time� the
graphical representation does not show the constellation of the groups� but
in a more abstract manner the variance of the third group� The 
gures � and

 plot the misclassi
cation rate of the classical and optimized procedure�
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Figure �� Misclassi
cation rate classical procedure�

The di�erences are signi
cant� especially if y is large and x small� In this
case� the classical method projects onto the y�axis and the 
rst and second
group collapse� The optimized procedure still projects onto the x�axis�

In a concrete application� it is useful to compare the classical procedure with
the optimized method in one dimension� If the results di�er signi
cantly�
we have to use the optimized approach in higher dimensions �even if the
computational burden is higher�� otherwise we use the idea of Young et al�
������� if the covariance matrices are unequal �especially if d� � ���

� Conclusions

After we introduced the classical discriminant analysis based on scatter ma�
trices� we discussed a less well�known approach of Young et al� ������ which
we have reformulated using a distance measure�

These classical procedures were compared to an optimized procedure based
on simulated annealing by means of simulations and analytical approxima�
tions� The di�erences and drawbacks of the classical approach were dis�
cussed in detail� The di�erences for more than two groups can be severe� It
is exactly this case that is mainly ignored in the literature�

�



0.5
1

1.5
2

2.5
0.5

1
1.5

2
2.5

41.5

42

42.5

43

43.5

44

x

y

Figure �� Misclassi�cation rate optimized procedure�

This article clearly demonstrates the power of computerintensive methods�
They help the statistician to concentrate on the real problem at hand� here
the minimization of the misclassi�cation rate�
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