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�� Introduction

Combining results from di
erent experiments 
or studies� has become common

in many �elds of scienti�c inquiry� One has� for example� balanced or unbal�

anced� homoscedastic or heteroscedastic samples to assess the overall treatment

e
ect� With treatment�by�centre interaction in such samples� we get a random

e
ects model� otherwise we have a �xed e
ects model�

The possibility of many false positives in meta�analysis due to the underes�

timate of the variance of the estimate of the overall treatment e
ect cannot

be overemphasized as indicated by Li et al� 
����� and Boeckenho
�Hartung


������ Suggested corrections for the �xed e
ects model with the resulting test

statistics being normally distributed do not extend naturally to the random

e
ects model�

By noting that the estimate of the overall treatment e
ect is dominated by a

positive semi�de�nite quadratic form and estimating its distribution by a ���

distribution by equating its �rst two moments� we obtain tests of signi�cance

for the overall e
ect which are based on the t�distribution� Two related tests�

cf� section �� for the �xed e
ects model are suggested and one test� cf� section

�� for the random e
ects model� Accompanying simulation results� cf� Tables I

and II� indicate that our suggested test statistics improve greatly the attained

type I error rates�

�� Fixed E�ects Model

For K � � independent experiments� let yij be the observation on the j�th

subject of the i�th experiment� i � �� � � � � K and j � �� � � � � ni� such that

yij � � � eij � i � �� � � � � K� j � �� � � � � ni� 
��

�



where � is the common mean for all the K homogeneous experiments� eij are

error terms which are assumed to be mutually stochastically independent and

normally distributed� that is� eij � N
	� ��i �� i � �� � � � � K� j � �� � � � � ni� The

best estimate for � in each study 
experiment� is the individual sample mean

��i �
Pni

j�� yij�ni � �yi� with variance ��i �ni� i � �� � � � � K� This means that

we have a �xed e
ects combinations model such that ��i � N
�� ��i �ni�� i �

�� � � � � K�

Our interest is in testing the hypothesis H� � � � 	 against H� � � �� 	 at

some type I error rate� ��

Now� the best unbiased estimator of � which traces back to Cochran 
�����


see also Whitehead and Whitehead� ����� is�

�� �

PK
i��

ni
��
i

� ��iPK
i�� ni��

�
i


��

with variance ���� �
�PK

i�� ni��
�
i

���
� Under H� the statistic

T �
��q
����

� N
	� ��� 
��

In most practical situations� however� the individual error variances are un�

known and on estimating them by ���i � we obtain the estimate of the overall

mean to be

�� �

PK
i��

ni
���
i

� ��iPK
i�� ni���

�
i


��

so that when � � 	� the test statistic

T� �
��q
�����

approx
� N
	� �� 
��

In our experience 
cf� also Li et al�� ���� and Boeckenho
�Hartung� ����� this

test attains type I error rates which are much greater than the nominal level�

��

Consider now a positive discrete random variable d taking on realizations

�



di � ��xi with probabilities �i� for i � �� � � � � K� and the convex function

g
d� � ��d� then Jensen�s inequality

g
E
d�� �
�PK

i�� �i � di
� E
g
d�� �

KX
i��

�i �
�

di

provides us with the well known inequality between the harmonic and arith�

metic means�

Lemma��

For xi 	 	� �i � 	� i � �� � � � � K�
PK

i�� �i � �� there holds

�x��h �
�PK

i�� �i �
�
xi

�
KX
i��

�i � xi � �x��a�

Next� let

f���h
s
�� � ����� �

�PK
i�� ni�s

�
i

�
�

N
�

�PK
i��

ni�N
s�
i

� 
��

where s�i �
Pni

j��
yij� �yi��
��
ni��� is an unbiased estimate of ��i from the i�th

experiment� Using Lemma � above and setting �i � ni�N we get

f���h
s
�� �

�

N
�

�PK
i�� �i�s�i

�
�

N
�

KX
i��

�i s
�
i �� f���a
s

�� 
��

with xi � s�i � Clearly f���a
s
�� is a positive semi�de�nite quadratic form in the

random variables� which dominates the function f���h
s
��� Thus� the approxi�

mate distribution of f���h
s�� can be obtained as follows�

Let

Q
f���h� � 
 �
�

Ef���h
s��
� f���h
s

���

then Q
f���h�
approx
� ��

�� where according to Patnaik 
�����


 � � �

Ef���h
s

���
�

V arf���h
s��

By convexity arguments of Hartung 
����� sec� ��� cf� also Boeckenho
�Hartung


������ we have

E
f���h
s
��� � �����

�



and for the variance V arf���h
s
��� we have the following upper estimates�

V arf���h
s
�� � E

�B�� KX
i��

ni
s�i

���
�

�� KX
i��

q
n�i � �

ni � �
�
ni
s�i

�A��
�CA � E
 �V�� 
��

V arf���h
s
�� �

�
KX
i��

s
ni � �

ni � �
�
ni
��i

���
�

�
KX
i��

ni � �

ni � �
�
ni
��i

���
� V� 
��

For the estimated degrees of freedom� 
� we will make use of �Vj � j � �� �� as

given in 
�� and 
�� above with the parameters ��i � i � �� � � � � K� in V� replaced

by their estimators to obtain �V�� That is�

�
j � � �

f���h
s

���
�

�Vj
� j � �� ��

In the following� however� we propose to introduce a �compensation factor�

to the numerator of 
j � j � �� �� to avoid adverse underestimation� Let this

factor be given by �j � � �
q
�Vj � j � �� �� � 	 	� Thus we have the modi�ed

operational 
j � j � �� �� given by

�
j
�� � � �

f���h
s

�� � �j�
�

�Vj
� j � �� ��

So� we can summarise the above considerations to formulate the following

theorem�

Theorem�� The test statistics T
�t�
� � t � �� �� under H� � � � 	� are such that�

a�

T
���
� �

��q
f���h
s��

approx
� t������

b�

T
���
� �

��q
f���h
s��

approx
� t������

Note that T ���
� and T ���

� di
er only in the associated estimated degrees of free�

dom�

Using T
���
� and T

���
� with � � 	�� we now demonstrate through a simulation

�



study that the two proposed tests attains type I error rates which are closer

to the nominal level than the commonly used test T� which attains levels well

above the ideal level� �� especially for small sample sizes� For comparison�

we have also considered in our simulations T �
� � ���


PK
i�� ni��

�
i �
���� with the

true ��i in the variance term of T�� and the critical values are taken from the

standard normal distribution� as for T��

Table I� Actual type I error rates 
�	 			 runs� for K�� and K�� at

signi�cance level � � �� using test statistics T �
� � T�� T

���
� and T

���
� for the

�xed e
ects model�

nominal level����� Attained type I error rates� ���

Sample sizes Error variances K�� K��

	
 Replication of K���

	n�� n�� n	� 	��� � �
�
� � �

�
	� T �� T� T

���
� T

���
� T �� T� T

���
� T

���
�

	������ 	
����� �
� 
�
� �
� 
�

 


� ��
� 
�
� 
�
�

	������ �
� 
�
� �
� 
�
� 


� ��
� 
�
� 
�
�

	
��
��
�� 	
����� �
� 
�
� �
� �
� �
� 


� �
� �
�

	������ �
� 
�
� �
� �
� �
� 


� �
� �
�

	��������� 	
����� �
� �
� �
� �
� �
� �
� �
� �
�

	������ �
� �
� �
� �
� �
� �
� �
� �
�

	��
��
�� 	
����� �
� 
�
� �
� �
� �
� 
�
� �
� �
�

	������ �
� 
�

 �
� �
� �
� 
�
� �
� �
�

	����
� �
� 
�

 �
� �
� �
� 
�
� �
� �
�

	
�������� 	
����� �
� �
� �
� �
� �
� �
� �
� �
�

	������ �
� �
� �
� �
� �
� �

 �
� �
�

	����
� �
� �
� �
� �
� �
� �
� �
� �
�

We consider �rst K�� with various constellations of sample sizes and error

variances 
see Table I below�� In order to see the e
ect of increasing the

number of experiments with all the other factors held constant� we make one

�



independent replication of all the constellations of K�� to obtain K��� The

results given are for testing H� � � � 	 against a two�sided alternative H� �

� �� 	�

We notice that the attained type I error rates in column � and � of Table I are

far much greater than the nominal level of ��	 percent � For small sample sizes�

this liberality of T� is relatively higher for balanced samples and increases with

the number of experiments 
studies�� that is� the attained levels are greater for

K�� than for K��� The proposed tests� T ���
� and T ���

� � improve the attained

levels appreciably� despite showing some increase in the levels attained with

increase in the number of studies�

For balanced samples greater than �	� the proposed tests attain reasonable

stability with respect to increase in the number of experiments� This is also

conspicuous for unbalanced samples in cases where the smallest sample size is

equal to �	�

� Random E�ects Model

For the one�way random e
ects model we add a random e
ect ai � N
	� ��a�� i �

�� � � � � K� to model 
��� see section � above� to obtain

yij � � � ai � eij � i � �� � � � � K� j � �� � � � � ni�

with a�� � � � � aK � e��� � � � � eKnK being mutually stochastically independent� so

that ��i � N
�� ��a � ��i �ni�� Then the estimator of � equivalent to 
�� is given

by

�� �

PK
i��

�
vi
� ��iPK

i�� ��vi
� 
�	�

where vi � ���a����i �ni � ���a�
i� i � �� � � � � K� Therefore� we have the commonly

used test statistic

T��r� �
��



PK

i�� ��vi�
����

approx
� N
	� �� 
���

�



This test su
ers from the same weaknesses as its �xed e
ects counterpart� with

the situation here being compounded by the estimation of the variance of the

random e
ect� ��a�

Let � �i � ��a��
�
i �ni� and de�ne the quadratic formQ �

PK
i�� hi
��i�

PK
j�� bj ��j�

��

where hi 	 	 and bi 	 	 with
PK

i�� bi � �� i � �� � � � � K� By a somewhat lengthy

derivation� it can be shown that� Hartung 
������ 
cf� also� e�g�� Hartung� �����

Mathai�Provost� ������

E
Q� �
KX
i��

hi
� � �bi��
�
i � 


KX
i��

hi�

KX
i��

b�i �
�
i �� 
���

V ar
Q� � � �

�� KX
i��

h�iD
�
i �

KX
i��

KX
i��j��

hihjC
�
ij

�A � 
���

where

Di � 
� � �bi��
�
i �

KX
k��

b�k�
�
k � 
���

Cij �
KX
k��

b�k�
�
k � bi�

�
i � bj�

�
j � i� j � �� � � � � K� 
���

which are also estimated by replacing parameters by their estimates� yielding

with special choices of

bi �
ni���iPK
i�� ni��

�
i

� hi �
bi

� �
PK

i�� b
�
i

the Cochran 
����� estimator 
cf� also DerSimonian�Laird� ����� White�

head�Whitehead� �����

���a �
KX
i��

hi
��i �
KX
j��

bj ��j�
� �

KX
i��

ri 
i� 
���

with ri � 
bi� b�i ��
��
PK

i�� b
�
i �� i � �� � � � � K� which is an unbiased estimator

of ��a� and we get for its variance

V ar
���a� � V ar
Q� �
KX
i��

r�i � V ar

i�� 
���

�



Also V ar

i� � � � �
i �n
�
i 
ni � �� and its best invariant unbiased estimator is

given by dV ar

i� � � � 
�i �
ni � ��� Hartung�Voet 
������ Note that ���a has a

positive probability of taking negative values� For a realization the parameter

��i �ni in bi is replaced by 
i so that ��
�
a becomes the estimator ��

�
a�

Making use now Lemma � again� we have

�PK
i�� ��vi

�
�

K
�

KX
i��

�

K
� vi �

�

K�

KX
i��


���a � 
i�� 
���

and therefore�
�PK

i�� ��vi
� � � 
���a �

�

K

KX
i��


i��

where � is a positive random variable� Next�


r �

�
E

�
�PK

i�� ��vi

����
�

�PK
i�� ��vi

� 
r �
� � 
���a �

�
K

PK
i�� 
i�

E
�
� � 
���a �

�
K

PK
i�� 
i�

�
� 
r �


���a �
�
K

PK
i�� 
i�

E
���a �
�
K

PK
i�� 
i��

approx
� ��

�r �

where� if ���a 	 	 and by the independence of Q and 
i� i � �� � � � � K� 
r is given

by


r � � �

�
E
�
� � 
���a �

�
K

PK
i�� 
i�

���
V ar

�
� � 
���a �

�
K

PK
i�� 
i�

�

� � �

�
E
���a �

�
K

PK
i�� 
i�

��
V ar

�
���a �

�
K

PK
i�� 
i

�

� � �

�
E
���a �

�
K

PK
i�� 
i�

��
V ar
Q� � �

K�

PK
i��
riK � ��� � �
i �n

�
i

�

where 
r is estimated by

�
r � � �

�
���a �

�
K

PK
i�� 
i�

��
dV ar
Q� � �

K�

PK
i��
�riK � ��� �

	�
i

ni��

� 
���

If ���a � 	� then

�
r �

�PK
i�� 
i

��
PK

i��
	�
i

ni��

� 
�	�

�



So� for testing the hypothesisH� � � � 	 against H� � � �� 	� we can summarise

the considerations above in the following theorem�

Theorem�� Under H� there is

T��r�
�
r� �
��



PK

i�� ��vi�
����


���

distributed approximately as a central t�variable with �
r degrees of freedom�

where �
r is given in 
��� for ���a 	 	 
cf� equation 
���� and by 
�	� in the case

when ���a � 	�

Now the various test statistics are compared in a simulation study� cf� Table II�

The values reported there under T �
r � for K�� and �� are obtained by using the

test statistic T �
r � ���


PK
i�� ���

�
i �
���� with the true values � �i in the variance

term of T��r� and the critical values are obtained from the standard normal

distribution� as for T��

To obtain K�� we independently replicated K�� once � for ��a � 	� 	��� �� ���

For ��a � 	�	� 
see Table II�� the proposed test T��r�
�
r� attains acceptable

type I error rates� despite being a bit more liberal for K�� and small sample

sizes of � per experiment� Also for unbalanced samples� when relatively large

individual error variances are paired with relatively small sample sizes� the test

is conservative for K���

For values of ��a between 	�� and �� the proposed test attains levels far more

acceptable than those of the commonly used statistic T��r� � save for some small

traces of liberality especially for small sample size constellations�

For large values of ��a� the attained type I error rates stabilize for all sample

size and individual error variance combinations considered�

�	



Table II� Actual type I error rates 
�	 			 runs� for K�� and � at

signi�cance level � � �� using test statistics T �
r � T��r� and T��r�
�
r� for the

random e
ects model�

Nominal level� �
�� Attained type I error rates� 
��

Sample sizes Error variances K
�

K
� �� Replication of K
�	

��
a

�n�� n�� n�	 ���
� � �

�
�� �

�
�	 T �

r
T��r� T��r��
�r	 T �

r
T��r� T��r��
�r	

��� ������	 ������	 ��� ��� ��� ��� ��� ���

������	 ��� ���� ��� ��� ���� ���

���������	 ������	 ��� ��� ��� ��� ��� ���

������	 ��� ��� ��� ��� ��� ���

��������	 ������	 ��� ��� ��� ��� ��� ���

������	 ��� ��� ��� ��� ��� ���

������	 ���� ��� ��� ���� ��� ���

���������	 ������	 ��� ��� ��� ��� ��� ���

������	 ��� ��� ��� ��� ��� ���

������	 ���� ��� ��� ��� ��� ���

��� ������	 ������	 ��� ���� ���� ��� ���� ���

������	 ��� ���� ��� ��� ���� ���

���������	 ������	 ��� ���� ���� ��� ���� ���

������	 ��� ���� ��� ��� ���� ���

��������	 ������	 ��� ���� ��� ��� ���� ���

������	 ��� ���� ��� ��� ���� ���

������	 ��� ���� ���� ��� ���� ���

���������	 ������	 ��� ���� ��� ��� ���� ���

������	 ��� ���� ��� ��� ���� ���

������	 ��� ���� ���� ��� ���� ���

��� ������	 ������	 ��� ���� ���� ��� ���� ���

������	 ��� ���� ��� ��� ���� ���

���������	 ������	 ��� ���� ��� ��� ���� ���

������	 ��� ���� ��� ��� ���� ���

��



Table II� Cont�

Nominal level� �
�� Attained type I error rates� 
��

Sample sizes Error variances K
�

K
� �� Replication of K
�	

��
a

�n�� n�� n�	 ���
� � �

�
� � �

�
�	 T �

r
T��r� T��r��
�r	 T �

r
T��r� T��r��
�r	

��� ��������	 ������	 ��� ���� ��� ��� ���� ���

������	 ��� ���� ��� ��� ���� ���

������	 ��� ���� ���� ��� ���� ���
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�� Conclusion

The problem of frequent liberal decisions is very common in meta�analysis�

With our proposed tests� we see a great improvement in the attained type I

error rates for both the �xed and random e
ects ANOVA models� We would

recommend the use of these tests in place of the commonly used method to

minimise the danger of registering too many signi�cant results�
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