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Abstract

For a broad class of nonlinear regression models we investigate the locally E- and c-optimal

design problem. It is demonstrated that in many cases the optimal designs with respect to

these optimality criteria are supported at the Chebyshev points, which are the local extrema

of the equi-oscillating best approximation of the function f

0

� 0 by a normalized linear

combination of the regression functions in the corresponding linearized model. The class

of models includes rational, logistic and exponential models and for the rational regression

models the E- and c-optimal design problem is solved explicitly in many cases. It is also

demonstrated that in the models under consideration E-optimal designs are usually more

eÆcient for estimating individual parameters than D-optimal designs.

AMS Subject Classi�cation: 62K05, 41A50

Keywords and phrases: E-optimal design, c-optimal design, rational models, locally optimal de-

signs, Chebyshev systems
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1 Introduction

Nonlinear regression models are widely used to describe the dependencies between a response and

an explanatory variable [see e.g. Seber and Wild (1989), Ratkowsky (1983) or Ratkowsky (1990)].

An appropriate choice of the experimental conditions can improve the quality of statistical inference

substantially and therefore many authors have discussed the problem of designing experiments for

nonlinear regression models. We refer to Cherno� (1953), Melas (1978) for early references and Ford,

Torsney and Wu (1992), He, Studden and Sun (1996), Dette, Haines and Imhof (1999) for more

recent references on locally optimal designs. Because locally optimal designs depend on an initial

guess for the unknown parameter several authors propose alternative design strategies. Bayesian

or robust optimal designs have been discussed by Pronzato and Walter (1985) and Chaloner and

Larntz (1989) among many others [see Chaloner and Verdinelli (1995) and the references in this

paper]. Other authors propose sequential methods, which update the information about the un-

known parameter sequentially [see e.g. Ford and Silvey (1980), Wu (1985)]. Most of the literature

concentrates on D-optimal designs (independent of the particular approach), which maximize the

determinant of the Fisher information matrix for the parameters in the model, but much less at-

tention has been paid to E-optimal designs in nonlinear regression models, which maximize the

minimum eigenvalue of the Fisher information matrix [see Dette and Haines (1994) or Dette and

Wong (1999), who gave some results for models with two parameters].

Because locally optimal designs are the basis for all advanced design strategies, it is the purpose

of the present paper to study locally E-optimal designs for a class of nonlinear regression models,

which can be represented in the form

Y =

s

X

i=1

a

i

h

i

(t) +

k

X

i=1

a

s+i

'(t; b

i

) + " :(1.1)

Here ' is a given function, the explanatory variable t varies in an interval I � R; " denotes a

random error with mean zero and constant variance and a

1

; : : : ; a

s+k

; b

1

; : : : ; b

k

denote the unknown

parameters of the model. The consideration of this type of model was motivated by the recent work

of Imhof and Studden (2001), who considered a class of rational models of the form

Y =

s

X

i=1

a

i

t

i�1

+

k

X

i=1

a

s+i

t� b

i

+ "(1.2)

where t 2 I; b

i

6= b

j

(i 6= j) and the parameters b

i

62 I are assumed to be known for all i = 1; : : : ; k:

Note that model (1.2) is in fact linear, because Imhof and Studden (2001) assumed the b

i

to be

known. These models are very popular because they have appealing approximation properties [see

Petrushev and Popov (1987) for some theoretical properties or Dudzinsky and Mykytowycz (1961),

Ratkowsky (1983), p. 120 for an application of this model]. In this paper [in contrast to the work

of Imhof and Studden (2001)] the nonlinear parameters in the model (1.1) are not assumed to

be known, but also have to be estimated from the data. Moreover, the model (1.1) considered

here includes numerous other regression functions. For example, in environmental and ecological

statistics exponential models of the form

a

1

e

b

1

t

+ a

2

e

b

2

t

are frequently used in toxicokinetic experiments [see e.g. Becka and Urfer (1996) or Becka, Bolt

and Urfer (1993)] and this corresponds to the choice '(t; x) = e

tx

in (1.1). Another popular class

of logarithmic models is obtained from the equation (1.1) by the choice '(t; x) = log(t� x):
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Imhof and Studden (2001) studied E-optimal designs for the model (1.2) with s = 1 under the

assumption that the nonlinear parameters b

1

; : : : ; b

k

are known by the experimenter and do not

have to be estimated from the data. In particular they proved that the support of the E-optimal

design for estimating a subset of the parameters a

1

; : : : ; a

`+1

is given by the Chebyshev points

corresponding to the regression functions in the model (1.2). These points are the extremal points

of the function

1 +

k

X

i=1

a

�

i

x� b

i

= p

�

(x);

in the interval I; which has the smallest deviation from zero, that is

sup

x2I

jp

�

(x)j = min

a

2

;:::;a

k+1

sup

x2I

�

�

�

�

�

1 +

k

X

i=1

a

i

x� b

i

�

�

�

�

�

:(1.3)

The universality of this solution is due to the fact that any subsystem of the regression functions in

the model (1.2), which is obtained by deleting one of the basis functions, forms a weak Chebyshev

system on the interval I [see Karlin and Studden (1966) or the discussion in Section 2]. However,

in the case where the parameters b

1

; : : : ; b

k

are unknown and also have to be estimated from the

data, the locally optimal design problem for the model (1.2) is equivalent to an optimal design

problem in the linear regression model

Y =

s

X

i=1

�

i

t

i�1

+

2k

X

i=1

�

�

s+2i�1

t� b

i

+

�

s+2i

(t� b

i

)

2

�

+ ";(1.4)

for which the corresponding regression function do not satisfy the weak Chebyshev property men-

tioned above. Nevertheless, we will prove in this paper that in cases with k � 2, where the quantity

max

i6=j

jb

i

� b

j

j

is suÆciently small, locally E-optimal designs and many locally c-optimal designs for estimating

linear combinations of the parameters are still supported on Chebyshev points. This substantially

simpli�es the construction of locally E-optimal designs. Moreover, we show that this result does

not depend on the speci�c form of the model (1.2) and (1.4) but can be established for the general

model (1.1) (or its equivalent linearized model). Additionally it can be shown numerically that in

many cases the E-optimal design is in fact supported on the Chebyshev points for all admissible

values of the parameters b

1

; : : : ; b

k

(b

i

6= b

j

; i 6= j): Our approach is based on a study of the limiting

behaviour of the information matrix in the model (1.1) in the case, where all nonlinear parameters

in the model (1.1) tend to the same limit. We show that in this case the locally E-optimal and many

locally optimal designs for estimating linear combinations of the coeÆcients a

s+1

; b

s+1

; : : : ; a

s+k

; b

s+k

in the model (1.1) have the same limiting design. This indicates that E-optimal designs in models of

the type (1.1) yield more precise estimates of the individual coeÆcients than the popular D-optimal

designs and we will illustrate this fact in several examples.

The remaining part of the paper is organized as follows. In Section 2 we introduce the basic

concepts, notation and present some preliminary results. Section 3 is devoted to an asymptotic

analysis of the model (1.1), which is based on a linear transformation introduced in the Appendix

[see Section 5]. Finally, some applications to the rational model (1.2) and its equivalent linear

regression model (1.4) are presented in Section 4, which extend the results of Imhof and Studden

(2001) to the case, where the nonlinear parameters in the model (1.2) are not known and have to

be estimated from the data.
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2 Preliminary results

Consider the nonlinear regression model (1.1) and de�ne

f(t; b) = (f

1

(t; b); : : : ; f

m

(t; b))

T

(2.1)

= (h

1

(t); : : : ; h

s

(t); '(t; b

1

); '

0

(t; b

1

); : : : ; '(t; b

k

); '

0

(t; b

k

))

T

as a vector of m = s + 2k regression functions, where the derivatives of the function ' are taken

with respect to the second argument. It is straightforward to show that the Fisher information for

the parameter (a

1

; : : : ; a

s

; a

s+1

; b

s+1

; : : : ; a

s+k

; b

s+k

)

T

= (�

1

; : : : ; �

m

)

T

= � in the equivalent linear

regression model

Y = �

T

f(t; b) + " =

s

X

i=1

�

i

h

i

(t) +

k

X

i=1

(�

s+2i�1

'(t; b

i

) + �

s+2i

'

0

(t; b

i

)) + "(2.2)

is given by

I(b; t) = f(t; b)f

T

(t; b)(2.3)

The dependence on the parameter b is omitted, whenever it is clear from the context. Following

Kiefer (1974) we call any probability measure � with �nite support on the interval I an (approxi-

mate) design. The support points give the locations where observations have to be taken, while the

masses correspond to the relative proportions of total observations to be taken at the particular

points. For a design � the information matrix in the model (2.2) is de�ned by

M(�; b) =

Z

I

I(b; t)d�(t);(2.4)

and a locally optimal design maximizes an appropriate function of the information matrix [see

Silvey (1980) or Pukelsheim (1993)]. Among the numerous optimality criteria proposed in the

literature we consider the D-, E- and c-optimality criteria in this paper. A D-optimal design �

�

D

for the regression model (2.2) maximizes the determinant

jM(�; b)j(2.5)

over the set of all approximate designs on the interval I: Similary, an E-optimal design �

�

E

maximizes

the minimum eigenvalue

�

min

(M(�; b));(2.6)

while for a given vector c 2 R

m

a c-optimal design minimizes the expression

c

T

M

�

(�; b)c;(2.7)

where the minimum is taken over the set of all designs for which the linear combination c

T

� is

estimable, i.e. c 2 range(M(�; b)) 8 b.

Note that a locally optimal design problem in a nonlinear model (1.1) corresponds to an optimal

design problem in the model (2.2) for the transformed vector of parameters K

T

a

b; where the matrix

K

a

2 R

m�m

is given by

K

a

= diag

�

1; : : : ; 1

| {z }

s

; 1;

1

a

1

; 1; : : : ; 1;

1

a

k

| {z }

2k

�

:(2.8)
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For example, a locally D-optimal design in the model (1.1) maximizes the determinant

jK

�1

a

M(�; b)K

�1

a

j = jK

�1

a

j

2

jM(�; b)j;

does not depend on the parameters a

1

; : : : ; a

k

and coincides with the D-optimal design in the model

(2.2). Similary, the c-optimal design for the model (1.1) can be obtained from the �c-optimal design

in the model (2.2), where the vector �c is given by �c = K

a

c: Finally, the locally E-optimal design

in the nonlinear regression model (1.1) maximizes �

min

(K

�1

a

M(�; b)K

�1

a

), where M(�; b) is the

information matrix in the equivalent linear regression model (2.2). For the sake of transparency we

will mainly concentrate on the linearized version (2.2). The corresponding results in the nonlinear

regression model (1.1) will be brie
y mentioned, whenever it is necessary.

A set of functions f

1

; : : : ; f

m

: I ! R is called a weak Chebyshev system (on the interval I) if there

exists an " 2 f�1; 1g such that

" �

�

�

�

�

�

�

�

f

1

(x

1

) : : : f

1

(x

m

)

.

.

.

.

.

.

.

.

.

f

m

(x

1

) : : : f

m

(x

m

)

�

�

�

�

�

�

�

� 0(2.9)

for all x

1

; : : : ; x

m

2 I with x

1

< x

2

< : : : < x

m

: If the inequality in (2.9) is strict, then ff

1

; : : : ; f

m

g

is called Chebyshev system. It is well known [see Karlin and Studden (1966), Theorem II 10.2]

that if ff

1

; : : : ; f

m

g is a weak Chebyshev system, then there exists a unique function

m

X

i=1

c

�

i

f

i

(t) = c

�T

f(t);(2.10)

with the following properties

(i) jc

�T

f(t)j � 1 8 t 2 I

(2.11)

(ii) there exist m points s

1

< : : : < s

m

such that c

�T

f(s

i

) = (�1)

i

i = 1; : : : ; m:

The function c

�T

f(t) is called Chebyshev polynomial, the points s

1

; : : : ; s

m

are called Chebyshev

points and need not to be unique. They are unique if 1 2 spanff

1

; : : : ; f

m

g; m � 1 and I is a

bounded and closed interval, where in this case

s

1

= min

x2I

x; s

m

= max

x2I

x:

It is well known [see Studden (1968), Pukelsheim and Studden (1993), Heiligers (1994) or Imhof

and Studden (2001) among others] that for many linear regression models the E- and c-optimal

designs are supported at the Chebyshev points.

For a further discussion assume that the functions f

1

; : : : ; f

m

generate a Chebyshev system on the

interval I with Chebyshev polynomial c

�T

f(t) and Chebyshev points s

1

; : : : ; s

m

; de�ne the m�m

matrix F = (f

i

(s

j

))

m

i;j=1

and consider a vector of weights given by

w = (w

1

; : : : ; w

m

)

T

=

JF

�1

c

�

kc

�

k

2

;(2.12)
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where the matrix J is de�ned by J = diagf(�1); 1; : : : ; (�1)

m

g: It is then easy to see that

c

�

kc

�

k

2

= FJw =

m

X

j=1

f(s

j

)(�1)

j

w

j

2 @R;(2.13)

where

R = conv(f(I) [ f(�I))

denotes the Elfving set [see Elfving (1952)]. Consequently, if all weights in (2.12) are nonnegative,

it follows from Elfving's theorem that the design

�

�

c

�

=

 

s

1

: : : s

m

w

1

: : : w

m

!

(2.14)

is c

�

-optimal in the regression model (2.2) [see Elfving (1952)], where c

�

2 R

m

denotes the vector

of coeÆcients of the Chebyshev polynomial de�ned in the previous paragraph. The following result

relates this design to the E-optimal design.

Lemma 2.1. Assume that f

1

; : : : ; f

m

generate a Chebyshev system on the interval I such that the

Chebyshev points are unique. If the minimum eigenvalue of the information matrix of an E-optimal

design has multiplicity one, then the design �

�

c

�

de�ned by (2.12) and (2.14) is E-optimal in the

regression model (2.2). Moreover, in this case the E-optimal design is unique.

Proof. Let �

�

E

denote an E-optimal design such that the minimum eigenvalue � = �

min

(M(�

�

E

; b))

of the information matrix M(�

�

E

; b) has multiplicity one with corresponding eigenvector z 2 R

m

:

By the equivalence theorem for the E-optimality criterion [see Pukelsheim (1993), p. 181-182] we

obtain for the matrix E = zz

T

=�

�

1

p

�

z

T

f(t)

�

2

= f

T

(t)Ef(t) � 1

for all t 2 I with equality at the support points of �

�

E

: Because the Chebyshev polynomial is unique

it follows that (up to the factor �1)

c

�

=

1

p

�

z

and that supp(�

�

E

) = fs

1

; : : : ; s

m

g: Now Theorem 3.2 in Dette and Studden (1993) implies that �

�

E

is also c

�

-optimal, where c

�

2 R

m

denotes the vector of coeÆcients of the Chebyshev polynomial.

Consequently, by the discussion of the previous paragraph we have �

�

E

= �

�

c

�

; which proves the

assertion. 2

Lemma 2.2. Assume that the functions f

1

; : : : ; f

m

generate a Chebyshev system on the interval I

with Chebyshev polynomial c

�T

f(t) and let �

�

c

�

denote the c

�

-optimal design in the regression model

(2.2) de�ned by (2.14). Then c

�

is an eigenvector of the information matrix M(�

�

c

�

; b) and if the

corresponding eigenvalue � =

1

kc

�

k

2

is the minimal eigenvalue, then �

�

c

�

is also E-optimal in the

regression model (2.2).

6



Proof. From the identity (2.13) and the Chebyshev property (2.11) it follows immediately that c

�

is an eigenvector of the matrix

M(�

�

c

�

; b) =

m

X

i=1

f(s

i

)f

T

(s

i

)w

i

with corresponding eigenvalue � = 1=kc

�

k

2

: Now if � = �

min

(M(�

�

c

�

; b)) we de�ne the matrix

E = �c

�

c

�T

and obtain from the Chebyshev properties (2.11) that

f

T

(t)Ef(t) = �(c

�T

f(t))

2

� � = �

min

(M(�

�

c

�

; b))

for all t 2 I: The assertion of the Lemma now follows from the equivalence theorem for E-optimality

[see Pukelsheim (1993)].

2

We now discuss the c-optimal design problem in the regression model (2.2) for a general vector

c 2 R

m

(not necessarily equal to the vector c

�

of coeÆcients of the Chebyshev polynomial). Assume

again that f

1

; : : : ; f

m

generate a Chebyshev system on the interval I: As candidate for the c-optimal

design we consider the measure

�

c

= �

c

(b) =

 

s

1

: : : s

m

w

1

: : : w

m

!

;(2.15)

where the support points are the Chebyshev points and the weights are already chosen such that

the expression c

T

M

�1

(�

c

; b)c becomes minimal, that is

w

i

=

je

T

i

JF

�1

cj

P

m

j=1

je

T

j

JF

�1

cj

i = 1; : : : ; m(2.16)

[see Pukelsheim (1993)]. The following result characterizes the optimal designs for estimating the

individual coeÆcients.

Lemma 2.3. Assume that the functions f

1

; : : : ; f

m

generate a Chebyshev system on the interval

I and let e

j

= (0; : : : ; 0; 1; 0; : : : ; 0)

T

2 R

m

denote the jth unit vector. The design �

e

j

de�ned by

(2.15) and (2.16) for the vector c = e

j

is e

j

-optimal if the system

ff

i

j i 2 f1; : : : ; mgnfjgg

is a weak Chebyshev system on the interval I:

Proof. If f

1

; : : : ; f

m

generate a weak Chebyshev system on the interval I it follows from Theorem

2.1 in Studden (1968) that the design �

e

j

de�ned in (2.15) and (2.16) is e

j

-optimal if

"e

T

i

JF

�1

e

j

� 0 i = 1; : : : ; m

for some " 2 f�1; 1g. The assertion of the Lemma now follows by Cramer's rule. 2

Remark 2.4. It is worthwhile to mention that in general the suÆcient condition of Lemma 2.3

is not satis�ed. To see this assume that k � 3; that the function ' is continuously di�erentiable

7



with respect to the second argument and that the functions f

1

(�; b); : : : ; f

m

(�; b) de�ned by (2.1)

generate a Chebyshev system for any b: De�ne an (m� 1)� (m� 1) matrix

F

j

(x) :=

�

h

1

(t

i

); : : : ; h

s

(t

i

); '(t

i

; b

1

); '

0

(t

i

; b

1

); : : : ; '(t

i

; b

j�1

); '

0

(t

i

; b

j�1

);

'(t

i

; x); '(t

i

; b

j+1

); : : : ; '(t

i

; b

k

); '

0

(t

i

; b

k

)

�

m�1

i=1

where c < t

1

< : : : < t

m�1

< d; b

i

6= b

j

whenever i 6= j and x 6= b

i

: We choose t

1

; : : : ; t

m�1

such that

g(x) = detF

j

(x) 6� 0

(note that the functions f

1

; : : : ; f

m

form a Chebyshev system and therefore this is always possible)

and observe that

g(b

i

) = 0 i = 1; : : : ; k; i 6= j:

Because k � 3 and g is continuously di�erentiable it follows that there exist two points, say x

�

and

x

��

such that such that g

0

(x

�

) < 0 and g

0

(x

��

) > 0: Consequently, there exists an �x such that

0 = g

0

(�x) = det

�

f

�

(t

i

; b

�x

)

�

�=1;:::;m;� 6=s+2j�1

i=1;:::;m�1

;

where the vector b

�x

is de�ned by b

�x

= (b

1

; : : : ; b

j�1

; �x; b

j+1

; : : : ; b

k

)

T

: Note that the Chebyshev

property of the functions f

1

; : : : ; f

s+2j�2

; f

s+2j

; : : : ; f

m

would imply that all determinants in (2.9)

were of the same sign (otherwise there exists a b such that the determinant vanishes for t

1

< : : : <

t

m�1

): Therefore the conditions g

0

(x

�

) < 0; g

0

(x

��

) > 0 imply that there exists a ~x 2 (x

�

; �x) or

~x 2 (�x; x

��

); such that the system of regression functions

n

f

1

(t; b

~x

); : : : ; f

s+2j�2

(t; b

~x

); f

s+2j

(t; b

~x

); : : : ; f

m

(t; b

~x

)

o

=

n

h

1

(t); : : : ; h

s

(t); '(t; b

1

); '

0

(t; b

1

); : : : ; '

0

(t; b

j�1

); '

0

(t; ~x); '(t; b

j+1

); '

0

(t; b

j+1

); : : : ; '

0

(t; b

k

)

o

is not a weak Chebyshev system on the interval I: Finally in the case k = 2, if

lim

jbj!1

'(t; b)! 0

it can be shown by a similar argument that there exists a ~x such that the system

fh

1

; (t); : : : ; h

s

(t); '(t; b

1

)'

0

(t; b

1

)'

0

(t; ~x)g

is not a Chebyshev system on the interval I.

3 Asymptotic analysis of E- and c-optimal designs

Recall the de�nition of the information matrix in (2.4) for the model (2.2) with design space given

by I = [c

1

; d

1

] and assume that the nonlinear parameters vary in a compact interval, say

b

i

2 [c

2

; d

2

]; i = 1; : : : ; k:

8



We are interested in the asymptotic properties of E- and c-optimal designs if

b

i

= x + Ær

i

i = 1; : : : ; k(3.1)

for some x 2 [c

2

; d

2

]; Æ > 0; r

1

< r

2

< : : : < r

k

and Æ ! 0: For this purpose we study for �xed

";� > 0 the set




";�

=

n

b 2 R

k

�

�

�

b

i

� b

j

= Æ(r

i

� r

j

); i; j = 1; : : : ; k; Æ � "; b

i

2 [c

2

; d

2

]; min

i6=j

jr

i

� r

j

j � �

o

;(3.2)

introduce the functions

�

f

i

(t; x) =

�

f

i

(t) = h

i

(t) i = 1; : : : ; s

(3.3)

�

f

s+i

(t; x) =

�

f

s+i

(t) = '

(i�1)

(t; x) i = 1; : : : ; 2k

and the corresponding vector of regression functions

�

f(t; x) = (

�

f

1

(t; x); : : : ;

�

f

s+2k

(t; x))

T

;(3.4)

where the derivatives are taken with respect to the second argument, that is

'

(i)

(t; x) =

@

i

@

i

u

'(t; u)

�

�

�

u=x

i = 0; : : : ; 2k � 1:

Again the dependency of the functions

�

f

i

on the parameter x will be omitted whenever it is clear

from the context. The linear model with vector of regression functions given by (3.4) will serve as

an approximation for the model (2.2) if the parameters b

i

are suÆciently close to each other.

Lemma 3.1. Assume that the function

' : [c

1

; d

1

]� [c

2

; d

2

]! R

in model (1.1) satis�es

' 2 C

0;2k�1

([c

1

; d

1

]� [c

2

; d

2

])

and that for any �xed x 2 [c

2

; d

2

] the functions

�

f

1

; : : : ;

�

f

s+2k

de�ned by (3.3) form a Chebyshev

system on the interval [c

1

; d

1

]: For any � > 0 and any design on the interval [c

1

; d

1

] with at least

m = s+ 2k support points there exists an " > 0 such that for all b 2 


";�

the maximum eigenvalue

of the inverse information matrix M

�1

(�; b) de�ned in (2.4) is simple.

Proof. Recall the de�nition of the functions in (3.3) and let

�

M(�; x) =

Z

d

c

�

f(t; x)

�

f

T

(t; x)d�(x)(3.5)

denote the information matrix in the corresponding linear regression model. Because of the Cheby-

shev property of the functions

�

f

1

; : : : ;

�

f

s+2k

it follows that j

�

M(�; x)j 6= 0 (note that the design �

has at least s+2k support points). It will be shown in the Appendix (see Theorem 5.1) that under

the condition (3.1) with Æ ! 0 the asymptotic expansion

9



Æ

4k�2

M

�1

(�; b) = h�
�


T

+ o(1)(3.6)

is valid, where the vector �
 = (�


1

; : : : ; �


s+2k

)

T

is de�ned by

�


s+2i�1

= �

Y

j 6=i

(r

i

� r

j

)

�2

�

X

j 6=i

2

r

i

� r

j

; i = 1; : : : ; k;

(3.7)

�


1

= : : : = �


s

= 0; �


s+2i

= 0 i = 1; : : : ; k;

and the constant h is given by

h = ((2k � 1)!)

2

(

�

M

�1

(�; x))

m;m

:(3.8)

From formula (3.6) it follows that the maximal eigenvalue of the matrix M

�1

(�; b) is simple if Æ is

suÆciently small.

For a �xed value r = (r

1

; : : : ; r

k

) and �xed x 2 R in the representation (3.1) denote by " = "(x; r)

the maximal value (possibly 1) such that the matrix M

�1

(�; b) has a simple maximal eigenvalue

for all Æ � ": Then the function " : (x; r)! "(x; r) is continuous and the in�mum

inf

n

"(x; b)

�

�

�

x 2 [c

1

; d

1

]; min

i6=j

jr

i

� r

j

j � �; krk

2

= 1

o

is attained for some x

�

2 [c

1

; d

1

] and r

�

; which implies

"

�

= "(x

�

; r

�

) > 0:

This means that for any b 2 


"

�

;�

the multiplicity of the maximal eigenvalue of the information

matrix M

�1

(�; b) is equal one.

2

Theorem 3.2. Assume that the function ' : [c

1

; d

1

]� [c

2

; d

2

]! R satis�es

' 2 C

0;2k�1

([c

1

; d

1

]� [c

2

; d

2

])

and that the systems of functions

ff

1

(t; b); : : : ; f

m

(t; b)g

f

�

f

1

(t; x); : : : ;

�

f

m

(t; x)g

de�ned by (2.1) and (3.3), respectively, are Chebyshev systems on the interval [c

1

; d

1

] (for arbitrary

but �xed x; b

1

; : : : ; b

k

2 [c

2

; d

2

] with b

i

6= b

j

whenever i 6= j): If " is suÆciently small, then for any

b 2 


";�

the design �

�

c

�

de�ned by (2.12) and (2.14) is the unique E-optimal design in the regression

model (2.2).

Proof. The proof is a direct consequence of Lemma 2.2 and Lemma 3.1, which shows that the mul-

tiplicity of the maximum eigenvalue of the inverse information matrix of any design has multiplicity

one, if b 2 


";�

and " is suÆciently small.

2
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From Remark 2.4 we may expect that in general c-optimal designs in the regression model (1.1)

are not necessarily supported at the Chebyshev points. Nevertheless, an analogue of Lemma 3.1 is

available for speci�c vectors c 2 R

m

: The proof is similar as the proof of Lemma 3.1 and therefore

omitted (see also the proof of Theorem 3.5 below which uses similar arguments).

Lemma 3.3. Let e

i

= (0; : : : ; 0; 1; 0; : : : ; 0)

T

denote the ith unit vector in R

m

: Under the assump-

tions of Lemma 3.1 de�ne a vector ~
 = (0; : : : ; 0; 


1

; : : : ; 


2k

) 2 R

m

by




2i

=

Y

j 6=i

(r

i

� r

j

)

�2

i = 1; : : : ; k

(3.9)




2i�1

= �


2i

X

j 6=i

2

r

i

� r

j

i = 1; : : : ; k:

(i) If c 2 R

m

satis�es c

T

~
 6= 0, then for nay � > 0, suÆciently small " and any b 2 


";�

the

design �

c

(b) de�ned in (2.15) and (2.16) is c-optimal in the regression model (2.2).

(ii) The assumption c

T

~
 6= 0 is in particular satis�ed for the vector c = e

s+2j�1

for any j = 1; : : : k

and for the vector c = e

s+2j

for any j = 1; : : : ; k; which satis�es condition

X

`6=j

1

r

j

� r

`

6= 0:(3.10)

Remark 3.4. Note that it follows from the proof of Theorem 3.1 that the assumption of compact-

ness of the intervals is only required for the existence of the set 


";�

: In other words if condition

(3.1) is satis�ed and Æ is suÆciently small, the maximum eigenvalue of the matrix M

�1

(�; b) will

have multiplicity one (independently of the domain of the function '): The same remark applies

to the statement of Theorem 3.2 and Lemma 3.3.

Our �nal result of this section shows that under assumption (3.1) with small Æ the locally E- and

locally c-optimal designs for the vectors c considered in Lemma 3.3 are very close. To be precise

we assume that the assumptions of Theorem 3.2 are valid and consider the design

�

�

c

=

�

�

c

(x) =

 

�s

1

: : : �s

m

�w

1

: : : �w

m

!

(3.11)

where �s

1

; : : : ; �s

m

are the Chebyshev points corresponding to the system f

�

f

i

j i = 1; : : : ; mg de�ned

in (3.3),

�w

i

=

je

T

i

J

�

F

�1

cj

P

m

j=1

je

T

j

J

�

F

�1

cj

i = 1; : : : ; m(3.12)

with

�

F = (f

i

(�s

j

))

m

i;j=1

and c 2 R

m

is a �xed vector.

Theorem 3.5. Assume that the assumptions of Theorem 3.2 are satis�ed and that for the system

f

�

f

1

; : : : ;

�

f

m

g the Chebyshev points are unique.

(i) If Æ ! 0; the design �

�

c

�

(b) de�ned by (2.14) and (2.12) converges weakly to the design

�

�

e

m

(x)

de�ned by (3.11) and (3.12) for c = e

m

:

11



(ii) If c 2 R

m

satis�es c

T

~
 6= 0 for the vector ~
 de�ned in (3.9) and Æ ! 0, then the design �

�

c

(b)

de�ned by (2.15) and (2.16) converges weakly to the design

�

�

e

m

(x):

(iii) The assumption c

T

~
 6= 0 is in particular satis�ed for the vector c = e

s+2j�1

for any j = 1; : : : k

and for the vector c = e

s+2j

for any j = 1; : : : ; k, which satis�es the condition (3.10).

Proof. It follows from Theorem 3.2 that the design �

�

c

�

= �

�

c

�

(b) is locally E-optimal for suÆciently

small Æ > 0: In other words, if Æ is suÆciently small the design �

�

c

�

minimizes

max

kck

2

=1

c

T

M

�1

(�; b)c

in the class of all designs. Note that the components of the vector r = (r

1

; : : : ; r

k

) are ordered,

which implies

e

T

s+2i�1

~
 6= 0 i = 1; k:

Multiplying equation (5.4) in the Appendix with Æ

4k�2

it then follows from Theorem 5.1 in the

Appendix that for some subsequence Æ

k

! 0

�

�

c

�

!

^

�(x);

where the design

^

�(x) minimizes the function

max

kck

2

=1

(c

T

~
)

2

e

T

m

�

M

�1

(�; x)e

m

and the vector ~
 is de�ned by equation (3.7). The maximum is attained for c = ~
=k~
k

2

(indepen-

dently of the design �) and consequently

^

�(x) is e

m

-optimal in the linear regression model de�ned

by the regression function in (3.4). Now the functions

�

f

1

; : : : ;

�

f

m

generate a Chebyshev system and

the corresponding Chebyshev points are unique, which implies that the e

m

-optimal design

�

�

e

m

(x)

is unique. Consequently, every subsequence of designs �

�

c

�

(b) contains a weakly convergent subse-

quence with limit

�

�

e

m

(x) and this proves the �rst part of the assertion. For a proof of the second

part we note that a c-optimal design minimizes

c

T

M

�1

(�; b)c

in the class of all designs on the interval I: Now if c

T

~
 6= 0 and

e

T

s+2i�1

~
 = �

Y

j 6=i

(r

i

� r

j

)

�2

X

j 6=i

2

r

i

� r

j

6= 0

for some i = 1; : : : ; k; the same argument as in the previous paragraph shows that �

�

c

(b) converges

weakly to the design which maximizes the function

(~


T

c)

2

e

T

m

�

M

�1

(�; x)e

m

:

If e

T

s+2i�1

~
 = 0 for all i = 1; : : : ; k; the condition c

T

~
 6= 0 implies e

T

s+2i

~
 6= 0 for some i = 1; : : : ; k

and the assertion follows by multiplying equation (5.4) in the Appendix with Æ

4k�4

and similar

arguments. Finally, the third assertion follows directly from the de�nition of the vector ~
 in (3.9).

2
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Remark 3.6. Note that Theorem 3.2, Lemma 3.3 and Theorem 3.5 remain valid for the locally

optimal designs in the nonlinear regression model (1.1). This follows by a careful inspection of the

proofs of the previous results. For example, Theorem 5.1 in the Appendix shows that

Æ

4k�2

K

a

M

�1

(�; b)K

a

= h(K

a

~
)(K

a

~
)

T

+ o(1)

where the vector ~
 is de�ned in Lemma 3.3 and consequently, there exists a set 


";�

such that for

all b 2 


";�

the maximum eigenvalue of the inverse information matrix in the model (1.1) is simple.

Similary, if Æ ! 0 and (3.1) is satis�ed, c-optimal designs in the nonlinear regression model are

given by the design �

�c

(b) in (2.15) and (2.16) with �c = K

a

c whenever ~


T

�c 6= 0 and all these designs

converge weakly to the e

m

-optimal design in the linear regression model de�ned by the functions

(3.4).

We �nally remark that Theorem 3.5 and Remark 3.6 indicate that E-optimal designs are very

eÆcient for estimating the parameters a

s+1

; b

1

; : : : ; a

s+k

; b

k

in the nonlinear regression model (1.1)

and the linear model (2.2), because for small di�erences jb

i

� b

j

j the E-optimal design and the op-

timal design for estimating the individual coeÆcients are close to the optimal design for estimating

the coeÆcient b

k

: Therefore we expect E-optimal designs to be more eÆcient for estimating these

parameters than D-optimal designs. We will illustrate this fact in the following section, which

discusses the rational model in more detail.

4 Rational models

In this section we discuss the rational model (1.2) in more detail, where the design space is a

compact or semin�nite interval I: In contrast to the work of Imhof and Studden (2001) we assume

that the nonlinear parameters b

1

; : : : ; b

k

62 I are not known by the experimenter but have to be

estimated from the data. A typical application of this model can be found in the work of Dudzinski

and Mykytowycz (1961), where this model was used to describe the relation between the weight of

the dried eye lens of the European rabbit and the age of the animal. In the notation of Section 2

and 3 we have f(t) = f(t; b) = (f

1

(t); : : : ; f

m

(t))

T

with

f

i

(t) = f

i

(t; b) = t

i�1

i = 1; : : : ; s

f

s+2i�1

(t) = f

s+2i�1

(t; b) =

1

t� b

i

i = 1; : : : ; k(4.1)

f

s+2i

(t) = f

s+2i

(t; b) =

1

(t� b

i

)

2

i = 1; : : : ; k

and the equivalent linear regression model is given by (1.4). The corresponding limiting model is

determined by the regression functions

�

f(t) =

�

f(t; x) = (

�

f

1

(t; x); : : : ;

�

f

m

(t; x))

T

with

�

f

i

(t) = t

i�1

; i = 1; : : : ; s

(4.2)

�

f

i+s

(t) =

�

f

s+i

(t; x) =

1

(t� x)

i

; i = 1; : : : ; 2k:

Some properties of the functions de�ned by (4.1) and (4.2) are discussed in the following lemma.
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Lemma 4.1. De�ne

B = fb = (b

1

; : : : ; b

k

)

T

2 R

k

j b

i

62 I; b

i

6= b

j

g ;

then the following assertions are true.

(i) If I is a �nite interval or I � [0;1) and b 2 B; then the system

ff

1

(t

1

; b); : : : ; f

m

(t; b)g

de�ned in (4.1) is a Chebyshev system on the interval I: If x 62 I then the system

f

�

f

1

(t; x); : : : ;

�

f

m

(t; x)g

de�ned by (4.2) is a Chebyshev system on the interval I:

(ii) Assume that b 2 B and that one of the following conditions is satis�ed

(a) I � [0;1)

(b) s = 1 or s = 0:

For any j 2 f1; : : : ; kg the system of regression functions

ff

i

(t; b) j i = 1; : : : ; m; i 6= s + 2jg

is a Chebyshev system on the interval I:

(iii) If I is a �nite interval or I � [0;1); k � 2 and j 2 f1; : : : ; kg; then there exists a nonempty

set W

j

� B such that for all b 2 W

j

the system of functions

ff

i

(t; b) j i = 1; : : : ; m; i 6= s+ 2j � 1g

is not a Chebyshev system on the interval I:

Proof. Part (iii) follows from Remark 2.4. Part (i) and (ii) are proved similary and we restrict our-

selves to the �rst case. For this purpose we introduce the functions  (t; b) = ( 

1

(t;

~

b); : : : ;  

m

(t;

~

b))

T

with

 

i

(t;

~

b) = t

i�1

i = 1; : : : ; s

(4.3)

 

s+i

(t;

~

b) =

1

t�

~

b

i

i = 1; : : : ; 2k;

where

~

b = (

~

b

1

; : : : ;

~

b

2k

)

T

is a �xed vector with pairwise di�erent components. With the notation

L(�) =

 

I

s

0

0 G

k

(�)

!

2 R

m�m

G

k

(�) =

0

B

@

G(�)

.

.

.

G(�)

1

C

A

2 R

2k�2k

; G(�) =

 

1 0

�

1

�

1

�

!

2 R

2�2
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(here I

s

is the s� s identity matrix) it is easy to verify that

f(t; b) = L(�) (t;

~

b

�

) + o(1) ;(4.4)

where

~

b

�

= (b

1

; b

1

+ �; : : : ; b

k

; b

k

+ �)

T

: For a �xed vector T = (t

1

; : : : ; t

m

)

T

2 R

m

with ordered

components t

1

< : : : < t

m

such that t

i

2 I (i = 1; : : : ; m) de�ne the matrices

F (T; b) = (f

i

(t

j

; b))

m

i;j=1

;

 (T;

~

b) = ( 

i

(t

j

;

~

b))

m

i;j=1

;

then we obtain from (4.4)

detF (T; b) = lim

�!0

1

�

k

 (T;

~

b

�

) =

Q

1�i<j�m

(t

j

� t

i

)

Q

1�i<j�k

(b

i

� b

j

)

4

Q

k

i=1

Q

m

j=1

(t

j

� b

i

)

2

;(4.5)

where the last identity follows from the fact that  (T;

~

b) is a Cauchy-Vandermonde matrix, which

implies

det (T;

~

b) =

Q

1�i<j�m

(t

j

� t

i

)

Q

1�i<j�2k

(

~

b

i

�

~

b

j

)

Q

2k

i=1

Q

m

j=1

(t

j

�

~

b

i

)

:

Now for any b 2 B the right hand side does not vanish and is of one sign independently of T:

Consequently ff

i

(t; b) j i = 1; : : : ; mg is a Chebyshev system on the interval I: The assertion

regarding the system f

�

f

i

(t; x) j i = 1; : : : ; mg is proved similary and therefore left to the reader.

2

The case k = 1 will be studied more explicitly in Example 4.5 and 4.6. Note that the third part

of Lemma 4.1 shows that for k � 2 the main condition in Theorem 2.1 in the paper of Imhof and

Studden (2001) is not satis�ed in general for the linear regression model with the functions given

by (4.1). These authors assumed that every subsystem of ff

1

; : : : ; f

m

g which consists of m � 1 of

these functions is a weak Chebyshev system on the interval I: Because the design problem for this

model is equivalent to the design problem for the model (1.2) (where the nonlinear parametes are

not known and have to be estimated) it follows that in general we cannot expect locally E-optimal

designs for the rational model to be supported at the Chebyshev points. However, the linearized

regression model (1.4) is a special case of the general model (2.2) with '(t; b) = (t � b)

�1

and all

results of Section 3 are applicable here. In particular we obtain that the E-optimal designs and

the optimal designs for estimating the individual coeÆcients a

s+1

; b

1

; : : : ; a

s+k

; b

k

are supported at

the Chebyshev points if the nonlinear parameters b

1

; : : : ; b

k

are suÆciently close [see Theorem 3.2,

Lemma 3.3 and Remark 3.6].

Theorem 4.2.

(i) If s = 1; then the Chebyshev points s

1

= s

1

(b); : : : ; s

m

= s

m

(b) for the system of regression

functions in (4.1) on the interval [�1; 1] are given the roots of the polynomial

(1� t

2

)

4k

X

i=0

d

i

U

�2k+s+i�2

(t);(4.6)
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where U

j

(x) denotes the jth Chebyshev polynomial of the second kind [see Szeg�o (1975)],

U

�1

(x) = 0; U

�n

(x) = �U

n�2

(x) and the factors d

0

; : : : ; d

4k

are de�ned as the coeÆcients of

the polynomial

4k

X

i=0

d

i

t

i

=

k

Y

i=1

(t� �

i

)

4

;(4.7)

where

2b

i

= �

i

+

1

�

i

i = 1; : : : ; k:

(ii) Let 


E

� B denote the set of all b such that an E-optimal design for the model (1.4) is given

by (2.14) and (2.12), then 


E

66= ;.

Proof. The second part of the theorem is a direct consequence of Lemma 4.1 and Theorem 3.2,

while the �rst part of the proposition follows by Theorem A.2 in Imhof and Studden (2001).

2

Remark 4.3.

(a) The Chebyshev points for the system (4.1) on an arbitrary �nite interval I � R can be

obtained by rescaling the points onto the interval [�1; 1]: The case s = 0 and I = [0;1) will

be discussed in more detail in Examples 4.5 and 4.7.

(b) It follows from Theorem 3.2 that the set 


E

de�ned in the second part of Theorem 4.1

contains the set 


";�

de�ned in (3.2) for suÆciently small ": In other words: if the nonlinear

parameters b

1

; : : : ; b

k

are suÆciently close the locally E-optimal design will be supported at

the Chebyshev points with weights given by (2.12). Moreover, we will demonstrate in the

subsequent examples that in many cases the set 


E

coincides with the full set B:

(c) In applications the Chebyshev points can be calculated numerically with the Remez algorithm

[see Studden and Tsay (1976) or DeVore and Lorentz (1993)]. In some cases these points can

be obtained explicitly (see Example 4.5 and 4.6).

Remark 4.4. We note that a similar result is valid for c-optimal designs in the rational regression

model (1.4). For example assume that one of the assertions of Lemma 4.1 is valid and that we are

interested in estimating a linear combination c

T

� of the parameters in the rational model (1.4).

We obtain from Lemma 3.3. that if c 2 R

m

satis�es c

T

~
 6= 0, then for suÆciently small " and

any b 2 


";�

the design �

c

(b) de�ned in (2.15) and (2.16) is c-optimal. In particular this is true

for c = e

s+2j�1

(for all j = 1; : : : ; k) and the vector c = e

s+2j

if the index j satsi�es the condition

(3.10). Note that due to the third part of Lemma 4.1 in the case k � 2 there exists b 2 B such

that the e

s+2j

-optimal design is not necessarily supported at the Chebyshev points. However, from

Theorem 3.5 it follows that for a vector b 2 B satisfying (3.1) with Æ ! 0 and any vector c with

c

T

~
 6= 0 we have for the designs �

�

c

�

(b) and �

�

c

(b) de�ned by (2.14) and (2.15)

�

�

c

�

(b) !

�

�

e

m

(x)

�

�

c

(b) !

�

�

e

m

(x) ;
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where the design

�

�

e

m

(x) is de�ned in (3.11) and (3.12), respectively, and e

m

-optimal in the limiting

model with the regression functions (4.2).

Example 4.5. Consider the rational model

Y =

a

t� b

+ "; t 2 [0;1)(4.8)

with b < 0 (here we have k = 1; s = 0; I = [0;1)): The corresponding equivalent linear regression

model is given by

Y = �

T

f(t; b) =

�

1

t� b

+

�

2

(t� b)

2

:(4.9)

In this case it follows from the �rst part of Lemma 4.1 that the system of regression functions

n

1

t� b

;

1

(t� b)

2

o

= ff

1

(t); f

2

(t)g

is a Chebyshev system on the interval [0;1); whenever b < 0: Moreover, any subsystem (consisting

of one function) is obviously a Chebyshev system on the interval [0;1): The Chebyshev points are

the (local) extrema of the function

g(t) = �

�

1

t� b

+

�

(t� b)

2

�

;

where � and � are determined by the condition

g(t) � 1 8 t 2 [0;1)

g(s

j

) = (�1)

j

j = 1; 2:

It is easy to see that s

1

= 0 and that s

2

is the positive solution of the equation g

0

(t) = 0; which

implies

� =

b� s

2

2

:

Observing the relation g(s

1

) = �g(s

2

) we obtain by a straightforward calculation

s

2

=

p

2jbj = �

p

2b

and the condition g(s

1

) = g(0) = �1 implies

� =

�2

p

2� 1

b;

which determines the Chebyshev polynomial explicitly. Now we consider the design �

�

c

(b) de�ned

in (2.15) as a candidate for the c-optimal design in the model (4.9). The weights (for any c 2 R

2

)

are obtained from formula (2.16), where the matrix F is given by

F = (f

i

(s

j

))

2

i;j=1

=

0

B

B

@

1

jbj

1

(

p

2 + 1)jbj

1

b

2

1

(

p

2 + 1)

2

b

2

1

C

C

A

:

17



A straightforward calculation shows that

F

�1

c =

1

2

 

jbj(�

p

2c

1

+ (2 +

p

2)c

2

b)

�jbj(4 + 3

p

2)(�c

1

+ c

2

b)

!

;

which gives

�

�

c

(b) =

 

0

p

2jbj

w

1

w

2

!

;(4.10)

where the weights are given by

!

1

= 1� !

2

=

jb(�

p

2c

1

+ (2 +

p

2)c

2

b)j

jbjf�

p

2c

1

+ (2 +

p

2)c

2

b j +(4 + 3

p

2)j � c

1

+ c

2

bjg

:

It can easily be checked by Elfving's theorem [see Elfving (1952)] or by the equivalence theorem for

c-optimality [see Pukelsheim (1993)] that this design is in fact c-optimal in the regression model

(4.9) whenever

c

2

c

1

62

h

1

b

;

1

(1 +

p

2)b

i

:

In the remaining cases the c-optimal design is a one point design supported at t = b �

c

1

c

2

: In

particular, by Lemma 2.3, the e

1

- and e

2

-optimal design for estimating the coeÆcients �

1

and �

2

in the model (4.9) are given by

�

�

e

1

(b) =

 

0

p

2jbj

1

4

(2�

p

2)

1

4

(2 +

p

2)

!

;

(4.11)

�

�

e

2

(b) =

 

0

p

2jbj

1�

1

p

2

1

p

2

!

;

respectively. It follows from the results of Imhof and Studden (2001) that an E-optimal design in

the regression model (4.9) is given by the c

�

-optimal design for the Chebyshev vector

c

�

= (1 +

p

2)jbj(�2; jbj(1 +

p

2))

T

;

that is

�

�

E

=

 

0

p

2jbj

w

1

w

2

!

;(4.12)

where

w

1

=

1

2

(2�

p

2)(6� 4

p

2 + b

2

)

b

2

+ 12� 8

p

2

= 1�

1

2

p

2(2

p

2� 2 + b

2

)

b

2

+ 12� 8

p

2

= 1� w

2

:

The corresponding information matrix is obtained by a tedious calculation

M(�

�

E

(b); b) =

0

B

B

B

B

B

@

(

p

2� 1)(b

2

+ 6

p

2� 8)

b

2

(b

2

+ 12� 8

p

2)

2(3�

p

2)(b

2

+

p

2� 1)

b

3

(b

2

+ 12� 8

p

2)

2(3�

p

2)(b

2

+

p

2� 1)

b

3

(b

2

+ 12� 8

p

2)

(8

p

2� 11)(7b

2

+ 16

p

2� 20)

7b

4

(b

2

+ 12� 8

p

2)

1

C

C

C

C

C

A

(4.13)
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and has a minimum eigenvalue

�

min

(M(�

�

E

(b); b) =

17� 2

p

2

b

2

(b

2

+ 12� 8

p

2)

=

1

kc

�

k

2

of multiplicity 1 with corresponding eigenvector c

�

: Note that for b! �1 this design approximates

the optimal design �

�

e

2

(b) for estimating the individual coeÆcient �

2

in the rational model (4.9).

It is of some interest to compare these designs with the locally D-optimal design. It follows from

the results in He, Studden and Sun (1996) and a straightforward calculation that this design is

given by

�

�

D

=

 

0 jbj

1

2

1

2

!

:(4.14)

The designs are now compared by their eÆciencies for estimating the coeÆcients �

1

and �

2

; i.e.

e�

i

(�) =

�

e

T

i

M

�1

(�; b)e

i

e

T

i

M

�1

(�

�

e

i

; b)e

i

�

�1

i = 1; 2:(4.15)

The values e

T

i

M

�1

(�

�

e

i

; b)e

i

can be directly obtained from the Chebyshev vector, which gives

e

T

i

M

�1

(�

�

e

i

; b)e

i

=

(

4(1 +

p

2)

2

b

2

if i = 1

(1 +

p

2)

4

b

4

if i = 2:

Now a striaghtforward calculation yields for the eÆciencies of the D-optimal design de�ned by

(4.14)

e�

i

(�

�

D

) =

8

>

>

>

>

<

>

>

>

>

:

4(

p

2 + 1)

2

34

� 0:6857 if i = 1

(

p

2 + 1)

4

40

� 0:8493 if i = 2:

The corresponding eÆciencies of the E-optimal design in the regression model (4.9) depend on the

parameter b and are obtained by a straightforward but tedious inversion of the matrix M(�

�

E

(b); b)

de�ned in (4.13), that is

e�

i

(�

�

E

(b)) =

8

>

>

>

>

>

<

>

>

>

>

>

:

28(b

4

(5

p

2� 7) + b

2

(34

p

2� 48) + 396� 280

p

2)

(9

p

2� 11)(b

2

� 8

p

2 + 12)(7b

2

+ 16

p

2� 20)

if i = 1

b

4

(

p

2� 1) + (6

p

2� 8)b

2

+ 68� 48

p

2

(

p

2� 1)(b

2

� 8

p

2 + 12)(b

2

� 6

p

2 + 8)

if i = 2:

(4.16)

The corresponding eÆciencies are depicted in Figure 4.1 for the range b 2 [�2:5;�1]: We observe

for the e

1

-eÆciency for all b � �1

0:9061 �

4(5

p

2� 7)

(8

p

2� 11)

= lim

b!�1

e�

1

(�

�

E

(b)) � e�

1

(�

�

E

(b)) � e�

1

(�

�

E

(�1)) � 0:9595;
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Figure 4.1: EÆciencies of the E-optimal design �

�

(b) for estimating the individual coeÆcients in

the regression model (4.9) for various values of b 2 [�2:5;�1]: Solid line: e�

1

(�

�

(b)), dotted line:

e�

2

(�

�

(b)).

and similary for the e

2

-eÆciency

0:9805 � e�

2

(�

�

E

(�1)) � e�

2

(�

�

E

(b)) � lim

b!�1

e�

2

(�

�

E

(b)) = 1:

This demonstrates that the E-optimal designs yield substantially more accurate estimates for the

individual parameters in the regression model (4.9) than the D-optimal design.

We �nally mention the results for the locally optimal design in the rational model (4.8), which maxi-

or minimize the corresponding functional for the matrix K

�1

a

M(�; b)K

�1

a

, where K

a

= diag(1;�

1

a

):

Obviously the locally e

1

-, e

2

- and D-optimal designs are given by (4.11) and (4.14), respectively

and coincide with the corresponding designs in the equivalent linear regression model (4.9). On the

other hand the c-optimal design for the rational model (4.8) is obtained from the �c-optimal design

�

�

�c

(b) in (4.10) for the model (4.9) with �c = K

a

c = (c

1

;�c

2

=a)

T

: Similary, the locally E-optimal

design for the rational model (4.8) is given by

�

�

E

=

 

0

p

2jbj

w

�

1

w

�

2

!

;

where the weights are given by

w

�

1

=

2

p

2a

2

+ (4 + 3

p

2)b

2

2f4(1 +

p

2)a

2

+ (7 + 5

p

2)b

2

g

= 1�

(4 + 3

p

2)(2a

2

+ (1 +

p

2)b

2

)

2f4(1 +

p

2)a

2

+ (7 + 5

p

2)b

2

g

= 1� w

�

2

:

A comparison of the eÆciencies for the D- and E-optimal design in the rational model (4.8) yields

similar results as in the corresponding equivalent linear regression model (4.9). For a broad range

of parameter values (a; b) the locally E-optimal designs in the rational model (4.8) are substantially

more eÆcient for estimating the individual parametes than the locally D-optimal designs.

Example 4.6. We now consider the rational model

Y = a

1

+

a

2

t� b

+ "; t 2 [�1; 1];(4.17)
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where jbj > 1: The corresponding equivalent linear regression model is given by

Y = �

1

+

�

2

t� b

+

�

3

(t� b)

2

+ "; t 2 [�1; 1];(4.18)

and the �rst part of Lemma 4.1 shows that this system is a Chebyshev system on the interval

[�1; 1]: Moreover, the three subsystems obtained by deleting one of the regression functions form

also weak Chebyshev systems (this follows partially from Lemma 4.1 (ii), while the remaining

case has to be checked directly). Therefore the optimal designs for estimating the individual

coeÆcients and the E-optimal design are supported at the Chebyshev points, which are given by

s

1

= �1; s

2

= 1=b; s

3

= 1: A similar calculation as in Example 4.5 shows that the E-optimal design

in the equivalent linear regression model (4.18) is given by

�

�

E

=

 

�1

1

b

1

w

1

w

2

w

3

!

;

where

w

1

=

b + 1

2

�

2b

7

� 2b

6

+ 2b

5

+ 2b

4

� 4b

3

� 2b

2

+ b + 2

4b

8

� 4b

4

� 4b

2

+ 5

;

w

2

=

(b

2

� 1)(2b

6

+ 2b

4

� 3)

4b

8

� 4b

4

� 4b

2

+ 5

;

w

3

=

b� 1

2

�

2b

7

+ 2b

6

+ 2b

5

� 2b

4

� 4b

3

+ 2b

2

+ b� 2

4b

8

� 4b

4

� 4b

2

+ 5

;

Here we have used Lemma 2.2 and the fact that the vector of the coeÆcients of the Chebyshev

polynomial is given by

c

�

= (2b

2

� 1; 4b(b

2

� 1); 2(b

2

� 1)

2

)

T

:

The optimal designs for estimating the individual coeÆcients �

1

; �

2

; �

3

are given by

�

�

e

1

=

 

�1

1

b

1

b(1+b)

2(2b

2

�1)

b

2

�1

2b

2

�1

b(b�1)

2(2b

2

�1)

!

;

�

�

e

2

=

 

�1

1

b

1

1

8

(2 +

1

b

)

1

2

1

8

(2�

1

b

)

!

;

�

�

e

3

=

 

�1

1

b

1

�

1

4

1

2

1

4

!

;

respectively. We note again that for jbj ! 1 all designs are approximated by the optimal design

�

�

e

3

for estimating the individual coeÆcient �

3

: The corresponding eÆciencies e�

i

(�

�

E

(b)) i = 1; 2; 3

are depicted in Figure 4.2 for the interval [2; 4] and demonstrate again that the locally E-optimal

design is highly eÆcient for estimating the coeÆcients �

1

; �

2

; �

3

in the model (4.18). The locally

D-optimal design can be obtained by similar arguments as given in Example 4.5, that is

�

�

D

(b) =

 

�1

1

b

1

1

3

1

3

1

3

!

;
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Figure 4.2: EÆciencies of the E-optimal design �

�

(b) for estimating the individual coeÆcients in

the regression model (4.18) for various values of b 2 [2; 4]: Solid line: e�

1

(�

�

(b)), dotted line:

e�

2

(�

�

(b)), dashed line: e�

3

(�

�

(b)).

while the corresponding eÆciencies can be calculated explicitly and are given by

e�

i

(�

�

D

(b)) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

2(2b

2

� 1)

2

3(3b

4

� 3b

2

+ 2)

if i = 1

32b

2

3 + 36b

2

if i = 2

2

9

if i = 3:

Again we observe that locally E-optimal design yield substantially more accurate estimates of the

individual parameters than D-optimal designs. Finally, the locally optimal designs for the rational

model (4.17) are obtained as follows. The optimal designs for estimating the individual coeÆcients

and the locally D-optimal design coincide with the corresponding designs in the linear regression

model (4.18) while the locally E-optimal design puts masses

w

�

1

=

2(b

2

� 1)

4

+ a

2

2

b(8b

5

+ 4b

4

� 14b

3

� 6b

2

+ 7b+ 3)

2f4(b

2

� 1)

4

+ a

2

2

(16b

6

� 28b

4

+ 12b

2

+ 1g

;

w

�

2

=

(b

2

� 1)f2(b

2

� 1)

3

+ a

2

2

(8b

4

� 6b

2

� 1)g

4(b

2

� 1) + a

2

2

(16b

6

� 28b

4

+ 12b

2

+ 1)

;

w

�

3

=

2(b

2

� 1)

4

+ a

2

2

b

2

(8b

5

� 4b

4

� 14b

2

+ 6b

2

+ 7b� 3)

2f4(b

2

� 1)

4

+ a

2

2

(16b

6

� 28b

4

+ 12b

2

+ 1)g

at the points �1; 1=b and 1; respectively.

Example 4.7. We now discuss optimal designs for the rational model

Y =

a

1

t� b

1

+

a

2

t� b

2

+ "; t 2 [0;1)(4.19)

where b

1

; b

2

< 0; jb

2

� b

2

j > 0 (k = 2; s = 0): The corresponding equivalent linear regression model

is given by

Y =

�

1

t� b

1

+

�

2

(t� b

1

)

2

+

�

3

t� b

2

+

�

4

(t� b

2

)

2

+ ":(4.20)
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Locally D-optimal designs for the model (4.19) [or equivalently (4.20)] have been determined by

Melas (2001), while the optimal designs for estimating the individual coeÆcients can be obtained

numerically from the results of this paper. We now compare these designs by looking at D-, E- and

e

i

-eÆciencies. For the sake of brevity we restrict ourselves to the model (4.20), which corresponds

to the locally optimal design problem for the model (4.19) with (a

1

; a

2

) = (1; 1): In our comparison

we will also include the E-optimal design in the limiting model under assumption (3.1), i.e.

Y =

�

1

t� x

+

�

2

(t� x)

2

+

�

3

(t� x)

3

+

�

4

(t� x)

4

+ "(4.21)

where the parameter x is chosen as x = (b

1

+ b

2

)=2: Without loss of generality we assume that

x = �1; because in the general case the optimal designs can be obtained by a simple scaling

argument. The limiting optimal design was obtained numerically and is given by

�

�

E

(�1) =

 

0 0:18 1:08 7:9

0:13 0:26 0:27 0:34

!

:(4.22)

Table 4.1: D- and E-optimal designs for linear regression model (4.20) on the interval [0;1), where

b

1

= �1� z; b

2

= �1+ z. These designs are locally D- and E-optimal in the rational model (4.19)

for the initial parameter a

1

= a

2

= 1. Note that the smallest support point of the D-optimal design

(t

�

1D

) and E-optimal design (t

�

1E

) are equal to 0 and that the masses of the D-optimal design are

equal.

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

t

�

2D

0.21 0.20 0.20 0.19 0.17 0.15 0.13 0.10 0.06 0.04

t

�

3D

1.00 0.98 0.95 0.92 0.87 0.80 0.71 0.60 0.44 0.31

t

�

4D

4.78 4.73 4.65 4.54 4.39 4.19 3.94 3.60 3.13 2.78

t

�

2E

0.18 0.17 0.17 0.16 0.15 0.13 0.11 0.09 0.05 0.03

t

�

3E

1.08 1.06 1.03 0.99 0.94 0.87 0.77 0.65 0.47 0.34

t

�

4E

7.85 7.77 7.65 7.46 7.21 6.88 6.45 5.88 5.05 4.43

w

�

1E

0.13 0.13 0.13 0.13 0.12 0.10 0.08 0.07 0.05 0.03

w

�

2E

0.26 0.26 0.27 0.26 0.25 0.22 0.20 0.17 0.13 0.10

w

�

3E

0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

w

�

4E

0.34 0.33 0.33 0.33 0.36 0.39 0.44 0.49 0.54 0.59

From Theorem 3.2 we obtain that for suÆciently small

� = j

b

1

� b

2

2

j

the E-optimal designs for the model (4.20) is given the design �

�

c

�

(b) de�ned in (2.12) and (2.14).

From Lemma 2.2 it follows that the design �

�

c

�

(b) is E-optimal, whenever

�

c

�

:=

c

�T

M(�

�

E

(b); b)c

�

c

�T

c

�

� �

(2)

(M(�

�

E

(b); b)) = �

(2)

;
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Table 4.2: The eÆciency of the E-optimal designs �

�

E

in the linear regression model (4.20) on the

interval [0;1) with b

1

= �1�z; b

2

= �1+z and the eÆciency of the E-optimal design �

�

E

(�1) given

in (4.22) in the corresponding limiting model (4.21). The eÆencies e�

D

(�), d

i

(�) and C

E

(�)are

de�ned in (4.23), (4.24) and (4.25), respectively.

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d

1

(�

�

E

) 0.81 0.81 0.81 0.83 0.87 1.04 1.28 0.72 0.52 0.48

d

2

(�

�

E

) 0.80 0.79 0.79 0.78 0.76 0.74 0.71 0.68 0.63 0.59

d

3

(�

�

E

) 0.81 0.81 0.81 0.81 0.83 0.86 0.94 1.08 1.38 1.79

d

4

(�

�

E

) 0.82 0.82 0.84 0.85 0.89 0.97 1.12 1.36 1.89 2.53

d

1

(

�

�

�

E

(�1)) 0.81 0.81 0.82 0.83 0.87 0.93 0.95 0.92 1.14 1.37

d

2

(

�

�

�

E

(�1)) 0.80 0.79 0.80 0.82 0.86 0.94 1.09 1.38 2.04 2.81

d

3

(

�

�

�

E

(�1)) 0.81 0.81 0.81 0.83 0.86 0.93 1.09 1.51 3.42 10.00

d

4

(

�

�

�

E

(�1)) 0.82 0.82 0.84 0.85 0.88 0.94 1.08 1.49 3.48 10.59

e�

D

(�

�

E

) 0.89 0.89 0.89 0.89 0.88 0.85 0.81 0.75 0.67 0.60

e�

D

(

�

�

�

E

(�1)) 0.89 0.89 0.89 0.88 0.88 0.87 0.84 0.78 0.63 0.48

C

E

(�

�

E

) 1.23 1.23 1.23 1.25 1.27 1.32 1.39 1.47 1.61 1.75

C

E

(

�

�

�

E

(�1)) 1.23 1.23 1.23 1.22 1.16 1.08 0.92 0.72 0.50 0.38

where �

min

(M(�

�

E

(b); b)) � �

(2)

� : : : � �

(m)

denote the ordered eigenvalues of the matrixM(�

�

E

(b); b):

The ratio �

(2)

=�

c

�

is exemplarily depicted in Figure 4.3 for b

1

= 1 and a broad range of b

2

values,

which shows that it is always bigger than 1: Other cases yield a similar picture and practically the

locally E-optimal design for the rational model (4.19) and the equivalent linear regression model

(4.20) is always supported at the Chebyshev points and given by (2.12) and (2.14). In Table 4.1

and 4.2 we give the main characteristics and eÆciencies for the locally E- and D-optimal design

�

�

E

(b); �

�

D

(b) and for the E-optimal design

�

�

�

E

(

b

1

+b

2

2

) in the limiting regression model (4.21). The

eÆciencies are calculated with respect to the D-optimal design for various values of the nonlinear

parameters b

1

; b

2

and are de�ned by

e�

D

(�) =

�

detM(�; b)

detM(�

�

D

; b)

�

1=m

(4.23)

d

i

(�) =

e

T

i

M

�1

(�; b)e

i

e

T

i

M

�1

(�

�

D

; b)e

i

(4.24)

(in other words: we compare the performance of the design � for estimating individual coeÆcients

with respect to the D-optimal design) and

C

E

(�) =

�

min

(M(�; b))

�

min

(M(�

�

D

; b)

:(4.25)

Again we observe a very good performance of the E-optimal designs. These designs produce

a reasonable D-eÆciency for a moderate size of the di�erence jb

1

� b

2

j; but are in many cases

substantially more eÆcient than the D-optimal designs for estimating the individual coeÆcients.
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The behaviour of the design

�

�

E

in the limiting regression model (4.20) is interesting from a practical

point of view because it is very similar to the performance of the E-optimal design for a broad

range of b

1

and b

2

values. Consequently, this design might be appropriate if rather unprecise prior

information for the nonlinear parameters is available. For example, if it is known (by scienti�c

background) that b

1

2 [b

1

;

�

b

1

]; b

2

2 [b

2

;

�

b

2

] the design

�

�

E

�

b

1

+

�

b

2

2

�

might be a robust choice for practical experiments.

Figure 4.3: The ratio �

(2)

=�

c

�

for the design �

�

E

(b), where b = (�1; b

2

). The designs are E-optimal

if this ratio is larger or equal than 1.

Example 4.8. Our �nal example discusses the rational model (4.19) with an additional term for

the intercept

Y = a

1

+

a

2

t� b

1

+

a

3

t� b

2

+ "; t 2 [�1; 1](4.26)

where jb

i

j > 1 (i = 1; 2) and jb

2

� b

2

j > 0 (this corresponds to the case k = 2; s = 1 in the general

model (1.4). The limiting model is given by

Y = �

1

+

�

2

t� x

+

�

3

(t� x)

2

+

�

4

(t� x)

3

+

�

5

(t� x)

4

+ ":(4.27)

The notation is essentially the same as in the previous example. Our numerical study showed

that the locally E-optimal design for the model (4.26) is supported at the Chebyshev points for

all choices of the parameters (b

1

; b

2

) (jb

i

j > 1; b

1

6= b

2

): In Table 4.3 and 4.4 we display the main

features of the locally E- and D-optimal designs �

�

E

; �

�

D

and the E-optimal design

�

�

E

�

b

1

+b

2

2

�

in the

limiting regression model (4.27), which is given by

�

�

E

(�3) =

 

�1 �0:84 �0:33 0:49 1

1

8

1

4

1

4

1

4

1

8

!

:(4.28)

The conclusions are very similar as in the previous Example 4.7. This indicates that the observations

from this example are in some sense representative.
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Table 4.3: Locally D- and E-optimal designs for the rational regression model (4.26) on the interval

[�1; 1], where b

1

= �3 � z; b

2

= �3 + z, a

3

= a

2

= 1: Note that the largest and smallest support

point of the locally E- and D-optimal design satisfy t

�

5E

= t

�

5D

= 1 and t

�

1E

= t

�

1D

= �1; respectively,

while the masses of the locally D-optimal design are all equal.

z 0.1 0.2 0.3 0.5 1 1.5 1.9

t

�

2D

-0.81 -0.81 -0.81 -0.82 -0.83 -0.87 -0.95

t

�

3D

-0.32 -0.34 -0.34 -0.34 -0.38 -0.47 -0.70

t

�

4D

0.41 0.41 0.41 0.40 0.37 0.29 0.08

t

�

2E

-0.84 -0.84 -0.84 -0.85 -0.86 -0.89 -0.96

t

�

3E

-0.33 -0.33 -0.34 -0.34 -0.38 -0.47 -0.70

t

�

4E

0.49 0.49 0.49 0.48 0.45 0.38 0.17

w

�

1E

0.13 0.13 0.13 0.12 0.11 0.09 0.05

w

�

2E

0.25 0.25 0.25 0.25 0.22 0.20 0.14

w

�

3E

0.25 0.25 0.25 0.25 0.25 0.25 0.25

w

�

4E

0.25 0.25 0.25 0.25 0.28 0.30 0.36

w

�

5E

0.12 0.12 0.12 0.13 0.14 0.16 0.20

Table 4.4: The eÆciency of the E-optimal designs �

�

E

in the rational regression model (4.26) on

the interval [�1; 1] with b

1

= �3� z; b

2

= �3 + z, a

3

= a

2

= 1 and the eÆciency of the E-optimal

design

�

�

E

(�1) given in (4.28) in the corresponding limiting model (4.27). The eÆencies e�

D

(�),

d

i

(�) and C

E

(�) are de�ned in (4.23), (4.24) and (4.25), respectively.

z 0.1 0.2 0.3 0.5 1 1.5 1.9

d

1

(�

�

E

) 0.86 0.87 0.87 0.87 0.84 0.82 0.75

d

2

(�

�

E

) 0.83 0.84 0.84 0.84 0.85 0.90 1.21

d

3

(�

�

E

) 0.83 0.84 0.84 0.84 0.87 0.97 1.53

d

4

(�

�

E

) 0.83 0.84 0.84 0.83 0.88 0.81 0.74

d

5

(�

�

E

) 0.83 0.84 0.84 0.84 0.83 0.82 0.76

d

1

(

�

�

�

E

(�3)) 0.86 0.88 0.88 0.89 0.96 1.31 3.62

d

2

(

�

�

�

E

(�3)) 0.83 0.84 0.84 0.84 0.85 1.05 5.74

d

3

(

�

�

�

E

(�3)) 0.83 0.84 0.84 0.84 0.84 1.01 5.72

d

4

(

�

�

�

E

(�3)) 0.83 0.84 0.84 0.83 1.08 1.28 3.74

d

5

(

�

�

�

E

(�3)) 0.83 0.84 0.84 0.84 0.88 1.21 3.94

e�

D

(�

�

E

) 0.93 0.93 0.93 0.93 0.93 0.91 0.83

e�

D

(

�

�

�

E

(�3)) 0.93 0.93 0.93 0.93 0.93 0.91 0.66

C

E

(�

�

E

) 1.20 1.19 1.19 1.19 1.20 1.22 1.33

C

E

(

�

�

�

E

(�3)) 1.20 1.19 1.19 1.19 1.14 0.82 0.26
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5 Appendix: Some auxiliary results

Recall the notation in Section 2 and 3

f

i

(t) = h

i

(t) t = 1; : : : ; s(5.1)

f

s+2i�1

(t) = f

s+2i�1

(t; b) = '(t; b

i

) i = 1; : : : ; k

f

s+2i

(t) = f

s+2i

(t; b) = '

0

(t; b

i

) i = 1; : : : ; k

�

f

i

(t) = h

i

(t) i = 1; : : : ; s(5.2)

�

f

s+i

(t) =

�

f

s+i

(t; x) = '

(i)

(t; x) i = 1; : : : ; 2k:

Let f(t; b) = (f

1

(t); : : : ; f

m

(t))

T

and

�

f(t; x) = (

�

f

1

(t); : : : ;

�

f

m

(t))

T

denote the corresponding vectors

of regression functions (m = s + 2k) and consider a design � on the interval I with at least m

support points. In this appendix we investigate the relation between the information matrices

M(�; b) =

Z

I

f(t; b)f

T

(t; b)d�(t)

and

�

M(�; b) =

Z

I

�

f(t; x)

�

f

T

(t; x)d�(t)

de�ned by (2.4) and (3.5), respectively, if

Æ

i

= r

i

Æ = b

i

� x! 0 i = 1; : : : ; k(5.3)

[see condition (3.1)], where the components of the vector r = (r

1

; : : : ; r

k

) are di�erent and ordered.

Theorem 5.1. Assume that ' 2 C

0;2k�1

and � is an arbitrary design, such that the matrix

�

M(�; b)

is nonsingular. If assumption (5.3) is satis�ed, it follows that for suÆciently small Æ the matrix

M(�; b) is invertible and if Æ ! 0

M

�1

(�; b) = Æ

�4k+4

T (Æ)

 

�

M

(1)

(�)

�

M

(2)

(�)F

F

T

�

M

(2)

T

(�) 



T

h+ o(1)

!

T (Æ) + o(1);(5.4)

where the matrices T (Æ) 2 R

m�m

and

�

M

(1)

(�) 2 R

s�s

;

�

M

(2)

(�) 2 R

s�2k

and

�

M

(3)

(�) 2 R

2k�2k

are

de�ned by

T (Æ) = diag

�

Æ

2k�2

; : : : ; Æ

2k�2

| {z }

s

;

1

Æ

; 1;

1

Æ

; 1; : : : ;

1

Æ

; 1

| {z }

2k

�

;

 

�

M

(1)

�

M

(2)

(�)

�

M

(2)

T

(�)

�

M

(3)

(�)

!

=

�

M

�1

(�; x);

the vector 
 = (


1

; : : : ; 


2k

)

T

and h 2 R are given by h = [(2k � 1)!]

2

e

T

m

�

M

�1

(�; x)e

m

;




2i

=

Y

j 6=i

(r

i

� r

j

)

�2

i = 1; : : : ; k

(5.5)




2i�1

= �


2i

X

j 6=i

2

r

i

� r

j

i = 1; : : : ; k;
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and the matrix F 2 R

2k�2k

is de�ned by

F =

0

B

@

0 : : : 0




1

0!

.

.

.

0 : : : 0




2k

(2k�1)!

1

C

A

:

Proof. De�ne  (Æ) = (1; Æ; : : : ; Æ

2k�1

)

T

and introduce the matrices

L = (`

1

; : : : ; `

2k

)

T

2 R

2k�2k

(5.6)

U = diag

�

1;

1

1!

;

1

2!

; : : : ;

1

(2k � 1)!

�

2 R

2k�2k

(5.7)

where `

2i�1

=  (Æ

i

); `

2i

=  

0

(Æ

i

) i = 1; : : : ; k): For �xed t 2 I we use the Taylor expansions

'(t; x+ Æ) =

2k�1

X

j=0

'

(i)

(t; x)

j!

Æ

j

+ o(Æ

2k�1

)

'

0

(t; x+ Æ) =

2k�1

X

j=1

'

(i)

(t; x)

(j � 1)!

Æ

j�1

+ o(Æ

2k�2

)

to obtain the representation

f(t; b + Ær) =

 

I

s

0

0 LU

!

�

f(t; x) +

�

0

~

f(t)

�

;(5.8)

where I

s

2 R

s�s

denotes the identity matrix and the vector

~

f is of order

~

f(t) = (o(Æ

2k�1

); o(Æ

2k�2

); o(Æ

2k�1

); : : : ; o(Æ

2k�2

))

T

:(5.9)

It follows from p. 127-129 in Karlin and Studden (1966) that

detL =

Y

1�i<j�k

(Æ

i

� Æ

j

)

4

and consequently V = (v

1

; : : : ; v

2k

) := L

�1

exists. The equality LV = I

m

implies the equations

v

T

2i

 (Æ

j

) = 0; v

T

2i

 

0

(Æ

j

) = 0; j 6= i;

v

T

2i

 (Æ

i

) = 0; v

T

2i

 

0

(Æ

i

) = 1;

which shows that Æ

1

; : : : ; Æ

i�1

; Æ

i+1

; : : : ; Æ

k

are roots of multiplicity two of the polynomial v

T

2i

 (Æ)

and Æ

i

is a root of multiplicity one. Because this polynomial has degree 2k � 1 it follows that

v

T

2i

 (Æ) = (Æ � Æ

i

)

Y

j 6=i

�

Æ � Æ

j

Æ

j

� Æ

i

�

2

;(5.10)

and a similar argument shows

v

T

2i�1

 (Æ) =

Æ � �

i

Æ

i

� �

i

Y

j 6=i

�

Æ � Æ

j

Æ

i

� Æ

j

�

2

;(5.11)
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where the constants �

1

; : : : ; �

k

are given by

�

i

= Æ

i

+

�

X

j 6=i

2

Æ

i

� Æ

j

�

�1

i = 1; : : : ; k:(5.12)

From (5.8) and (5.9) we therefore obtain

f(t; b+ Ær)f

T

(t; b+ Ær) =

 

I

s

0

0 LU

!

�

f(t; x)

�

f

T

(t; x)

 

I

s

0

0 LU

!

T

+ o(Æ

2k�2

);

and integrating the right hand side with respect to the design � shows that

M(�; b + Ær) =

 

I

s

0

0 LU

!

�

M(�; x)

 

I

s

0

0 LU

!

T

+ o(Æ

2k�2

):(5.13)

Now de�ne H

1

(Æ) = diag(Æ

2k�1

; Æ

2k�2

; Æ

2k�1

; : : : ; Æ

2k�1

; Æ

2k�2

) 2 R

2k�2k

and

H(Æ) =

 

I

s

0

0 H

1

(Æ)

!

2 R

m�m

;

then we obtain from (5.10) and (5.11) that

H

1

(Æ)(L

�1

)

T

= (0 j 
) + o(1) ;

where 
 = (


1

; : : : ; 


2k

)

T

is de�ned by formula (5.5) and 0 2 R

2k�2k�1

denotes the matrix with all

entries equal to zero. By (5.2) this implies for the inverse of the matrix M(�; b + Ær)

M

�1

(�; b+ Ær) = H

�1

(Æ)

( 

I 0

0 F

!

�

M

�1

(�; x)

 

I 0

0 F

T

!

+ o(1)

)

H

�1

(Æ)

= Æ

�4k+4

T (Æ)

( 

�

M

(1)

(�)

�

M

(2)

(�)F

T

F

�

M

(2)

T

(�) F

�

M

(3)

(�)F

T

!

+ o(1)

)

T (Æ);

where the matrix F is given by F = (0j
)U

�1

2 R

2k�2k

: The assertion now follows by a straight-

forward calculation which shows that

F

�

M

(3)

(�)F

T

= h



T

:

2
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