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Abstract

A Dbasic part in the risk assessment of potential carcinogens is the
determination of toxicokinetic parameters. The partition of the xenobiotic
in the body of experimental animals is a first step of the biochemical
pathway of the formation of DNA adducts which might lead to the
development of cancer.

Fundamental in the extrapolation from one species to another is the
characterisation of processes by means of population parameters.
Nevertheless, the consideration of individual parameters varying between
repeated experiments and different doses is of great importance to obtain
a more precise insight into the variability structure of the process so that a
valid basis for further research is the final result.

Two nonlinear four-stage hierarchical models for a repeated measurement
design and for repeated exposures to different doses are presented. The
estimation of the individual and population parameters as well as of the

covariance matrices is performed by an EM algorithm.

Key Words: ethylene, ethylene oxide, risk assessment, toxicokinetics, population
parameters, two-compartment model, nonlinear hierarchical model,

Bayes estimates, EM algorithm, repeated measurement



1. Introduction

A basic part in the risk assessment of potential carcinogens is the determination of
toxicokinetic parameters. Most chemical carcinogens are transformed into a chemical
active form, its metabolite, that is able to interact with cellular macromolecules such as
DNA, RNA, and protein, and might finally lead to the development of cancer. The
relationship between applied dose and tumor response is nonlinear (Bolt and Filser,
1984). This nonlinearity is supposed to be connected with the kinetic processes involved
in the formation of DNA adducts (Hoel et al., 1983). Hence an important step to assess
the risk of a xenobiotic is to investigate the kinetic processes of its uptake, metabolism,
and elimination.

As the complete research depends on experiments with animals, a critical step is the
extrapolation from the risk observed in the experimental animals to the risk associated
with the human organism. The basis of such a species extrapolation are the so called
PBPK- models (physiologically-based pharmacokinetic ~models) which take
consideration of many strongly connected kinetic processes. These models require
detailed information about physiological parameters, as well as about the processes
involved. The physiological parameters are supposed to be valid for a whole population.
Determining kinetic population parameters the variation between individual parameters
which may also vary between repeated occasions and doses should be taken into
account.

The present study has been designed to elucidate interindividual and interoccasion
variabilities of toxicokinetic parameters relevant for the carcinogenicity of one of the

basic petrochemical industrial compounds, ethylene (ethene) (Selinski et al., 1999).



Therefore two groups of inhalation experiments with male Sprague-Dawley rats were
performed at the Institute of Occupational Physiology at the University of Dortmund. In
the first group (group A) 10 rats were exposed 5 times each to a concentration of 100
ppm. In the second group (group B) another 10 animals were exposed to five different
concentrations of 20, 50, 100, 200, and 500 ppm ethylene each (Selinski and Urfer,
1998).

Ethylene is an important industrial bulk chemical, which is also present in the
environment. In mammalian organisms ethylene is metabolised to ethylene oxide, which
is directly alkylating different macromolecules. Ethylene oxide is a physiological body
constituent (Bolt, 1996; Bolt et al., 1997) and it’s carcinogenic in animal studies; the
carcinogenicity in humans is still discussed controversially (Bolt, 1998).

As previous inhalation experiments with ethylene have indicated the metabolism may be
well approximated by first order kinetics at concentrations below 800 ppm (parts per
million). This approximation is used in the present study where the maximum
concentration were about 500 ppm ethylene. At higher concentrations the metabolism of
ethylene becomes more and more saturated (Bolt and Filser, 1987).

A two-compartment model is applied to describe the processes of uptake, exhalation,
and metabolic elimination of ethylene. Two nonlinear four-stage hierarchical models
based on the approach of Racine-Poon and Smith (1990) are presented; the first one for
a repeated measurement design, the second for repeated exposures to different doses.
The estimation of the individual and population parameters as well as of the covariance

matrices is performed by an EM algorithm as proposed by Dempster et al. (1977).



2. Two-compartment model

The two-compartment model used by Filser (1992) for the characterisation of exposure
to volatile xenobiotics describes uptake, endogenous production, excretion, and the
metabolic elimination of the substance. The model is depicted as follows: a xenobiotic
gas, in this case ethylene, enters the body and is exhaled. This process is described by
introducing two compartments, the first, C;, representing the environment outside the
body, here the inhalation chamber of the exposition system, and the second
compartment, C,, the body itself. The volatile xenobiotic migrates from one
compartment to the other through a theoretical interface. During this process, some
portion of the xenobiotic within the organism, at any stage, is eliminated by metabolic

processes, and another portion is again exhaled (cf. Fig. 1).
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Figure 1. Two-compartment block model in the case of metabolic turnover

In the case of ethylene this substance is partly transformed, by hepatic metabolising

enzymes (cytochrome P-450) to ethylene oxide (Filser and Bolt, 1983). Ethylene oxide is



biologically reactive and thereby genotoxic (Kirkovski et al., 1998). The principles of the
toxicokinetics of this transformation have been extensively studied (Filser and Bolt,
1984; Bolt et al., 1984), and estimates of the carcinogenic risk of ethylene based on its
metabolic transformation to ethylene oxide were published (Bolt and Filser, 1984, 1987).
This paper concentrates on overall first order kinetic processes. Preceding investigations
have indicated that the initial concentrations from 20 to 500 ppm which we used here
were below the point of saturation of ethylene at about 800 ppm, so that the processes
may well be approximated by first order kinetics (Bolt and Filser, 1987).

Moreover, Becka (1998) showed that first order kinetics may also be used as
approximations for nonlinear kinetic processes, e.g., Michaelis-Menten kinetics, if the

observed maximum concentrations do not exceed the point of saturation.

Let yi(?), [ =1, 2, denote the concentration of a xenobiotic in compartment / at time ¢ and
let V; describe the volume of the compartment. A preliminary assumption is that the
compound, in this case ethylene, is metabolised within the body, and that there is no
metabolism back to the parent ethylene, the latter being very likely on toxicological
grounds.

In the case of overall first order kinetics, each partial process can be characterised by one

rate or velocity constant k, that is k3) for the uptake, k!’ for the exhalation, and k.

for the metabolic elimination (cf. Fig. 1). Thus the two-compartment model can be

described by a system of linear differential equations (Becka et al., 1993):
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The solution is given by

3,(6)=1(0)- {(kl[f 42 )exp{ﬂd}: gkz%f] + 4 )exp{/%t}} , 3)
and
=50 {BE I gy gl @

where 7, =%{— (k12 4 5100 40 (L) ) 81 —4k1[§]ke[f]} and »(0) is the

initial concentration in compartment 1 (Urfer and Becka, 1996).

In the practical application we have to take into account, that the individual organisms
have different volumes which are also varying between repeated experimental occasions.
In general, the kinetic parameters of the individuals are estimated first and then
standardised to eliminate the effect of the volume (i.e., slightly different body weights of
the rats). As we use the estimated parameters of the individuals for further calculations,

we estimate the standardised kinetic parameters directly (Selinski et al., 1999).

According to Filser (1992) the individual rates of uptake kX', exhalation k! and

metabolic elimination kif] are related to the respective rates k;,, k,; and k., for a standard
rat of 1000 ml by

kiy! =k, 'v22/3a

k! =kyy v, and (5)

[R] _
k,'=k,-v,, where

v, = (1(:/00) depends on the actual volume of the organism ¥, and the standard volume
2

1000 ml.



Substituting the real kinetic parameters in the (3) and (4) yields

£(B.t)=,(0)= y(0)- {<" + 2 JexpiAy )= (kv + 4, )exp{zlf}},

A —4) (6)
and
=y { b M ) o)t o
where

elik V2ik

1 \/ 2
_ 2/3 1/3 2/3 1/3 5/3
ﬂ’lik,Zik —5 _(k12ikv2ik + K1 Vi +kelikv2ik)i (k12ikv2ik + k14 Vair +kelikv2ik) — 4k k

and B = (ki ka1, ke, y(O))T is the vector of the standardised kinetic parameters and the

initial concentration y(0).

3. Population models

3.1 Notation

The observed concentrations of ethylene in the atmosphere of the exposition system
(compartment 1) are denoted by y;x, with

i=1, ..., [the number of the individual rat

j=1,..., Jthe observations at time points # and

k=1, ..., Kthe number of the experiment.

Equal time points of measurement are only assumed to simplify the notation. The index &

denotes the kth occasion of exposure to 100 ppm ethylene for the experiments of group

A and the kth dose for group B.



First of all, we presume that our observations y;; vary across a nonlinear function
S Byt

Vi = F(Bust)+ €y, i=1,..,10,j=1,.., L k=1,...,5.
The function f'(f3,,¢;) depends on the individual parameter vector S and the time #. It

denotes the expected concentration-time curve of the ith individual at the kth occasion.
T
The parameter vector SBi = (kiza Kot ketiws ya(0))" = (Pik, yu(0))', where @y = (kizu,

kori kg]ik)T represents the vector of the standardised kinetic parameters, differs from

individual to individual and is of dimension p = 4.

Due to the way of application, the initial concentrations y;(0) are not exactly known and
have to be treated as parameters, although we are merely interested in the kinetic
parameters.

Our main interest are not the individual responses to the experimental conditions but is
focussed on a population mean process, which underlies the different individual
processes. The individual kinetic parameter vectors ¢, may be regarded as to vary at
random across an individual mean parameter vector ¢, which describes the general
behaviour of the respective processes for that individual. Furthermore the individual
mean processes are supposed to vary across a population mean process with parameter
vector ¢ in the manner of a random sample. Additionally we suppose that the variances
of the observed concentration-time curves differ from individual to individual and from

occasion to occasion.



3.2 Hierarchical model for group A

Nonlinear hierarchical model

A Bayesian approach according to Racine-Poon (1985) and Racine-Poon and Smith
(1990) is applied to the data. We are interested especially in the variation of the
individual responses at different dosing occasions, the so called interoccasion variability,
and the variation between the individuals, the intersubject variability.

We propose a four-stage nonlinear hierarchical model assuming that our observations y;
of the concentration of ethylene in the atmosphere of the exposition system are

independent and have the following distribution:

given Sy, 2'3{: Vi ~ NCA P 1)), 2'3{) i=1,...,Lj=1,..,Jandk=1,.. ., K,

with Bi=( (05(, vir(0) )T, and @y = (ki2i, korin kelik)T

given 3, Q;: B~ N(B: , Q) i=1,...,1 andk=1,...K,

with B =(¢!, y(0))", and @, = (kiz, ka1i, ker)',

given S, X: B~Nf, X) i=1,...,1,

with  B=(¢", y(0))", and ¢ = (k2, ka1, ku)"

p(p) <1 vV Be R”.



Linear hierarchical model

We obtain the Bayes estimates for the population mean and individual parameter vectors
B, B, and By by transforming the nonlinear hierarchical model into a linear one, such as
provided by Lindley and Smith (1972). For that purpose the observations y; are replaced

by an "almost" sufficient statistic {; with
gk"‘N(ﬁik,T,iCik), izl,...,[,kzl,...,K.
For example, {j; can be chosen as the mean of the posterior density of B . In the case of

uninformative priors for the variances 7, the posterior distribution of S can be well

approximated by its likelihood, so that the maximum likelihood estimate of S can be

used as a good approximation for ¢; (Racine-Poon, 1985).

The resulting linear hierarchical model is given by:

given 6, V.  (~N(6, V),

where ¢=(&n .. G0 0=(0, .., 0) =B ... B 6= ... B"

and V = diag{z’ﬁl C]]], Ce ey TIZK C[K}

given | ,Q2: 0~ N (Z:y, Q),

where 0= (Bi1, ... B w=(B ... B,

10



I 0 - - 0
Ql
. 0 0
Q, N . . . .
Q= ) ,andZ, =0 7 o0 ¢ | 1s a suitable design matrix.
) . .
0 3
Q1 0
00 0 I

given B, A:  w~N(ZsB, A), where y= (B, ..., B, A=diag{Z,... X}, and

Z;=(y, ..., L,)T is a suitable design matrix,

p(f) =< 1, VBe R’

: = : :
The matrix (T,i C, )" denotes the Information matrix:

(Ti?c Cy )_1 =E|-

aZ
mlnL(yl,u"'"yIJK‘ﬁl,l""’ﬁIK’le,l""’TIZK ):| (8)

First of all, we suppose that our concentration-time curves can be well approximated by

first order kinetic processes, adapting the main idea of the approach of Becka (1998).

With the notation of chapter 2 the concentration-time curve in the exposition system is

given by

)]

f(ﬁ p ) =y (0)- {(kmkvzzif + Ay )eXp{ﬂziktj }_ (kZIikvéz/'ls + Ao )eXp{ﬂliktj }}
kot )= Vi

(ﬂlik - ﬂZik )

V..
where v,, = (102(’)"0 ] depends on the volume of the ith rat at the kth occasion V% and

11



2
with Ay < Az < 0 (cf. Selinski and Urfer, 1998, for further details).

1 \/ 2
_ 2/3 1/3 2/3 1/3 5/3
ﬂ’lik,Zik =33 (k12ikv2ik +kyaVar K Vai )i (k12ikv2ik +hyu Vo F K Vau ) — A4k i K i Vo

The vectors of parameters [ in (9) are substituted by their maximum likelihood

estimates {y, i=1,...,10,k=1,...,5.

Estimates in the case of known covariance matrices

In the case of known variances 7, and covariance matrices Q and A estimates of the

individual and population mean parameters vectors By, [, and B can be calculated
following the approach of Lindley and Smith (1972) for linear hierarchical models.
Thus, the posterior distribution of £, given ¢, V, Q, and A is p-variate normal, p = 4,
with mean 8 and covariance matrix 4, where

E =Aa  with (10)
A =212+ Q+ Z,AZT V' 7,7, and a=Z]ZI 7 +Q+ Z,AZ] [ ¢ s the Bayes
estimator of the population mean parameter vector 3.
The Bayes estimate " is normally distributed with mean 3 and covariance matrix A.

The individual kinetic processes are characterised by an individual mean parameter

vector f3; and experiment specific parameter vectors ..

The posterior distribution of £, . . ., B, given ¢, S and A, are independent p-variate
normals, p =4, with means S, i=1, ..., I, and covariance matrices B;, where

-1 X

ﬁi* = |:|:Z(chcik +Qi)_1:|+z_1:| '[(Z(Ticik + Qi)_l ’ gik ]"' 7 ﬁ:| = Bibi , (1)
=

k=1 1



with B = [i( ;c,.k+gz,.)‘l] > and b, = [i( ;c,.k+§z,.)‘1-§,.k]+z-l-ﬁ.

k=1 k=1
So the Bayes estimate ¥ = (8, . . ., )" is given by ' = Bb
with B =2/ (Y +Q)" Z, + A" =diag{B,",...,B;' } and
b=2'V+Q)'¢+A'Z,8=(b,,....b,) .

Hence, we obtain the Bayes estimates 3 as given in (11), with means

E(B')=8, -[i(r,ic,.k +o,) -ﬁ,.]+z-1 B

k=1

and covariance matrices

Cov(ﬁi* ): B, [i (chcik +Qi)_1:|'Bi .

k=1
The posterior distribution of the parameter vectors 6 = (B, . . ., Bx), i=1,...1,

given ¢, B, Q and A are p-variate normal, p = 4, with means ¢ and covariance matrices

D.. Thus the Bayes estimate 6 is given by

Sk

6 =Dd or rather

0;=(8....8,) =Dd, , i=1,...,1 (12)
with D =V~ +{Q+Z,AZ7 | =diag{D",...,D;' } and
d=v'¢+{o+ 2,0z V' 2,2, 8=d,.....d,) , where

(T,.ZIC,.I)_1 0 Q, 0 Y ...y
D = + +{§ ] and
O (TiZI(CiK)_I O Qi .

13



The estimators are normally distributed with means

(cic,)” 0 YB.) |[[@ 0)(z..z)\ (B
E6)=D,- Pl SR 8 I S
YR GO N I ACE) RV

and covariance matrices
Cou(; )= D, -diag{r>C, )" ....(c2C, )} DT

As B will be unknown in the practical application we replace it in (11) and (12) by its
Bayes estimate /3 .

The previous estimators are based on known covariance matrices. However, we have
only vague knowledge about these covariance matrices, and the aim of our investigation
is to gain information about just these covariances, especially with regard to the
interoccasion and interindividual variability. Hence, we need a method to estimate both

the parameter vectors and the covariance matrices. Such a method is presented in the

following section.

Estimators in the case of unknown covariance matrices

In the case of unknown variances 2'3{ ,i=1,...,1L k=1,... K, Racine-Poon and Smith

(1990) suggest to replace them by suitable estimates 7, . Under the assumptions of our
model and furthermore assuming independent variances 7, with vague prior distribution

p(z‘j{)oc 1, the posterior mode of 7, is equivalent to its maximum likelihood estimate

%2 . Thus, we approximate the Bayes estimate of 7, by

J

2 =§-z(y,.jk —f¢t,)f il L Lk=1,.. K (13)
j=1

14



For unknown covariance matrices Racine-Poon and Smith (1990) suggest an EM-type
iterative algorithm as proposed by Dempster et al. (1977) to estimate the individual and
the population mean parameters as well as the covariance matrices 2 and A. We adapt

this algorithm to our four stage model assuming that the inverse covariance matrices

Qi"l ,i=1,...,1 and X' follow Wishart distributions with degrees of freedom p; and
p> and matrices R; and R,, respectively. Thus R /(p;- p-1) and R;'/(p,- p-1) play the
role of prior estimates of €, and £ and the joint posterior density for 3, . . ., B,

Bi...B B Q. .. Q' and > given &4, . . ., {x, is proportional to

-1 1d
TAi?cCik‘ . ] exp{——
=l

]

i=l k=1

2
)i K I K
H|Qi| 'eXp{_%ZE(ﬁﬂc _ﬁi )T Qi_l (ﬁik _ﬁi )}

i=1

=7 -exp{—%i(ﬁi -8z (B, —ﬁ)}- (14)

i 12 (gk _ﬁ'k)T 'C;cl(gik _ﬁi )}

i=l k ITik

Vague knowledge about the inverse covariance matrices Qfl e Q;l ,and X' can be

expressed by choosing p; and p, as small as possible, i. e. p; = p, = p = 4. The choice of

R; and R,, respectively, seems to have little influence on the estimates (Racine-Poon,

1985).

Substituting 7; for 7., if necessary, we obtain the approximations of the Bayes

estimates at the Ith iteration of  the EM-algorithm, B,
) — () O\ g0 _ () ORY ) () ; :
v =\0",...07) 07 =\[),....0 ), Q7 and A", by replacing the covariance

matrices in (3.1), (3.2), and (3.4) by their current approximations Q™ and A" (E-

15



Step) and subsequent calculation of Q' and A" as the posterior modes using B,

w", and 8 ( M-Step).

E-Step

Approximating Q and A in (10) by Q™ and A" we obtain
— -1 A —
B0 = [z{ AR R Y NI ] 721+ sz Az e

(15)
where V = diag{(fiCik ...,(f'iCik ).

Substituting £, Q, and A in (3.2) by 8, Q™" , and A"™, respectively, yields

- -l . _ _
' ZI:ZZT(V_i_Q(l—I)) IZ2 NG 1:| I:ZzT(V‘i'Q(H)) 1§+A(H) 1Z3ﬁ(1_1):|- (16)

In the same way we get 8" by replacing the unknown parameters by their current
estimates in (12):

0" = [I}_I + {Q(H) * ZzA(H)ZzT }_Ir [17—15 * {Q(H) + ZzA(H)ZzT }‘12223ﬁ(1) ] (17)

16



M-Step

Setting 3, v and 6 equal to their current values B, l//(l)z( R, ,(”)T and

0" = ( 1(’11) yeeus B )T the conditional posterior mode of (14) is given by

K380 B0 50 B0Y
QY = = e 1 , i=1,...,1 and (18)
Pr—P—
R} +i(ﬁm —ﬁ(”)(ﬁ.(” 0 )T
E(l) — i=1 (19)

I+p,-p-1
Both steps are repeated until Q, ..., Q, and = converge. Racine-Poon (1985)
suggests as criterion for convergence, that the maximum change in the elements of the

covariance matrices between successive iterations should be less than 0.001.

Reasonable starting values Q!”, ..., Q1 and = are given by

Rl_l +i(§ik —5,; )(gik —5_,». )T
QO = k=l .=, ,1
K+p,—p=2
R4S (E-ZNC -]
E(O) — i=1

>

I+p,-p-3

1 I K

where £, =230, and £ =138 =Y 3L,

i=l k=l

3.3 Hierarchical model for group B

Analysing the experiments of group B it has to be taken into account that the initial

concentration varies from occasion to occasion. Thus the individual and day-dependent

17



initial concentration y;(0) varies across a day-dependent mean yy(0), about 20 ppm for
k= 1, for instance. Therefore the model for group A has to be modified for the

experimental design of group B.

Nonlinear hierarchical model

As we are merely interested in the kinetic parameter we ignore the potential dependence
between their estimates and the initial concentration. Otherwise we would receive a more
complex model which would be much more difficult to estimate as it was the case for
model A. Moreover, assuming overall first order kinetics implies this independence,
although we have to verify this assumption, of course. A suitable test will be presented in
a further paper. Thus, we developed our hierarchical model only for the kinetic
parameters using the Maximum-Likelihood estimates of the initial concentration if

necessary, i.e. for the calculation of the residuals.

18



Hence, we propose a four-stage nonlinear hierarchical model assuming that our
observations y;; of the concentration of ethylene in the atmosphere of the exposition

system are independent and have the following distribution:

given @, yi(0), 750 Y~ NA@u> ya(0), 1)), T2) i=1,...,Lj=1,... Jand

k=1,..., K, with B = (05, yu(0) )7, and @i = (kizw, ki eetin)”

given ¢, Q;: O~ N(@; , Q)), i=1,..,lTandk=1,... K,

with @ = (kizi, koniy ki)'

given @, X: o~ N, X) i=1,...,1,

with o= (ki2, ko, k)"

p(@) o< 1 Ve R’

Linear hierarchical model

The nonlinear hierarchical model is transformed into a linear one by substituting the

observations y;; by the Maximum-Likelihood estimates . Thus, we receive the

following linear model:

19



given 6, ;. £ ~N(6, V),

where £ = (51’1 s ey {N,K ), fik = (Iglzik,lgmk,/gehk )T are the three first
components of the Maximum-Likelihood estimate ¢ of By, €= (6,, . . ., 0 I)T , 0=

(@its - - o 0", V =diag{(t},C,)), . . ., (74Cy)}, and 72C, denotes the left

. . . . -1
upper 3x3 matrix of the inverse of the Information matrix (Ti C,.k) .

given Y, Q: 0~ N (Z:y, Q),

where ,0=(6;,...,0)",0,=(@1,....00  w=(¢1,....,0)

I 0 - e 0
Q, 0
: 0 0
Q= ! ) ,andZ, =[o0 7 o0 : | 1s a suitable design matrix.
) . .
0 3
Q1 (U
00 0 I
given @, A: v~N(Z;0, N),

where @ = (k;5, ko, ko), A =diag{Z, ..., X}, and Z; =I5, . . ., I;)" is a suitable

design matrix,

p(¢) =< 1, Voe R

20



The Bayes estimates 6, i, and ¢ are the same as the estimates in section 3.2 for group
A. Note, that using (10) to (12) in the case of known covariance matrices or rather (15)
to (19) in the case of unknown covariance matrices that the dimension p of the parameter

vectors is three instead of four.

5. Discussion

The present approach simplifies the complex biological processes of highly organised
living organisms by the reduction to two-compartment models and the approximation of
nonlinear kinetics by linear ones. Using linear kinetics we have to be aware of the
possible errors which result from the dependence of the parameters on the concentration
if the underlying processes are nonlinear. Assuming first order kinetics the processes of
uptake, exhalation, and metabolic elimination are independent from the dose. Before
summarising the information provided by experiments within a range of concentrations,
like in group B, it is necessary to verify that a first order approximation of the processes
is valid. In fact, the experiments of group A show a correlation between the metabolism
and the initial concentration. In a further paper a procedure will be presented to detect
such critical departures from linearity.

A further step in the reduction of complexity was the presentation of a simpler model for
a repeated measurement design which ignored the correlation between 3, B, . . ., and
Bk (Selinski and Urfer,1998; Selinski et al., 1999). Assuming independence between /3,
B, . . ., and B estimates for each parameter vector [y can be calculated separately and

the estimation of S and [ requires only the inversion of matrices of size 4x4. Moreover,

21



it has to be checked if the estimation procedure for model A can be improved by
considering only the kinetic parameters like in model B. The size of the matrices which
have to be inverted numerically would reduce to 15 x 15.

Including the initial concentration as parameter in the hierarchical model of group B
leads to a more complicated model which requires the calculation of inverse matrices of
size 35 x 35.

As with increasing size of matrices the error increases exponentially the question is which
model has to be preferred: a quite simple model ignoring the dependency between the
parameter vectors, a more complex model which ignores the initial concentration as
parameter or a model requiring matrix manipulations which produce possibly huge
errors? Furthermore, it has to be checked which model copes better with outliers,
missing data and departure from first order kinetics.

Determining the processes involved in the formation of reactive metabolites is a crucial
step to establish a dose-response relationship for the interesting chemical. The
metabolites may be transformed partly into an inactive form, and others form various
DNA, RNA, and protein adducts. These processes may also contribute to the
nonlinearity of the dose-tumor response curve. Hoel et al. (1983) presume a linear DNA
adduct—tumor relation and conclude that a valid characterisation of the processes of
uptake, elimination, and metabolism is a necessary part of the risk assessment of
potential mutagens and carcinogens.

Various attempts have been published to determine toxicokinetic parameters. Holldnder
et al. (1998) compared log-linear regression, a noncompartmental method, unweighted
and weighted nonlinear least squares regression, multicompartmental methods, using

different weighting schemes. They found that the parameters depended on the model and
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the weighting scheme and stressed the importance of correct assumptions with respect to
the variability, presenting an approach to use information about the analytical method in
order to estimate the variability of the observation.

Gilberg et al. (1999) discussed an extension of the nonlinear random effects model for
the Michaelis-Menten enzyme kinetic by adding a flexible transformation to both sides of
the model. The so called weighted transform-both-sides models are very adaptable with
respect to the error structure. An EM algorithm, which updates the transformation and
weighting parameters every iteration step, was applied to estimate regression and

covariance parameters.

Toxicological data reflect profound complexities of the biology of living individuals.
Recent research on Gibbs sampling has great potential for estimating the parameters of
complex models, because it reduces the problem of dealing simultaneously with a large
number of related parameters into a much simpler problem of dealing with one unknown
quantity at a time. Gilks et al. (1993) have reviewed applications of Gibbs sampling in
immunology, pharmacology, cancer screening, industrial and genetic epidemiology.
Wikle et al. (1998) propose the use of hierarchical Bayesian space-time model with five
stages to achieve more flexible models and methods for the analysis of environmental
data distributed in space and time. They implement their models in a Markov chain
Monte Carlo framework using the Gibbs sampler approach. Increasing familiarity and
experimentation with new Markov chain Monte Carlo methods for exploring and
summarising posterior distributions in Bayesian statistics will lead to new insights in

toxicokinetics.
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