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Abstract: Most of the literature on combination of forecasts deals with the assumption of
unbiased individual forecasts. Here, we consider the case of biased forecasts and discuss two
different combination techniques resulting in an unbiased forecast. On the one hand we
correct the individual forecasts, and on the other we calculate bias based weights. A
simulation study gives some insight in the situations where we should use the different

methods.
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1. Introduction

The combination of forecasts is usually based on the assumption of unbiased individual
forecasts. In the univariate case we restrict the combination weights to sum up to one which
results also in an unbiased forecast combination (see e.g. Bates and Granger, 1969). In
practice we often have the situation of biased forecasts, which is discussed e.g. in Ehrbeck
and Waldmann (1996). If the individual forecasts are biased it is possible to correct them so
that we can use the methods for the combination of unbiased forecasts. Another approach is to
calculate the combination weights with respect to the bias of the individual forecasts. Here, on
the one hand, we can derive the weights considering the covariance matrix as for the MSE-
optimal method, and on the other hand, we only use the bias of the individual forecasts. The
errors in estimation of the unknown parameters could influence the accuracy of the methods.
To analyse this, we perform a simulation study for different situations (different sizes of the
bias, stable and unstable covariance structure). Furthermore, we describe the problem for the
multivariate case. In this case it is possible to calculate the matrix-mean-square-error optimal
unbiased forecast combination which uses the complete covariance structure. Again, we

propose bias based combination strategies.

2. Combination of biased forecasts
2.1. The univariate case
We consider the following problem. Let F, r,,...,F, 1., be forecasts for a variable Y., (T+1:

time index) and u;;, =Yy, —F,, i=1L..,n the corresponding forecast errors where

’

E(u;r,,) =4, and Cov(u ) =X, uy, = (ul.m,...,un,m) . The question is how to combine
these possibly biased forecasts to obtain an unbiased forecast. An easy way is a bias

M

correction of the forecasts, that is using F:m =F,tu; and uf’m =Y, —F, which
results in E(uj,)=0,i=1..,n. Then it is possible to use weights summing up to one to

obtain an unbiased combination, e.g. the simple average of the F 1, ’s. The MSE-optimal

’
s

unbiased combination of the bias corrected forecasts is given by Fyg: v = 8op Frays

* *

’ -1 ’ ’
where g = [(ln 2‘11n) Z‘IIH], Fi = (FI,TH,...,F:,TH) and 1, :=(1...,1) is the vector

of ones of length n and X and ., i=1,...,n, are unknown. Therefore, in practice we have to

estimate the bias terms and the covariance matrix for the calculation of this forecast



’

combination. Let Y :=(Y,,.,Y,) be the observed values in the past,

F, = (Fu,...,Fl,T) oo B 1= (Fn,l,...,Fn,T) the corresponding forecasts and
=Y-F,,i=1..,n. Then we use [i,:=u,,i=l..,n and 3= ( . )1 o where
6 :=%u u;, ,j=L..,n. The calculation of the weights could also be performed on the

basis of F’ (F .. F*), where F :=F, +[1.1,,i=1,..,n and Y. Consulting Granger and

9% n

Ramanathan (1984) we get:

’

’ —1 ’ ’ —1
FI:ISE—opt,TH = [(F* F*) F Y-\V(F* F*) 1n] F[*m] s

where
, ’ ’ , ’ -1 - ’
\U = (ln (F* F* )F* Y-l}/{ln (F* F* ) ln ] and F[fl"+1] = (FI,T+1 +n19"'9Fn,T+l +nn) °

Another approach is to give up the bias correction. In the following we use the bias directly to
calculate the combination weights. We present a technique which is also based on the
covariance matrix and other techniques which disregard the covariance structure and use only

the bias terms.

Theorem 1: Let F 1,,,...,F, 1, be forecasts for Y,,, and u,,,, =Y, —F, be the individual

forecast errors where E(u,;,)=:W; , i=1,..,n. Further, let Cov(u,,)=2X, X p.d., where

’

Up,, = (ul,m,...,un,m) . We assume that there exists at least one (ij), i,je {l,...,n}, i<j,

where W, # ;. The MSE-optimal unbiased forecast combination of the form F, ., = w'F,,

’

where w1, =1 and F, = (FI,T+19"'9Fn,T+1) is given by

(1 " u)z uZ u ,
= , where 1= (u,,..,u, ) .

" (ln Z‘Lt) (s u)(ln 2‘11n)

Proof: We restrict the weights to sum up to one, which means w1, =1. We also want to

minimize the MSE subject to the requirement of an unbiased combination which can be

expressed in w’iL = 0. Thus, we consider the following function:



L(w,A,@)=wZw-Awu)-ow1l, —1).
The necessary conditions for a minimum are

SL(W, A, @) _ .

) 2wE - -l =0’

ow
II) 6L<W9}\’9 (P) _W’MLO

oL
1) SLw. M) _ —w'l =0

oo
From I) we get

w=luws 99 50
2 2

and inserting in II) and III) gives
%N’Z‘lu +%1n T 'u=0 and

Mgt 91 s o
2 2

Some easy calculations result in

&= - 5 1,27y - and
’ (ln 2‘1u) —(M’Z‘lu)(ln 2‘11n)
¢ _ — (=)

’ 2 ’ .
(ln 2‘1u) —(}L’Z“u)(ln 2‘11n)
Because of the Cauchy-Schwarz inequality the denominator of the preceding expressions is

non-positive. Since the L,’s are not all equal and therefore L and 1, are linearly independent

it is even negative.

Refering to I) the optimal weight vector turns out to be

(12;1)2 uZuZl

" (ln Z‘Lt) (s u)(ln 2‘11n)

Looking at the form of the function L(w,A,@) it is straightforward that w_, is the

opt

minimizing vector.



In practice we have to calculate F 14 Dy using the estimators > and [i as above. Here it is

also possible to estimate the weights directly by restricted regression. Using R := s,

’

1, Y
1

where F = (F,,....F,) and r := the optimal weights are given by

w,, =(F'F)"FY-(FF)" R'(R(F'F)‘1 R')_l (R(F’F)‘1 F'Y - r) .

Of course, the combination F, ., has not a smaller MSE than the combination Frise. opt, T4 -

Since both are unbiased forecasts their MSEs are given by the error variances w Zwopt and

opt

’

ot 8o - Tespectively, and the vector w,, includes one more restriction than the vector
g, - But we have to remark that in practice it might be difficult to justify a bias correction. In

this situation we correct forecasts given by some experts or calculated by sophisticated and
expensive models before combining them and thus we have to convince the analyst that he

cannot use the individual forecasts as they are.

In the following we present bias based methods which disregard the covariance structure and

also result in an unbiased combination.

Theorem 2: Let F 1,,,...,F, 1, be forecasts for Y, , and u,,, =Y, —F, be the individual

forecast errors where E(u; r,,) =W, , 1=1,...,n. Further, let i; # 0 and —ZR #1, where
n —
j¢v
R;= Hy , j=Ll.,n, j#£V, Ve {1,...,n} fixed but arbitrary. Then
M,

vT+1_ ZR] T+

F N ]¢v

JI,T+1 ® 1 n
]I-——>» R.
n-—1 i=l1 !

jEV

is an unbiased forecast for Y.,,.



Proof: For the error of the forecast combination we get

1 1
Ujpe — Yru _FJl,T+1 = | @ l_ﬁ Rj i —F
1I-— YR oA
n _1 le J | Jj#EV
j#EV
1 1 &
= | Yru _Fv,T+1 - TIZR]'(YT+1 _Fj,T+1)
1-—— ) R. =
n _1 = J | J#EV
j*v
1 J
= | @ L U lszuj,TH
1-— YR, S
n _1 = J | Jj#EV
j#EV
Thus
I I,
E(qu,T+1) | < E(u v.T+H ) _n_z m E(uj,T+1)
_ TR
1 n _1 = RJ j#EV !
jEV
I 1 &,
= 1 n uv - u]
P
n _1 = J J#EV
jEV
=0

The bias based method is in the form of the generalized Jackknife-estimator well-known in
point estimation. Its MSE is equal or exceeds the MSE of the MSE-optimal combination, but
in practice one has to estimate the unknown parameters for the calculation of the combined
forecast. The errors in estimation could result in more unreliability of the MSE-optimal
forecast combination because it depends also on the whole covariance structure. We have to
remark that all of the methods presented above might result in negative weights and produce
extreme outliers. An example for this, regarding e.g. the MSE-optimal combination of

unbiased forecasts, is given in Klapper (1998). Hence, there is the demand of a more robust

bias based combination strategy.

6

v,T+1

+

%ZR

n

=1
jEV

F

i3 TH



Theorem 3: Let F ,....F 1, be forecasts for Y., and u,;, =Yy, —F,, where

+1

E(u;r,,) =W, , i=L..,n. Further, let u; #0 and Z‘RJ‘ ;t—ZSign(Rj) , where R, = Hy ,
=l = H;

jEV j#EV

j=L..,n, j#V, Ve {1,...,n} fixed but arbitrary. Then:

n
,YFV,T+1 + z ‘R] ‘Fj,TH
=1

. n
i) Flyp = a , where y:=—) sign(R,), is an unbiased forecast for Y.,
=1
v Z R v
=
jEV

ii) If there exists at least one 1, >0 and at least one u; <0, 1#],1,]€ {1,...,n}, then we
construct Fy,;,, as follows as an unbiased forecast with value inside the interval of the

individual forecasts:
If there exists an unbiased individual forecast F_;,,, k€ {1,...,n} by definition v =k, else

>)
if #(u, > O)i=1,...,n > g then choose v so that 1, <0, else

)
if #(u, > O)i=1,...,n < g then choose v so that u, > 0.

Proof:

1) At first we calculate the error of the forecast combination, and then we show that it has

mean zZero.
Uprg = Yo —Fopg = V+2‘R ‘ F, ra Z‘R ‘ T+
\R -
#v J¢
]¢v
1
= " Y( Yo — vT+1 +Z‘R‘ T+ ]T+1)
Y+ ‘R

j ]¢V

j#EV



= : YWyt i‘R ‘uj T41 and thus
v+ 2R -
o
E(qu,T+1) : 'YE( T +2‘R ‘E ]T+l)
2 R i
=
v
v+ E\R | B
]¢V
1
v+ E\R | B

ii) The special choice of F

v, T+l

(respectively W) guarantees that y=0, since in the case where
none of the forecasts is unbiased, the number of p;s with different sign as p  is greater or

equal than the number of ;5 with the same sign as p . Therefore, by definition all weights

are in the interval [0,1] and sum up to one.

Remark: For the cases where all u;>0 or all u;<0 we gety =—(n—1). This does not depend on

the choice of F

.41 - If we choose v so that Svisn—1

=max,

J

]¢V ]¢v

and hence only the weight for F

141 18 negative.



2.2. Simulation study

We consider the combination of six biased forecasts by using two different bias vectors:
b, =(50,40,20,10,-10,-20)" and b, :=(5,4,2,1,-1,-2)". Furthermore, we randomly generate
20 covariance matrices and on their basis (together with the bias) 200 series (6 forecasts) of
normally distributed forecast errors are generated. The series are of length 60. We fix 10 data
points to calculate the first combination weights, thus 50 performance points are left for our
analysis. In each step we calculate the new weights by regarding all available history for the
estimation of the unknown parameters. To compare the different methods we calculate their
RMSEs relative to the values of the simple average of the individual forecasts. The study
includes the following methods: 6 bias corrected individual forecasts (No. 1-6), MSE-optimal

combination with the assumption of unbiased individual forecasts (No. 7), MSE-optimal

combination F]:/[SE—opt,TJrl of bias corrected forecasts (No. 8), MSE-optimal combination
me 1 of the biased individual forecasts (No. 9), simple average (No. 10), simple average of
bias corrected forecasts (No. 11), and the two bias based combinations F, ;,, (No. 12) and
Fj,1,; (No. 13). For the combination F [, we choose the individual forecast with the

smallest absolute bias as F, ,,, and in addition for the combination Fj,,, we choose the

candidate with the highest absolute bias as F

14 - Instead of calculating all data points with
stable covariance matrices we consider a situation of structural change. Here, the variances of

the individual forecast errors are varying over time which is described in detail below.

a) time stable covariance structure

al) bias vector b,
Table 1: Comparison of methods for case al

S1: number of times simple average is beaten, S2: number of times simple average of bias
corrected forecasts is beaten, best: number of times the special method is the best one.

M1,...,M13 denote the methods.

Cov. Ml M2 M3 M4 M5 M6 M7 M8 M9 M10 M1l Mi12 M13
No.
1 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 200 200 200 0 - 0 151
best 0 0 0 0 0 0 4 196 0 0 0 0 0
2 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 11 200 200 200 0 - 3 116
best 0 0 0 0 0 0 0 200 0 0 0 0 0
3 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 76 132 74 0 - 3 82
best 0 0 0 0 0 0 12 109 4 0 43 0 32
4 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 200 200 200 0 - 0 168
best 0 0 0 0 0 0 4 193 3 0 0 0 0




Table 1 continiued

5 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 199 199 199 0 0 0
best 0 0 0 0 0 0 4 193 3 0 0 0 0
6 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 7 0 0 0 18 200 18 0 - 0 1
best 0 0 0 0 0 0 0 200 0 0 0 0 0
7 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 103 200 103 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
8 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 3 0 6 0 0 198 192 198 0 - 0 0
best 0 0 0 0 0 0 74 72 52 0 2 0 0
9 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 129 98 29 0 - 0 93
best 0 0 0 0 0 0 36 27 52 0 45 0 40
10 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 132 187 133 0 - 0 0
best 0 0 0 0 0 0 3 184 0 0 13 0 0
11 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
12 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 0 126 0 0 - 0 0
best 0 0 0 0 0 0 0 126 0 0 74 0 0
13 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 191 200 191 0 - 0 3
best 0 0 0 0 0 0 0 200 0 0 0 0 0
14 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 3 0 200 200 200 0 - 0 156
best 0 0 0 0 0 0 0 200 0 0 0 0 0
15 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 1 0 200 200 200 0 - 0 190
best 0 0 0 0 0 0 0 200 0 0 0 0 0
16 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 199 199 199 0 - 0 0
best 0 0 0 0 0 0 67 71 56 0 0 0 0
17 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
18 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 0 200 0 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
19 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 39 0 160 178 160 0 - 22 124
best 0 0 0 0 2 0 10 134 23 0 13 0 18
20 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 200 200 200 0 - 0 107
best 0 0 0 0 0 0 1 196 3 0 0 0 0

If we consider Table 1 it is obvious that method No. 8 is best in the sense of the RMSE. In 18
cases it is the best one. For covariance matrix No. 8 methods No. 7, 8 and 9 and for
covariance matrix No. 9 methods No. 9, 11, 13, 7 and 8 perform similarly. This result is not a
surprise because of the time stable covariance structure. With this assumption, method No. 14
is theoretically optimal and the estimators for the unknown parameters perform well. If we

compare method No. 13 (F;,,;) and method No. 11 (simple average of bias corrected

forecasts) we can see that for covariance matrices No. 1, 2, 4, 14, 15, 19 and 20 the first one
performs better. These are exactly the cases (also covariance matrix No. 9) where the bias

based combination theoretically outperforms the simple average of bias corrected forecasts.

10




We can also see that neglecting the bias and the covariance structure, the simple average

combination is of less quality.

a2) bias vector b,

Table 2: Comparison of methods for case a2

Cov. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 Mi12 M13
No.
1 S1 0 0 6 0 0 0 200 200 200 - 200 0 164
S2 0 0 0 0 0 0 200 200 200 0 - 0 20
best 0 0 0 0 0 0 5 194 1 0 0 0 0
2 S1 0 0 0 3 0 117 200 200 200 - 199 45 163
S2 0 0 0 0 0 18 200 200 200 1 - 5 92
best 0 0 0 0 0 0 0 200 0 0 0 0 0
3 S1 0 0 0 3 0 23 193 198 191 - 200 22 171
S2 0 0 0 0 0 0 78 131 75 0 - 0 40
best 0 0 0 0 0 0 11 109 9 0 57 0 14
4 S1 0 0 138 0 0 0 200 200 200 - 200 0 138
S2 0 0 0 0 0 0 200 200 200 0 - 0 12
best 0 0 0 0 0 0 8 190 2 0 0 0 0
5 S1 0 24 37 0 0 6 200 200 200 - 200 11 133
S2 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 6 191 3 0 0 0 0
6 S1 0 0 200 193 0 0 200 200 200 - 200 0 172
S2 0 0 11 0 0 0 26 200 20 0 - 0 1
best 0 0 0 0 0 0 0 200 0 0 0 0 0
7 S1 0 0 1 14 0 0 200 200 200 - 200 0 65
S2 0 0 0 0 0 0 95 200 87 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
8 S1 0 184 0 166 1 0 200 200 200 - 200 1 133
S2 0 1 0 7 0 0 198 194 198 0 - 0 1
best 0 0 0 0 0 0 60 64 74 0 2 0 0
9 S1 21 38 21 0 6 11 200 200 200 - 200 22 175
S2 0 0 0 0 0 0 130 113 130 0 - 0 54
best 0 0 0 0 0 0 35 37 44 0 50 0 34
10 S1 1 0 0 0 0 0 200 200 200 - 200 0 91
S2 0 0 0 0 0 0 146 185 130 0 - 0 0
best 0 0 0 0 0 0 4 178 4 0 14 0 0
11 S1 0 79 1 0 0 0 200 200 200 - 200 0 44
S2 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
12 S1 0 0 0 0 7 7 200 200 200 - 200 35 198
S2 0 0 0 0 0 0 0 144 0 0 - 0 0
best 0 0 0 0 0 0 0 144 0 0 56 0 0
13 S1 0 0 5 0 0 0 200 200 200 - 200 1 177
S2 0 0 0 0 0 0 199 200 193 0 - 0 4
best 0 0 0 0 0 0 0 200 0 0 0 0 0
14 S1 0 0 5 0 126 46 200 200 200 - 200 58 188
S2 0 0 0 0 1 0 200 200 200 0 - 0 106
best 0 0 0 0 0 0 2 198 0 0 0 0 0
15 S1 6 0 2 0 35 52 200 200 200 - 200 44 168
S2 0 0 0 0 1 0 200 200 200 0 - 2 95
best 0 0 0 0 0 0 0 200 0 0 0 0 0
16 S1 0 0 0 32 44 0 200 200 200 - 200 19 185
S2 0 0 0 0 0 0 199 200 198 0 - 0 1
best 0 0 0 0 0 0 65 69 66 0 0 0 0
17 S1 0 7 35 0 48 0 200 200 200 - 200 2 192
S2 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
18 S1 0 52 0 0 0 0 200 200 188 - 200 0 8
S2 0 0 0 0 0 0 0 200 0 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
19 S1 4 0 0 0 192 0 200 200 200 - 200 97 196
S2 0 0 0 0 42 0 173 187 168 0 - 12 86
best 0 0 0 0 0 0 23 132 31 0 6 0 8
20 S1 0 0 11 0 0 18 200 200 200 - 200 4 179
S2 0 0 0 0 0 0 200 200 200 0 - 0 29
best 0 0 0 0 0 0 2 196 2 0 0 0 0

11




Although for the same covariance matrices as above the combination F, 1, should be better

than the simple average of the bias corrected forecasts, it only happens in case No. 14. In
some of these cases it is clearly outperformed. Naturally, the best combination is again
method No. 8. In cases No. 8, 9 and 16 some methods are nearly of the same high quality

(methods No. 9, 8, 7, methods No. 11, 9, 8, 7, 13 and methods No. 8, 9, 7). Because of the

"low" bias the simple average performs better than before, whereas method No. 12 (F;, ,,) is

again of poor quality.

b) Structural change all five data points
We analyse a structural change every five steps. We generate first five data points by using

X, =X as before. We generate the next five points with X, =%, +0.2- diag(Z(l)) where

diag(Zm) is a diagonal matrix of the diagonal elements of X, . Then we calculate five points
with X5 =%, +0.2- diag(Z 2 ), and so on. Thus, only the variances will change over time

which is illustrated in Figure 1. The differences between the error variances increase, so over
time the quality of all forecasts decreases but the forecasts with lower variance are less

influenced by the changes.

Figure 1: Structural changes in the error variances
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bl) bias vector b,

Table 3: Comparison of methods for case bl

Cov. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 Mi12 M13
No.

1 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 9 33 9 0 - 0 14
best 0 0 0 0 0 0 0 79 0 0 114 0 7

2 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 2 68 76 68 0 - 1 15
best 0 0 0 0 0 0 28 37 19 0 110 0 6

3 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 10 9 10 0 - 0 36
best 0 0 0 0 0 0 2 1 1 0 161 0 35

4 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 7 0 0 0 199 199 199 0 - 0 52
best 0 0 0 0 0 0 55 103 41 0 1 0 0

5 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 0 103 0 0 - 0 0
best 0 0 0 0 0 0 0 103 0 0 97 0 0

6 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 49 6 0 0 0 195 1 0 - 0 0
best 0 0 1 0 0 0 0 194 0 0 5 0 0

7 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 0 14 0 0 - 0 0
best 0 0 0 0 0 0 0 14 0 0 186 0 0

8 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 6 0 0 34 166 33 0 - 0 8
best 0 1 0 2 0 0 1 161 0 0 33 0 2

9 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 71 80 71 0 - 0 97
best 0 0 0 0 0 0 26 32 17 0 70 0 55

10 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 37 45 35 0 0 0 57
best 0 0 0 0 0 0 5 23 8 0 119 0 45

11 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 0 137 0 0 - 0 0
best 0 0 0 0 0 0 0 137 0 0 63 0 0

12 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 24 52 23 0 - 0 20
best 0 0 0 0 0 0 5 43 0 0 139 0 13

13 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 2 91 1 0 - 0 0
best 0 0 0 0 0 0 0 91 0 0 109 0 0

14 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 92 146 92 0 - 0 74

best 0 0 0 0 0 0 7 129 5 0 39 0 20

15 S1 0 200 200 200 200 200 200 200 200 - 200 200 200

S2 0 0 0 0 0 0 121 125 123 0 - 0 158

best 0 0 0 0 0 0 18 35 19 0 28 0 100

16 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 1 0 0 22 154 22 0 - 0 0
best 0 0 0 0 0 0 0 154 0 0 46 0 0

17 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 22 114 22 0 . 0 5
best 0 0 0 0 0 0 1 112 1 0 85 0 1

18 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 3 0 0 0 0 0 158 0 0 - 0 0
best 0 0 0 0 0 0 0 158 0 0 42 0 0

19 S1 0 200 200 200 200 200 200 200 200 - 200 200 200

S2 0 0 0 0 14 0 89 99 89 0 - 4 127

best 0 0 0 0 3 0 15 48 11 0 47 0 76

20 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 91 96 90 0 - 0 85

best 0 0 0 0 0 0 20 41 12 0 77 0 50

We can see that the structural change in the variances has influence on methods No. 7, No. 8
and No. 9. Because these strategies depend on the covariance structure, the errors in

estimation occuring in this case worsen their quality. Now the bias based method No. 13 in
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two cases is better than the arithmetic mean of bias corrected forecasts. As a result of the
special structural change it should now outperform method No. 11 only in the cases No. 9, 15
and 19. For instance, method No. 11 is nine times, the MSE-optimal combination of bias

corrected forecasts is eight times, and the combination Fj,;, is two times the best

(covariance matrices No. 15 and 19). In one case the MSE-optimal combination of bias
corrected forecasts and the simple average of bias corrected forecasts are best. For the cases
No. 9, No. 19 and No. 20 the differences between the best and some other methods are

smaller.

b2) bias vector b,

Table 4: Comparison of methods for case b2

Cov. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1l Mi12 M13
No.
1 S1 0 0 0 0 0 0 117 179 72 - 198 0 23
S2 0 0 0 0 0 0 23 73 12 2 - 0 2
best 0 0 0 0 0 0 4 70 1 1 123 0 1
2 S1 0 0 0 0 0 3 164 169 146 - 194 1 51
S2 0 0 0 0 0 1 69 74 60 6 - 0 14
best 0 0 0 0 0 0 30 28 23 4 108 0 7
3 S1 0 0 0 0 0 0 90 102 68 - 195 0 57
S2 0 0 0 0 0 0 13 10 11 5 - 0 6
best 0 0 0 0 0 0 8 5 5 5 173 0 4
4 S1 39 0 52 0 0 0 200 200 200 - 200 0 20
S2 4 0 8 0 0 0 199 199 100 0 - 0 1
best 0 0 0 0 0 0 66 96 37 0 1 0 0
5 S1 0 0 0 0 0 0 92 198 43 - 200 0 10
S2 0 0 0 0 0 0 2 114 1 0 - 0 0
best 0 0 0 0 0 0 0 114 0 0 86 0 0
6 S1 0 0 143 61 0 0 105 200 24 - 200 0 3
S2 0 0 48 7 0 0 2 195 0 0 - 0 0
best 0 0 0 0 0 0 0 195 0 0 5 0 0
7 S1 0 0 0 0 0 0 23 111 11 - 195 0 4
S2 0 0 0 0 0 0 1 14 0 5 - 0 1
best 0 0 0 0 0 0 1 13 0 4 181 0 1
8 S1 0 38 0 23 0 0 175 199 137 - 200 0 21
S2 0 10 0 5 0 0 62 176 37 0 - 0 2
best 0 0 0 0 0 0 2 174 0 0 24 0 0
9 S1 2 0 0 0 0 0 186 159 174 - 197 0 78
S2 0 0 0 0 0 0 102 70 93 3 - 0 26
best 0 0 0 0 0 0 56 20 28 0 86 0 10
10 S1 1 0 0 0 0 0 130 142 106 - 197 0 30
S2 0 0 0 0 0 0 39 42 32 3 - 0 5
best 0 0 0 0 0 0 16 23 14 0 146 0 1
11 S1 0 11 0 0 0 0 15 198 5 - 200 0 0
S2 0 0 0 0 0 0 0 136 0 0 - 0 0
best 0 0 0 0 0 0 0 136 0 0 64 0 0
12 S1 0 0 0 0 0 0 175 196 141 - 200 1 103
S2 0 0 0 0 0 0 31 57 23 0 - 0 6
best 0 0 0 0 0 0 7 46 4 0 139 0 4
13 S1 0 0 0 0 0 0 92 190 36 - 199 0 10
S2 0 0 0 0 0 0 9 85 4 1 - 0 0
best 0 0 0 0 0 0 1 84 0 0 115 0 0
14 S1 0 0 0 0 14 1 198 197 182 - 199 3 120
S2 0 0 0 0 2 0 126 170 103 1 - 0 38
best 0 0 0 0 0 0 23 135 9 0 25 0 8
15 S1 0 0 0 0 0 1 185 187 174 - 194 0 94
S2 0 0 0 0 0 0 126 127 123 6 - 0 37
best 0 0 0 0 0 0 54 42 34 1 57 0 12
16 S1 0 0 0 1 2 0 182 199 118 - 200 0 25
S2 0 0 0 0 1 0 66 161 30 0 - 0 0
best 0 0 0 0 0 0 2 157 2 0 39 0 0
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Table 4 continiued

17 S1 0 0 1 0 0 0 196 200 190 - 200 0 115
S2 0 0 0 0 0 0 41 121 33 0 - 0 4
best 0 0 0 0 0 0 0 120 1 0 78 0 1
18 S1 0 7 0 0 0 0 31 196 6 - 198 0 0
S2 0 3 0 0 0 0 1 152 0 2 - 0 0
best 0 0 0 0 0 0 0 152 0 0 48 0 0
19 S1 0 0 0 0 60 0 188 189 180 - 198 17 120
S2 0 0 0 0 8 0 109 117 94 2 - 1 57
best 0 0 0 0 0 0 47 48 17 0 67 0 21
20 S1 0 0 0 0 0 1 194 193 184 - 200 1 101
S2 0 0 0 0 0 0 90 89 83 0 - 0 28
best 0 0 0 0 0 0 32 35 31 0 92 0 10

Here, the bias based combination techniques are of poor quality. Using the simple average of
bias corrected forecasts or the MSE-optimal combination of bias corrected forecasts is more
accurate. Method No. 8 in nine cases is the best, method No. 11 in eight cases (adding the
following three). In one case (covariance matrix No. 9) methods No. 11 and 7 perform better,
for covariance matrix No. 15 methods No. 11, 7, 8, 9 and for covariance matrix No. 19
methods No. 11, 8, 7. Here, the simple average of the individual forecast is of higher quality
than in b3.

2.3. Concluding remarks for the univariate case
If the covariance structure is stable over time the MSE-optimal combination is of course the
best in the sense of the RMSE. Depending on the covariance structure in the case of "large"

absolute bias and so "large" distances between the bias, the combination Fj,;, can

outperform the simple average of bias corrected individual forecasts. When the absolute bias
are "small" and so the distances are "small", too, more often the "wrong" individual forecast is

chosen as F

v, T+1 *

Furthermore, we frequently get a "wrong" y. Due to the given covariance
matrices in this simulation study the combination F,., performs poorly. If a structural

change happens at all five data points in the error variances, the simple average of bias
corrected forecasts performs as good as the MSE-optimal combination of bias corrected

forecasts. The combination F,,,, performs better than the other methods in the situation of

"large" bias and where it is, theoretically, of high quality. Furthermore, the given covariance

matrices in this simulation study are a reason for the bad performance of the method Fy, 1, .

We have to remark that the simulation study is giving only limited insight into the
characteristics of the different methods. Other structural changes, e.g. in the covariances
between the forecast errors are possible. A more extensive analysis of this problem, regarding
other methods, is given e.g. in Diebold and Pauly (1987) or in Deutsch, Granger and

Terésvirta (1994). Nevertheless, if the differences between the bias are not too "small" we can
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use knowledge from the past to decide if we calculate a combination of bias corrected forecast
or a bias based forecast combination. Furthermore, if we consider bias corrected forecasts for
a combination, then the question arises if the forecasting models must be respecified. On the
other side, in bias based combinations we use the forecast as they are and give them special
weights.

Finally, if we look at the combinations F, .., and F,,,,, we notice that other strategies in the

choice of F, 1, are possible. For this we can again take advantage of experience from the

past.

2.4 The multivariate case

’

Let Y, = (YI,T+19"'9Yk,T+1) , k=2, be a vector to be forecasted, F, ,,....,F, 1, be forecasts,

’

— (gD (i) — ; —.
where  Fp, = (Fl,T+1 9"'9Fk,T+1) and  w;p, =Yy, —F,, with E(ui,TH ) =l; and
4

W= (W ety ) i=1..,n0. Further, let U, = (ul,m O | B ) and

r=(2,) = Cov(u,,, ). We want to calculate an unbiased forecast combination where

r,s=l,...,n
we use weight matrices G, ~ (kxk), i =1,...,n, summing up to I, . An easy way, like in the

univariate case, is to consider the bias corrected forecasts. Then, the optimal weight matrices
minimizing the matrix-mean-square-error (MMSE) of the combined forecast in the sense of
the Lowner-ordering are given by (see e.g. Wenzel, 1998)

Gopt = [Gl,opta'--: Gn,opt] = [W’V_l 9Ik - W’V_lllt ] )

where

V = (VI'S )r,s=1,...,n ~ (l'l - l)k X (l'l - l)k )

V=2 +2 -2 -X2..1rs=1.,n-1,

ns 2

%

I, =[I,.,I,] ~(h-1kxk,
W= (w,,..w, )~ (n-1kxk,

W, 3=(Wj1,a--->Wj,n_1,) ~(n-1kx1, j=1,..k,
w,=(Z, -Z,)e ~kxLi=l.,n-1, j=1L..k,

nn

and e; denotes the j-th unit vector.
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As in the univariate case we now calculate a MMSE-optimal unbiased forecast combination

without using a bias correction.

’

Theorem 4: Let F,,, = (FlfiT)H,...,F]ff)TH) be forecasts for Yo, = (Y, 1,10 Yyrst) » k=2, and

4 4
u,r, =Yy, —F,, where E(ui,TH)::ui, i=1,...,n. Further let u,,, = (ul,m SO | )

’

(T —un),) #0. The

’

and X:=(Z,) =Cov(uy, ). Assume that y= ((ul —u,)

r,s=l,...,n

MMSE-optimal (in the sense of the Lowner-ordering) unbiased forecast combination of the
form Fy, ., = ZHiFi,TH , Where ZHi =1, , is given by
i=1 i=l

H_, =[H

opt

H =[(W+D)V'I, —(W+D)V'I,],

Lopt>***» n,opt]

where D= (y'V™'y) (i, -W'V )y’

Proof: Because the MMSE of the optimal forecast combination must have minimal trace we
minimize it in the following and prove afterwards, that for any other combination which
satisfies the restrictions, the optimal MMSE-combination has smaller or equal MMSE in the

sense of the Lowner-ordering. Consulting Odell et al. (1989), the MMSE of any combination

n n-I
which satisfies the restrictions (1) ZHi =1, and (2) ZHi (ui -u, )= W, can be written as

i=1 i=1

MMSE(FH,T+1 9YT+1 ) = E((YTH - FH,T+1 )(YT+1 _FH,T+1) )

’ ’

=H'VH' —~-HW-WH" +X_

where H :=[H,,...,H__ ]~kx(n-1)k.

To minimize tr(MMSE(FH’T+1 » Y1 )) with repect to the restrictions (1) and (2), we consider:
L(H' )= tr(H*VH* ~H'W-WH" +3 )— VHY-p,)

’

where A:==(A,,..,A, ) .
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The necessary conditions for a minimum are:

SL(H',A : WA
0 % =2HV-2W'-Ay'=0,,,
Im) WHQ—(HW) =0,

From I) we get
. oo 1 -
H = W V : +§}UY’V :
and inserting in II) we obtain

o1

5 W(MH'W'V_W) :

Back to I) results in
H, =WV~ +(y’V‘ly)_l(un -W'V‘ly)y’V‘1 )
Using this weights for the combination and calculating the MMSE results in
MMSE(F, Y., )=Z, WV ' W-(yV iy ' WV, —(yvy) u yv'w
-1, )1 ! 1, ey - -1
vy e, V) WYy VW
Considering now an arbitrary H,, satisfying the two restrictions, we can write
H, =WV'+ (y'V’ly)fl (un - \TV'V’H()\('V’1 , where W ~ (n —1)k xk, and calculate
MMSE(F, ., Y.,) =2, +WVIW-WV'W-WVW+(yv'y) uu,
- -1 X7y 7 — “Ixx N7 — -1 -
AR AR S AR A (A TR A\
+ (y’V’1 y)fl WV Iy yYVIw - (y’V’ly)f1 WV,
+(y’V’1y)71W’V’lyy’V’l\7V.
Thus,

MMSE(FHMI .Y, )]- MMSE[F,

opt, T+41 9YT+1 )
- (W’— W)( - (y’V‘ly)_1 Viyyv™ ) (W'— W'),

and since ( - —(y'V”y)flV”yy'V”) is n.n.d. (see e.g. Horn and Johnson, 1985, p. 47) the
difference of the two MMSEs is n.n.d., as well.
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In the multivariate case it is also possible to calculate bias based unbiased forecast
combinations but because of the more complex bias structure there are several combination
strategies. A simple procedure is to consider each component separately and then to derive the
combination as we did in the univariate case, so that we get diagonal weight matrices. Similar

to Theorem 2 we propose here:

’

Theorem 5: Let F,,, = (FlfiT)H,...,F]ff)TH) be forecasts for Yo, = (Y, 1,10 Yyrs1) » k=2, and

u, ., =Yy, —F,, where E(ui,TH)::ui, i=1,.,n. Further let pu, =2A1Hi , Wwhere
i=1

i#V

ve {L...,n} is fixed but arbitrary, A; ~kxk, i=1..,n, i#v,and rgl I, = > A; [=k. Then
i=l1
i#=v

-1

Forg =1 - E‘Ai F, - Z‘AiFi,T+1 is an unbiased forecast for Y.,, .
i=1 i=1
1#£V 1#V
Proof: The mean of the error of the forecast combination is
-1
E(YT+1 FA,T+1 ) =E Ik _zAi Ik _zAl YT+1 FV,T+1 +2AiFi,T+l
i=1 i=1 i=1
i#v i#v 1V
-1
=| I, _zAl El I, (YT+1 FV,T+1)_zAi(YT+1 Fi,T+1)
i=1 i=l
1#£V 1#V
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Remark: It is possible to use bias proportions in Theorem 5 for the definition of the matrices

A . If we assume that W #0,i=1...n,i#v, j=1L...k, we get:

A = (a“))rs_l .» where a’ == 1B

e kn-Du,’

If we proceed in that way, we have to check if the assumption of regularity in Theorem 5 is

LnizEv, rs=1..k.

satisfied.

Finally we present another general bias based combination method.

’ ’

Theorem 6: Let F, ., = (F1{¥+1,...,F]ff}+l) be forecasts for Y, = (Y, 11100 Yern) » kK22,

’

and u; ., the i-th forecast error vector, u; = (Wi sy ) = E(ui,T+1 ), i=1,..,n. Further let

w; #0 ,i=L..,n,j=1...k. Then, F, :=24AiFi,T+1 is an unbiased forecast for Y., ,
i=l

where
(i) a0
Ay
A = . i |and
(i) (0)
Ay v A
al :=( -3l ]/Mr, Z., 25(‘) ,rs=1..k r#s,
al) Zag)uu ,i=L..,n,
ulr J=
]¢r
S 1 &(1
M, =>-—>=Z.-3 |u;, , r=L..k where the @’’s must be chosen so that
-1 My =\ n
j#Er
M #0

Proof: For a fixed he {1,...,k} we consider the h-th row of each of the n weight matrices,

iven by al’ ==(al) ... a(‘) ,i=1L...,n. Therefore,
g y hi hk
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- Oy if m=h
Z‘ lh;a if m

Za(l) = p#h
(Z Z, - N(;;} if me {l,..,k}, m#h

i=l1

1 ifm=h
0 if me {l,..,k}, m=#h

Thus we can write Y, ,, = Z‘laﬁ)YT+1 , and the mean of the combined forecast error in the h-
i=l

th component is
n ( n k (
W - i) )
za 1T+1 _zahhulh +Zzahmu1m
i=l

i=] m=l
m#h

_ (i) (i)
- z zahmulm ih +zzahmu1m -
i=l h m=] =] m=l
m#h m#h

POE

If we look at Theorem 6 again, we have to notice that the a’’s are not specified there. The

practitioner could choose them by his subjective view of the given problem. Obviously such a
general method could also be defined for the univariate case, but because of the subjective

(i) »

choice of thea’’s, this is excluded from the simulation study and therefore not presented in

Section 2.1.
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