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Optimal crossover designs in a model

with self and mixed carryover e�ects

by J. Kunert and J. Stufken

Universit�at Dortmund and Iowa State University

Abstract

We consider a variant of the usual model for crossover designs with carryover

e�ects. Instead of assuming that the carryover e�ect of a treatment is the

same regardless of the treatment in the next period, the model assumes that

the carryover e�ect of a treatment on itself is di�erent from the carryover

e�ect on other treatments. For the traditional model optimal designs tend to

have pairs of consecutive identical treatments; for the model considered here

they tend to avoid such pairs. Practitioners have long expressed reservations

about designs that exhibit such pairs, resulting in reservations about the

traditional model. Our results provide support for these reservations if the

carryover e�ect of a treatment depends also on the treatment in the next

period.

Keywords: Balance for carryover e�ects; Balanced Block Design; Generalized

Latin Square; Optimal Design; Universal Optimality

1 Introduction

The traditional model for crossover designs, see e.g. Hedayat and Afsarinejad

(1978), assumes that each treatment has a carryover e�ect which does not

interact with the direct e�ect of the treatment in the following period. This

has often been criticized as a weakness of the model, see for instance Kunert

(1987). To cope with this problem Sen and Mukerjee (1987) introduced a
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model with interactions between direct and carryover e�ects, such that each

treatment has a di�erent carryover e�ect for every treatment in the next

period. However, this model contains too many parameters to be practically

useful. A compromise was proposed by Hedayat and Afsarinejad (2000) who

assume that each treatment A has two di�erent carryover e�ects, one that is

valid if treatment A is followed by A itself, and one that is valid if it is followed

by any other treatment. Following their terminology, we will call these e�ects

self and mixed carryover e�ects, respectively. In the case where the number

of treatments equals the number of periods, we show that neighbor balanced

generalized Latin squares are universally optimal in this model, even for large

numbers of subjects. Note that in the traditional model, this is only true

for small numbers of subjects (Kunert, 1984). If the number of periods is

smaller than the number of treatments, then generalized Youden designs with

neighbor balance are universally optimal over all designs. This again does

not hold in the traditional model, see Stufken (1991) and Kushner (1998).

Even if the number of periods gets larger than the number of treatments,

the optimal designs in the model with mixed and self carryover e�ects do

not have pairs of consecutive identical treatments. The strongly balanced

generalized Latin squares introduced by Cheng and Wu (1980) are no longer

optimal. This is di�erent from the model with full interaction, see Sen and

Mukerjee (1987).

The optimality proofs of this paper are done with the help of Kunert and

Martin's (2000) generalization of the method introduced by Kushner (1997).
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2 The model and a tool for �nding optimal

designs

One important application of crossover designs is in sensory trials, when

assessors examine several products, one after the other. If, for instance, there

is one product which is very bitter, then experience shows that assessors tend

to rate the next product that they assess after the extremely bitter one with

a lower than normal value of bitterness. Therefore the bitter product has

a carryover e�ect. If, however, an assessor gets this bitter product twice in

a row, then he/she usually gives about the same rating again. Thus, the

carryover e�ect of the product is di�erent when there is another product

in the next period. A similar e�ect can be observed in other examples of

crossover designs. A mathematical derivation which shows why the carryover

e�ect should be di�erent if a treatment is followed by itself can be found in

section 10.3.2 of Senn (1993).

Therefore, we consider the following model. We assume that the response

y

u;r

of subject u at period r, 1 � u � n; 1 � r � p can be written as

y

u;r

= �

u

+�

r

+�

d(u;r)

+�

d(u;r�1)

(1�Æ

d(u;r);d(u;r�1)

)+�

d(u;r�1)

Æ

d(u;r);d(u;r�1)

+e

u;r

;

(1)

where

d(u; r) is the treatment assigned to subject u in period r (with d(u; 0) = 0),

�

u

is the e�ect of subject u,

�

r

is the e�ect of period r,

�

i

is the direct e�ect of treatment i,

�

j

is the mixed carryover e�ect of treatment j (with �

0

= 0),

�

j

is the self carryover e�ect of treatment j (with �

0

= 0),
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Æ

i;j

is 1 if i = j, and 0 if i 6= j

and

e

u;r

, 1 � u � n; 1 � r � p are independent identically distributed errors

with expectation 0 and unknown variance �

2

.

The set of all designs for t treatments, n subjects and p periods is called




t;n;p

: In what follows, we restrict attention to the case p > 2 and t > 2. The

case p = 2 is studied by Hedayat and Afsarinejad (2000). The case t = 2 will

be reported elsewhere.

We de�ne the matrices U = I

n


 1

p

, P = 1

n


 I

p

, T

d

, M

d

and S

d

as the

design-matrices of the subject, period, direct treatment, self carryover and

mixed carryover e�ects, respectively. Then the information matrix for the

estimation of direct treatment e�ects can be written as

C

d

= T

T

d

!

?

([P;U;M

d

;S

d

])T

d

;

where for a matrix F the expression !

?

(F) = I�F(F

T

F)

�

F

T

is the projec-

tion on the space of all vectors which are orthogonal to F

T

; the transpose of

F.

We are interested in optimal designs for the estimation of the direct treat-

ment e�ects. It follows from Kiefer's (1975) Proposition 1 that a design d

�

for which the information matrix C

d

�

is completely symmetric and which

maximizes the trace of C

d

over all d 2 


t;n;p

is optimal under all practically

useful optimality criteria - it is universally optimal. Complete symmetry of

a matrix F means that it can be written as F = aI + b11

T

, where a and b

are real numbers.

As in Kunert (1983) we have

C

d

� T

T

d

!

?

([U;M

d

;S

d

])T

d
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in the Loewner-sense, with equality if and only if

T

T

d

!

?

([U;M

d

;S

d

])P = 0 (2)

It can be shown easily that equation (2) holds if in each period (a) all treat-

ments appear equally often, (b) the mixed carryover e�ects of all treatments

appear equally often and (c) the self carryover e�ects of all treatments appear

equally often.

As in Kunert and Martin (2000) we can write

T

T

d

!

?

([U;M

d

;S

d

])T

d

= C

d11

� C

d12

C

�

d22

C

T

d12

�

(C

d13

� C

d12

C

�

d22

C

d23

)(C

d33

� C

T

d23

C

�

d22

C

d23

)

�

(C

d13

� C

d12

C

�

d22

C

d23

)

T

;

where

C

d11

= T

T

d

T

d

�

1

p

T

T

d

UU

T

T

d

; C

d12

= T

T

d

M

d

�

1

p

T

T

d

UU

T

M

d

;

C

d13

= T

T

d

S

d

�

1

p

T

T

d

UU

T

S

d

; C

d22

=M

T

d

M

d

�

1

p

M

T

d

UU

T

M

d

;

C

d23

=M

T

d

S

d

�

1

p

M

T

d

UU

T

S

d

; and C

d33

= S

T

d

S

d

�

1

p

S

T

d

UU

T

S

d

:

For the standard model, where the self and mixed carryover e�ects are

assumed identical, the following properties of designs have proved to be useful

for optimality.

De�nition 1

A design d 2 


t;n;p

is called

(i) a balanced block design for the direct treatment e�ects (with subjects as

blocks), if every treatment appears equally often in the design, if every

treatment appears for each subject either [p=t] or [p=t]+1 times, and if

the number of subjects where treatments i and j both appear [p=t] + 1

times is the same for every i 6= j. Here [p=t] denotes the largest integer
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not larger than p=t. If p=t is an integer, then for a balanced block

design d each treatment must appear for each subject p=t times, and d

is called uniform on the subjects.

(ii) a balanced block design in the carryover e�ects (with subjects as blocks),

if the �rst p� 1 periods of d are a balanced block design for the direct

treatments e�ects in 


t;n;p�1

.

(iii) uniform on the periods, if every treatment appears in every period

exactly n=t times.

(iv) a generalized Youden design, if d is a balanced block design for the

direct treatment e�ects with subjects as blocks and uniform on the

periods. If d 2 


t;n;p

is a generalized Youden design and p is divisible

by t then d is called a generalized Latin square.

(v) balanced for carryover e�ects, if every treatment is immediately pre-

ceded by every other treatment equally often, but never by itself.

(vi) strongly balanced for carryover e�ects, if every treatment is immediately

preceded by every treatment (including itself) equally often.

It is clear that if a design d is balanced for carryover e�ects, the self

carryover e�ects never appear. Consequently, S

d

is a matrix of zeroes, and

our model coincides with the traditional model. For such a design we further

have that

T

T

d

M

d

=

n(p� 1)

t(t� 1)

2

6

6

6

6

6

6

6

6

4

0 1 � � � 1

1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

1 � � � 1 0

3

7

7

7

7

7

7

7

7

5

: (3)
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If d is a balanced block design for the direct treatment e�ects, then we have

that C

d11

is completely symmetric. C

d22

is completely symmetric if d is a

balanced block design for the carryover e�ects that has no pairs of consecutive

identical treatments. Any design that has no identical pairs of consecutive

treatments has C

d13

, C

d23

and C

d33

completely symmetric, because they are

matrices of zeroes.

Therefore, if a design d

�

is a balanced block design for direct and carryover

e�ects and is balanced for carryover e�ects, then C

d

�

11

, C

d

�

13

, C

d

�

22

, C

d

�

23

, and

C

d

�

33

are completely symmetric. If, additionally, T

T

d

�

UU

T

M

d

�

is completely

symmetric, it follows from (3) that C

d

�

12

is also completely symmetric.

De�nition 2

A design d

�

2 


t;n;p

is called totally balanced if

(i) d

�

is a generalized Youden design,

(ii) d

�

is a balanced block design for the carryover e�ects,

(iii) d

�

is balanced for carryover e�ects, and

(iv) the number of subjects where both treatments i and j appear [p=t] + 1

times and treatment j does not appear in the last period is the same

for every pair i 6= j.

We will now argue that C

d

�

12

is completely symmetric for a totally bal-

anced design d

�

. If p is not divisible by t, then [(p� 1)=t] = [p=t]. Therefore,

in the totally balanced design d

�

the mixed carryover e�ect of each treatment

appears in each subject either [p=t] or [p=t] + 1 times. This implies that a

treatment does not appear for the last period of any subject where it appears

only [p=t] times. Then the (i; j)-th element of T

T

d

�

UU

T

M

d

�

, i 6= j equals

(n� x

1

� x

2

� x

3

)[p=t]

2

+ (x

2

+ x

3

)[p=t]([p=t] + 1) + x

1

([p=t] + 1)

2

:
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Here x

1

is the number of subjects where both treatment i and j appear

[p=t] + 1 times and treatment j does not appear in the last period, x

2

is

the number of subjects where treatment i appears [p=t] + 1 times and the

mixed carryover e�ect of treatment j appears [p=t] times, x

3

is the number

of subjects where treatment i appears [p=t] times and the mixed carryover

e�ect of treatment j appears [p=t] + 1 times.

Condition (iv) says that x

1

is the same for all i 6= j. For d

�

the number of

subjects where treatment i appears [p=t]+1 times does not depend on i and it

equals x

1

+x

2

. Consequently, x

2

does also not depend on i or j. Similarly, the

number of subjects where the mixed carryover e�ect of treatment j appears

[p=t] + 1 times does not depend on j and it equals x

1

+ x

3

. It follows that x

3

also does not depend on i or j and all o�-diagonal elements of T

T

d

�

UU

T

M

d

�

are the same. This implies that all o�-diagonal elements of C

d

�

12

are equal.

Since 1

T

C

d12

= 0

T

for any design d, it follows that all diagonal elements of

C

d

�

12

are equal and that C

d

�

12

is completely symmetric.

If p is divisible by t, then treatment i appears p=t times for every sub-

ject and, therefore, condition (iv) trivially holds for every generalized Latin

square. Further, the (i; j)-th entry of T

T

d

�

UU

T

M

d

�

equals (n� n=t)(p=t)

2

+

np(p=t � 1)=t

2

, because the mixed carryover e�ect of treatment j appears

p=t � 1 times for those n=t subjects where treatment j appears in the last

period and p=t times for all other subjects. Therefore, T

T

d

�

UU

T

M

d

�

is a

multiple of 1

t

1

T

t

and is completely symmetric.

In all, we have for a totally balanced design d

�

that all matrices C

d

�

ij

,

1 � i � j � 3; are completely symmetric.

We de�ne B

t

= I

t

�

1

t

1

t

1

T

t

and c

dij

= tr (B

t

C

dij

B

t

) for 1 � i � j � 3.

Then we can literally translate the proof of Proposition 2 of Kunert and
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Martin (2000) and for every design d 2 


t;n;p

we get

tr

�

T

T

d

!

?

([U;M

d

;S

d

])T

d

�

� q

�

d

; (4)

where q

�

d

is de�ned by the following four cases:

(i) If c

d22

c

d33

� c

2

d23

> 0, then

q

�

d

= c

d11

�

c

2

d12

c

d33

� 2c

d12

c

d13

c

d23

+ c

2

d13

c

d22

c

d22

c

d33

� c

2

d23

:

(ii) If c

d22

c

d33

� c

2

d23

= 0 and c

d22

> 0, then q

�

d

= c

d11

� c

2

d12

=c

d22

.

(iii) If c

d22

= 0 and c

d33

> 0, then q

�

d

= c

d11

� c

2

d13

=c

d33

.

(iv) If c

d22

= c

d33

= 0, then q

�

d

= c

d11

.

In equation (4) we have equality if all C

dij

, 1 � i � j � 3; are completely

symmetric.

In all, it follows that

tr C

d

= q

�

d

; (5)

if equation (2) holds and if all C

dij

, 1 � i � j � 3; are completely symmetric.

Our aim is to �nd a design d for which (5) holds for the maximum possible

value of q

d

�

.

Let T

du

,M

du

and S

du

be the design matrix of the direct treatment e�ects,

mixed carryover e�ects and self carryover e�ects in block u, 1 � u � n. By

writing

c

(u)

d11

= tr(T

T

du

T

du

�

1

p

T

T

du

1

p

1

T

p

T

du

);

c

(u)

d12

= tr(T

T

du

M

du

�

1

p

T

T

du

1

p

1

T

p

M

du

);

c

(u)

d13

= tr(T

T

du

S

du

�

1

p

T

T

du

1

p

1

T

p

S

du

);

c

(u)

d22

= tr(B

t

(M

T

du

M

du

�

1

p

M

T

du

1

p

1

T

p

M

du

));

c

(u)

d23

= tr(B

t

(M

T

du

S

du

�

1

p

M

T

du

1

p

1

T

p

S

du

));

and
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c

(u)

d33

= tr(B

t

(S

T

du

S

du

�

1

p

S

T

du

1

p

1

T

p

S

du

));

we get that c

dij

=

P

n

u=1

c

(u)

dij

, for 1 � i � j � 3. The c

(u)

dij

are determined

by the sequence of the treatments applied to subject u. We say that two

sequences are equivalent, if one is derived from the other by relabelling of

treatments. It is obvious that two subjects with equivalent sequences have

the same c

(u)

dij

.

Therefore we can de�ne equivalence classes of sequences, such that c

(u)

dij

is

the same for all u in a given class. For given p and t there are K, say, possible

classes and we denote the proportion of sequences from the `-th class in a

given design d 2 


t;n;p

by �

d`

. We also de�ne c

ij

(`) = c

(u

`

)

dij

, where u

`

is any

one sequence in the `-th class. Then we get

c

dij

= n(

K

X

`=1

�

d`

c

ij

(`))

for 1 � i � j � 3. Therefore, the �

d`

determine q

�

d

. However, q

�

d

is a

nonlinear function of the �

d`

. This makes maximization of q

�

d

through the

determination of optimal weights �

d`

diÆcult. The problem is linearized by

introducing the function

q

d

(x; y) = c

d11

+ 2xc

d12

+ x

2

c

d22

+ 2yc

d13

+ y

2

c

d33

+ 2xyc

d23

Note that q

d

(x; y) � q

�

d

and there is at least one point (x

�

; y

�

), say, such

that q

d

(x

�

; y

�

) = q

�

d

. This follows from Proposition 3 of Kunert and Martin

(2000).

For the `-th equivalence class, 1 � ` � K, we de�ne

h

`

(x; y) = c

11

(`) + 2xc

12

(`) + x

2

c

22

(`) + 2yc

13

(`) + y

2

c

33

(`) + 2xyc

23

(`)

and get that q

d

(x; y) = n

P

K

u=1

�

d`

h

`

(x; y). Therefore, q

d

(x; y) is a linear

combination of the h

`

(x; y).

We then can use
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Proposition 1

For a design d

�

2 


t;n;p

consider a point (x

d

�

; y

d

�

), for which q

d

�

(x

d

�

; y

d

�

) =

q

�

d

�

. If nh

`

(x

d

�

; y

d

�

) � q

d

�

(x

d

�

; y

d

�

) = q

�

d

�

for every 1 � ` � K, then for every

f 2 


t;n;p

we have tr C

f

� q

�

d

�

.

Proof

See Kunert and Martin (2000), Proposition 4. 2

We have q

d

�

(x

d

�

; y

d

�

)=n = max

`

h

`

(x

d

�

; y

d

�

) for the design d

�

of Proposi-

tion 1 and therefore

q

d

�

(x

d

�

; y

d

�

) = min

x;y

q

d

�

(x; y) = n min

x;y

max

`

h

`

(x; y):

It follows that n min

x;y

max

`

h

`

(x; y) is an upper bound for tr C

d

for any

d 2 


t;n;p

.

3 Determination of min

x;y

max

`

h

`

(x; y).

In order to calculate h

`

for the `-th equivalence class, we have to calculate

the c

ij

(`). Therefore, we take any sequence u

`

from the `-th class and de�ne

the quantities

n

j

(`) is the number of appearances of treatment j in u

`

,

~n

j

(`) is the number of appearances of the mixed carryover e�ect of j in

u

`

, i.e. the number of appearances of treatment j followed by any other

treatment,

t

pj

(`) is the number of appearances of treatment j in the last period of

the sequence u

`

.

It is clear that there is exactly one j such that t

pj

(`) = 1, all other t

pj

(`)

are 0. Further, the number of times that treatment j is immediately followed

by itself is n

j

(`)� ~n

j

(`)� t

pj

(`).

11



With these de�nitions it is easy to derive that

c

11

(`) = p�

1

p

X

j

n

2

j

(`)

c

12

(`) = �

1

p

X

j

n

j

(`)~n

j

(`)

c

22

(`) =

t� 1

t

X

j

~n

j

(`)�

1

p

X

j

~n

2

j

(`) +

1

pt

(

X

j

~n

j

(`))

2

c

13

(`) = p� 1�

X

j

~n

j

(`)�

1

p

X

j

n

j

(`)

�

n

j

(`)� ~n

j

(`)� t

pj

(`)

�

c

23

(`) = �

1

p

X

j

~n

j

(`)

�

n

j

(`)� ~n

j

(`)� t

pj

(`)

�

+

1

pt

�

X

j

~n

j

(`)

��

p� 1�

X

j

~n

j

(`)

�

c

33

(`) =

t� 1

t

�

p� 1�

X

j

~n

j

(`)

�

�

1

p

X

j

�

n

j

(`)� ~n

j

(`)� t

pj

(`)

�

2

+

1

pt

�

p� 1�

X

j

~n

j

(`)

�

2

:

Note that although the n

j

(`), ~n

j

(`) and t

pj

(`) depend on the choice of the

representative sequence u

`

, the c

ij

(`) do not depend on u

`

but are the same

for all u

`

in a given equivalence class.

Inserting this into h

`

(x; y), we �nd that h

`

(x; y) for y = �1 simpli�es to

h

`

(x;�1) =

1

pt

�

(p� 1)(t� 1)

+(

X

j

~n

j

(`))(p(t� 1) + 2� 2(p� 1)x+ p(t� 1)x

2

)

�(

X

j

~n

2

j

(`))t(1 + x)

2

(6)

+(

X

j

~n

j

(`))

2

(1 + x)

2

�(

X

j

~n

j

(`)t

pj

(`))2t(1 + x)

�

:

It is interesting to note that h

`

(x;�1) does not depend on the n

j

(`).

We start with a technical proposition

12



Proposition 2

Restrict attention to t � 3 and 3 � p � 2t, i.e. there are numbers a

�

2 f0; 1g

and b

�

2 f0; 1; :::; t� 1g, such that p � 1 = a

�

t + b

�

. Further let 0 < x < 1

and y = �1. Then h

`

(x;�1) is maximal if the sequence class ` is such that

(i)

P

j

~n

j

(`) = a

�

t + b

�

,

(ii) all ~n

j

(`) 2 fa

�

; a

�

+ 1g; and

(iii)

P

j

~n

j

(`)t

pj

(`) = a

�

:

Proof

The maximization is done in two steps. Firstly, we keep

P

j

~n

j

(`) �xed and

try to maximize h

`

(x;�1) by varying

P

j

~n

2

j

(`) and

P

j

~n

j

(`)t

pj

(`). It can be

seen in (6) that h

`

(x;�1) is maximal if both

P

j

~n

2

j

(`) and

P

j

~n

j

(`)t

pj

(`) are

as small as possible.

Note that

P

j

~n

j

(`) � p � 1 < 2t. Therefore there are numbers a(`) 2

f0; 1g and b(`) 2 f0; 1; :::; t � 1g, such that

P

j

~n

j

(`) = a(`)t + b(`). It is

obvious then, that

P

j

~n

2

j

(`) is minimal if b(`) of the ~n

j

(`) equal a(`) + 1

and t � b(`) of them are a(`). Also,

P

j

~n

j

(`)t

pj

(`) = ~n

r

(`), where r is the

treatment appearing in the last period of the representative sequence u

`

.

Clearly, this is minimized if ~n

r

(`) = 0.

So simultaneous minimization of

P

j

~n

2

j

(`) and

P

j

~n

j

(`)t

pj

(`) is not always

possible. We therefore have to consider two cases.

Case 1:

P

j

~n

j

(`) � t� 1; i.e. a(`) = 0:

In this case we can simultaneously minimize

P

j

~n

2

j

(`) and

P

j

~n

j

(`)t

pj

(`).

We get

P

j

~n

2

j

(`) �

P

j

~n

j

(`) = b(`); and

P

j

~n

j

(`)t

pj

(`) � 0: Inserting these

values we get

h

`

(x;�1) �

1

pt

�

(p� 1)(t� 1)

13



+b(`)

�

pt� p� t+ 2� 2(p+ t� 1)x+ (pt� p� t)x

2

�

+b

2

(`)(1 + x)

2

�

= �

1

(`);

say. This bound is maximal if b(`) is as large as possible, i.e. if b(`) =

minfp� 1; t� 1g = q

1

; say.

To see this, we rewrite

pt� p� t + 2 � 2(p+ t� 1)x+ (pt� p� t)x

2

= (pt� p� t)(1� x)

2

+ 2 + 2(pt� 2p� 2t + 1)x

� 2 + 2(pt� 2p� 2t+ 1)x:

If p � 4, then pt � 2p � 2t + 1 � 2t � 7 � �1 as t � 3 and therefore

2 + 2(pt� 2p� 2t+ 1)x � 2� 2x � 0, as 0 < x < 1. Similarly, if t � 4, then

pt�2p�2t+1 � 2p�7 � �1 as p � 3 and, again, 2+2(pt�2p�2t+1)x � 0.

For t � 4 or p � 4, it hence follows that �

1

(`) is increasing in b(`).

If, however, p = t = 3, then

�

1

(`) =

1

9

(4 + b(`)(5� 10x+ 3x

2

) + b

2

(`)(1 + x)

2

):

Some algebra shows that then �

1

(`) is maximal if b(`) = 2 = q

1

.

Therefore, whenever

P

j

~n

j

(`) � t� 1 we have

h

`

(x;�1) �

1

pt

�

(p� 1)(t� 1)

+q

1

�

pt� p� t+ 2� 2(p+ t� 1)x+ (pt� p� t)x

2

�

(7)

+q

2

1

(1 + x)

2

�

= �

�

1

;

say.

If p � t the problem is solved and formula (7) gives an upper bound for

h

`

(x;�1), which is attained if ` ful�lls the conditions (i), (ii) and (iii) of the

proposition.

14



If, however, p > t, then it is possible to have

P

j

~n

j

� t. Does this lead

to a larger upper bound for h

`

(x;�1)?

Case 2: a(`) = 1, i.e.

P

j

~n

j

= t+ b(`).

In this case the two tasks, minimizing

P

j

~n

2

j

(`) and minimizing

P

j

~n

j

(`)t

pj

(`);

are con
icting. Therefore we have two possibilities to derive an upper bound.

First possibility: Minimize

P

j

~n

2

j

(`) by choosing b(`) of the ~n

j

(`) equal

to 2 and t � b(`) equal to 1. It follows that

P

j

~n

2

j

(`) � t + 3b(`) and

P

j

~n

j

(`)t

pj

(`) � 1. Therefore,

h

`

(x;�1) �

1

pt

�

(p� 1)(t� 1)

+(t + b(`))(p(t� 1) + 2� 2(p� 1)x + p(t� 1)x

2

)

�(t + 3b(`))t(1 + x)

2

+(t + b(`))

2

(1 + x)

2

�2t(1 + x)

�

= �

2

(`);

say.

Second possibility: Choose one of the ~n

j

(`) = 0, b(`) + 1 of them equal

to 2 and t� b(`)� 2 of them equal to 1. Then

P

j

~n

2

j

(`) � t+ 3b(`) + 2 and

P

j

~n

j

(`)t

pj

(`) � 0. Therefore,

h

`

(x;�1) �

1

pt

�

(p� 1)(t� 1)

+(t + b(`))(p(t� 1) + 2� 2(p� 1)x + p(t� 1)x

2

)

�(t + 3b(`) + 2)t(1 + x)

2

+(t + b(`))

2

(1 + x)

2

�

= �

3

(`);

say. Since x � 0 it holds that (1 + x)

2

� (1 + x) and, hence, �

2

(`) � �

3

(`).

15



Therefore, �

2

(`) is an upper bound for h

`

(x;�1) for every �xed

P

j

~n

j

(`) �

t. To continue, we rewrite

�

2

(`) =

1

pt

�

(p� 1)(t� 1) + pt(t� 1)

�x2tp + x

2

pt(t� 1)

+b(`)(pt� p� t + 2� 2(p+ t� 1)x+ (pt� p� t)x

2

)

+b

2

(`)(1 + x)

2

�

:

Note that case 2 is possible only if p � t + 1 � 4. We �nd from case 1, that

�

2

(`) is increasing in b(`). Therefore, �

2

(`) is maximal if b(`) is as large as

possible, that is if b(`) = p� 1� t.

Therefore, whenever

P

j

~n

j

� t we have

h

`

(x;�1) �

1

pt

�

(p� 1)(t� 1) + pt(t� 1)

�x2tp + x

2

pt(t� 1)

+(p� 1� t)(pt� p� t+ 2� 2(p+ t� 1)x+ (pt� p� t)x

2

)

+(p� 1� t)

2

(1 + x)

2

�

= �

�

2

;

say.

It remains to consider whether in the case p > t it is best to have

P

j

~n

j

=

t� 1, or to have

P

j

~n

j

= p� 1, that is, we have to compare �

�

1

and �

�

2

.

Because q

1

= t� 1 in (7) and because p� 1� t � 0, we have

�

�

2

� �

�

1

�

1

pt

�

(p� 1)(t� 1) + pt(t� 1)

�x2tp + x

2

pt(t� 1)

�(p� 1)(t� 1)

�(t� 1)

�

pt� p� t+ 2� 2(p+ t� 1)x+ (pt� p� t)x

2

�

�(t� 1)

2

(1 + x)

2

�

16



=

1

pt

�

(p� 1)(t� 1)� 2px + (p+ 1)(t� 1)x

2

�

�

1

pt

�

(p� 1)(t� 1)� 2px + 2px

2

�

=

1

pt

�

(p� 1)(t� 1) + 2p(x�

1

2

)

2

�

p

2

�

> 0:

Observe that conditions (i), (ii) and (iii) give h

`

(x;�1) = �

�

2

if p > t: This

completes the proof.2

The sequences that satisfy conditions (i), (ii) and (iii) of Proposition 2

are those that possess the following three properties:

(a) for any 2 treatments, the numbers of times that they appear in the

sequence di�er at most by 1;

(b) for any 2 consecutive periods, the treatments assigned to the periods

are di�erent; and

(c) the treatment in the last period appears the maximum number of times.

If p � t, the only sequences that satisfy these conditions are those that

are equivalent to [ 1; 2; :::; p ]: If p > t, there is more than one equiva-

lence class with sequences that satisfy these conditions. For example, both

[ 1; 2; :::; t; 1; 2; :::; p � t ] and [ 1; 2; :::; t; t � 1; t � 2; :::; 2t � p ] are

�ne if p < 2t: They are clearly not equivalent.

Proposition 3

Assume t � 3 and 3 � p � 2t. If the `

�

-th sequence class is such that

conditions (i), (ii) and (iii) of Proposition 2 hold, then for all x and y we

have

h

`

�

(x; y) � h

`

�

(x

�

;�1);

17



where

x

�

=

8

>

<

>

:

t

tp�t�1

for p � t

tp+2t(p�1�t)

pt(t�1)+(pt�2t�1)(p�1�t)

for p > t

Proof

Case 1: p � t

As seen just before Proposition 3, `

�

must consist of p distinct treatments,

so that n

j

(`

�

)� ~n

j

(`

�

)� t

pj

(`

�

) = 0 for all j. Hence, conditions (i), (ii) and

(iii) imply that

c

11

(`

�

) = p� 1

c

12

(`

�

) = �

p�1

p

c

22

(`

�

) =

(p�1)(tp�t�1)

pt

and

c

13

(`

�

) = c

23

(`

�

) = c

33

(`

�

) = 0:

Therefore,

h

`

�

(x; y) = h

`

�

(x;�1)

= p� 1� 2

p� 1

p

x+

(p� 1)(tp� t� 1)

pt

x

2

and h

`

�

(x;�1) is minimal if x =

t

tp�t�1

= x

�

.

Case 2: p > t.

Condition (i) implies that there are no pairs of consecutive identical treat-

ments in the sequence. Hence, all but one of the n

j

(`

�

) must be equal to

~n

j

(`

�

). Condition (iii) implies that the one j for which n

j

(`

�

) = ~n

j

(`

�

) + 1

has n

j

(`

�

) = a

�

+1 = 2. Then, condition (ii) implies that all n

j

(`

�

) 2 f1; 2g,

that

P

j

n

2

j

(`

�

) = 4(p � t) + 1(2t � p) and that

P

j

n

j

(`

�

)~n

j

(`

�

) = 4(p � 1 �

t) + 2 + 1(2t� p).

Therefore

c

11

(`

�

) = p�

1

p

(4(p� t) + (2t� p))

18



=

p

2

� 3p+ 2t

p

c

12

(`

�

) = �

1

p

(4(p� t� 1) + 2 + (2t� p))

= �

p + 2(p� 1� t)

p

c

22

(`

�

) =

t� 1

t

(p� 1)�

1

p

(4(p� 1� t) + 1 + (2t� p)) +

(p� 1)

2

pt

=

pt(t� 1) + (pt� 2t� 1)(p� 1� t)

pt

while

c

13

(`

�

) = c

23

(`

�

) = c

33

(`

�

) = 0:

It follows that

h

`

�

(x; y) = h

`

�

(x;�1)

=

p

2

� 3p+ 2t

p

� 2

p+ 2(p� 1� t)

p

x

+

pt(t� 1) + (pt� 2t� 1)(p� 1� t)

pt

x

2

and h

`

�

(x;�1) is minimal if

x =

tp + 2t(p� 1� t)

pt(t� 1) + (pt� 2t� 1)(p� 1� t)

= x

�

:2

Proposition 4

Assume t � 3 and 3 � p � 2t. If the `

�

-th sequence class is such that

conditions (i), (ii) and (iii) of Proposition 2 hold, then

min

x;y

max

`

h

`

(x; y) = h

`

�

(x

�

;�1);

where x

�

is as in Proposition 3.
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Proof

Case 1: p � t

Here, x

�

= t=(tp� t� 1) and, therefore, 0 � x

�

� 1. From Proposition 2

it follows that

h

`

�

(x

�

;�1) = max

`

h

`

(x

�

;�1) � min

x;y

max

`

h

`

(x; y):

Conversely, for all x; y we have that

max

`

h

`

(x; y) � h

`

�

(x; y) � h

`

�

(x

�

;�1);

where the last inequality follows from Proposition 3.

Case 2: p > t

Then

x

�

=

tp + 2t(p� 1� t)

pt(t� 1) + (pt� 2t� 1)(p� 1� t)

:

As p� 1� t � 0 it follows that x

�

� 0.

We also have that

pt(t� 1) + (pt� 2t� 1)(p� 1� t)� tp� 2t(p� 1� t)

= p

2

t� 6pt� 2p+ 2t

2

+ 7t+ 3:

As the right hand side is increasing in p and p � t it follows that

pt(t� 1) + (pt� 2t� 1)(p� 1� t)� tp� 2t(p� 1� t)

� t

3

� 6t

2

� 2t+ 2t

2

+ 7t+ 3

= t(t� 2)

2

+ t+ 3 > 0:

Therefore x

�

< 1. The rest of the proof works as in Case 1. 2

4 Optimal designs

If we want to determine a universally optimal design d

�

, then we have to

ensure that C

d

�

is completely symmetric, that d

�

maximizes the upper bound

20



q

�

d

of the trace of C

d

, and that q

�

d

�

= tr C

d

�

. The results of Section 3 give

conditions on how to maximize q

�

d

. In the following theorem we give a set of

designs which also ful�ll the other two conditions.

Theorem 1

For t � 3 and 3 � p � 2t; if a totally balanced design d

�

2 


t;n;p

exists, then

d

�

is universally optimal over 


t;n;p

:

Proof

For a design that is balanced for carryover e�ects we have that there are

no pairs of consecutive identical treatments and therefore no self carryover

e�ects in the design. Furthermore, in d

�

each treatment appears exactly n=t

times in each period. This implies that the direct e�ects of all treatments

appear equally often in each period. Additionally, the mixed carryover e�ects

of all treatments appear 0 times in period 1 and exactly n=t times in periods

2 to p. Therefore, equation (2) holds and

C

d

�

= T

T

d

�

!

?

([U;M

d

�

;S

d

�

])T

d

�

:

To ensure that tr C

d

�

= q

�

d

�

, it therefore suÆces to show that all C

d

�

ij

are

completely symmetric. Following De�nition 2 we have already shown that

this holds for the design d

�

.

The complete symmetry of all C

d

�

ij

, 1 � i � j � 3 also implies that

T

T

d

�

!

?

([U;M

d

�

;S

d

�

])T

d

�

is completely symmetric and, therefore, that C

d

�

is

completely symmetric.

To complete the proof it suÆces to show that the design d

�

maximizes

q

�

d

over 


t;n;p

. This, however, is done by applying Propositions 1, 3 and

4, if we note that with d

�

all subjects receive a treatment sequence that

is either equivalent to [ 1; 2; :::; p ] (if p � t), or has the same c

(u)

dij

as

[ 1; 2; :::; t; 1; 2; :::; p� t ] (if p > t). 2

21



Corollary 1

If p = t or p = 2t and a generalized Latin square d

�

exists in 


t;n;p

which is

balanced for carryover e�ects, then d

�

is universally optimal.

Proof

The Corollary follows from the fact that d

�

is a totally balanced design. For

condition (iv) of De�nition 2 see the discussion after De�nition 2. 2

The optimal designs derived by Theorem 1 all have no pairs of consecutive

identical treatments. This is a large di�erence to the usual model where

mixed and self carryover e�ects are assumed to be equal. In that model,

almost all optimal designs derived in the literature need pairs of consecutive

identical treatments. In what follows, we give some examples of designs

which are optimal for the model (1) with mixed and self carryover e�ects. In

all examples, rows indicate periods and columns indicate subjects.

Example 1

If t = 4 and p = 3, we have a totally balanced design d

�

2 


4;12;3

, namely

d

�

=

2

6

6

6

6

6

4

1 3 2 4 1 2 1 4 3 4 2 3

2 1 3 2 4 1 3 1 4 3 4 2

3 2 1 1 2 4 4 3 1 2 3 4

3

7

7

7

7

7

5

:

If we have many more subjects, with n divisible by 12, an optimal design

consists of multiples of d

�

. It was shown by Stufken (1991) and Kushner

(1998) that in the traditional model the optimal design would have some

subjects receiving sequences which are equivalent to [1, 2, 2].

Example 2

If t = 4 and p = 4 we have a totally balanced design d

�

2 


4;4;4

, namely the
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carryover balanced Latin square

d

�

=

2

6

6

6

6

6

6

6

6

4

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

3

7

7

7

7

7

7

7

7

5

:

This is also optimal in the traditional model (Kunert, 1984). It was shown by

Kunert (1984) that in the traditional model, if the number n of subjects gets

large, the optimal design in 


4;n;4

will have some subjects with a treatment

sequence equivalent to [1, 2, 3, 3], while Corollary 1 shows that in the model

with mixed and self carryover whenever n is divisible by 4 a design consisting

of multiples of d

�

is optimal.

Example 3

If t = 3, p = 4 and n = 6, then the so-called extra-period design

f =

2

6

6

6

6

6

6

6

6

4

1 2 3 3 1 2

2 3 1 2 3 1

3 1 2 1 2 3

3 1 2 1 2 3

3

7

7

7

7

7

7

7

7

5

is universally optimal in the traditional model (Cheng and Wu, 1980). The

design f ful�lls all conditions of a totally balanced design, except for the

balance for carryover e�ects. Instead, it is strongly balanced for carryover.

Therefore, in model (1) with self and mixed carryover the totally balanced

design

d

�

=

2

6

6

6

6

6

6

6

6

4

1 2 3 3 1 2

2 3 1 2 3 1

3 1 2 1 2 3

1 2 3 3 1 2

3

7

7

7

7

7

7

7

7

5
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performs better than f and is universally optimal.

Example 4

If t = 3 and p = 6, we have a totally balanced design for n = 6, namely

d

�

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 3 3 1 2

2 3 1 1 2 3

3 1 2 2 3 1

2 3 1 3 1 2

1 2 3 2 3 1

3 1 2 1 2 3

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

This performs better than the so-called nearly strongly balanced generalized

Latin square

f =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 3 1 2 3

2 3 1 1 2 3

3 1 2 2 3 1

3 1 2 3 1 2

2 3 1 3 1 2

1 2 3 2 3 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

which was shown by Kunert (1983) to be universally optimal over 


3;6;6

in

the traditional model.

5 Discussion

The paper shows that in the model with mixed and self carryover e�ects

the optimal designs in general do not contain pairs of consecutive identical

treatments. Instead it is shown that special designs with balance for carryover

e�ects are optimal.
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This gives another theoretical justi�cation for the use of designs that are

balanced for carryover e�ects, which are very popular in practice. There are

other theoretical arguments for the use of these designs. One example is the

minimization of the bias if the carryover e�ect is neglected in the analysis

(see Aza��s and Druilhet, 1997, and Kunert, 1998). Another example of a

theoretical argument in favour of balanced designs is the possibility to get a

conservative estimate of the variance, even if correlations between the errors

are suspected to be present (see Kunert and Utzig, 1991).

We end the paper with two technical remarks.

Firstly, in the optimal designs derived by Theorem 1, the self carryover

never appears. Therefore, it might look easier to show optimality of the de-

sign d

�

in the simpler model where the self carryover e�ects are assumed to be

zero, and then to use Kunert's (1983) strategy 1 to extend to model (1) with

mixed and self carryover e�ects. This, however, is not possible in general.

For instance, the design f from Example 3 performs better than d

�

in the

simpler model where self carryover e�ects are assumed zero. Therefore, the

optimality proof for d

�

has to use the two-dimensional polynomial q

d

(x; y).

Secondly, it should be pointed out that the optimality results of the paper

could be extended to the case that p > 2t. This would, however, take some

extra technicalities. We did not do it because the case p > 2t is of less

interest from a practical viewpoint.
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