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1. Latent Effects in a Hydrogeological Problem

In the present study we investigate the data provided by the karstwater level moni-
toring system, set up in the Transdanubian Mountains, more precisely in the Bakony,
the Keszthelyi Mountains and the Balaton-Highland. (Here, like in the sequel, the
term karstwater is used for groundwater in karstic areas.) The detailed description
of the monitoring system itself and the geological and hydrogeological situation in
which the system was planned to function and collect data about the water level,
can be found in Markus et al. (1997), as well as the results of our previous study
in determinig the underlying (called also latent or background) effects driving the
karstwater fluctuations. Some changes in the available data and supplementary in-

formations made it inevitable to recalculate the previously obtained results. At the
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same time these recalculated results paved the way to the exploration of the spa-
tial structure of the underlying effects. This purpose required the combined use of

dynamic factor analysis and certain kriging procedures.

By the courtesy of the Hungarian Water Resources Research Center and more
personally of Andras Csepregi, we had access to data of some more monitoring
wells of the above mentioned system, and the complete geological layer-description
registered at the sinking of the wells. On the basis of these new informations some
of the wells, considered in the previous study, had to be excluded because they do
not measure the water level in the main (Triassic) karstic aquifer. So, the final
number of monitoring wells, providing data for the present investigation, was 64.
As it can be seen on Figure 1, their areal distribution was rather scattered. The
water levels in these wells were registered more or less permanently during the
period of 1970-90. Observations after 1990, though available, are not taken into
consideration in this study, since the social and economic changes taking place that
time in Hungary triggered sharp decline in mining and mounting concern towards
environmental damages, and that led to significant changes in the human interference
into the water resources of the area. The recovery processes of nature are of different

character than human interference, so they need distinct study.

The empirical time series of the registered water level - called hydrograph - is
the most important hydrogeological characteristic of a monitoring well. Therefore,
it is plausible to assume that wells with similarly fluctuating hydrographs are in
similar hydrogeological situation, consequently, they are under the influence of the
same underlying effects. Since our final goal is the analysis of the underlying or
latent effects, hydrogaphs have to be the main objects of our study. Unfortunately,
the timing of the observations was not systematic. One way to overcome this dif-
ficulty is to compute yearly averages from the non time-equidistant raw data, and
consider hydrographs of yearly averages. Although it inevitably causes some loss of
information, but in the given case this was reasonable mainly because data available

for comparison was also of the same structure.



Since we now had access to all the registered data, we could control the aver-
aging. Compensating for the high irregularity in the frequencies of observations it
is more adequate to take first monthly averages, and calculate yearly averages only
afterwards, from these monthly averages. This method ensures, that the different
time intervals (e.g. the seasons) represent more equal weights in the yearly averages.

In spite of a more complete data set, we were confronted missing data prob-
lems. As the previous investigations showed Markus et al. (1997), the usual simple
methods of adjusting for missing data, such as replacing it from overall means, or
interpolating from adjacent points, or predicting values from linear trend regression
etc. were not satisfactory. Instead, in the present situation, the high spatial cor-
relations can be used, and the missing values can be replaced with the prediction
from (multiple) linear regression based on the observed highly correlating time se-
ries of the surrounding wells. The correlations between dependent and independent

variables were higher (often much higher) than 0.98 .

STAT. Correlations, Casewise MD deletion, N=20
Variable
M4 NV7 NV9 NVAM NVAM
M4 1,00000 , 97726 , 93717 , 99722 , 99161
NV7 , 97726 1,00000 , 98860 , 97739 ,99469
NV9 , 93717 , 98860 1,00000 , 94076 , 97105
NVAM , 99722 , 97739 , 94076 1,00000 , 99259
NVAM ,99161 , 99469 , 97105 , 99259 1,00000

Figure 1: Correlation among hydrographs

Correlations and close locations were the most important factors in the choice
of the independent variables for multiple regression, while simultanously, the sim-

ilarity of the geological structure had also been carefully checked. As a rule, this



latter coincided for close and highly correlating wells, so we used it for discrimina-
tion only when the number of suitable candidiates for regression had to be lowered.
Figure (1)shows correlations among 5 wells, one of which, NVAM2, has a missing
value at the year 1971. On the base of correlations the wells MARKO4, NV7 and
NVAMI can be selected for the multiple regression. Hydrogeological reasoning goes
against taking MARKO4 into the independent variable list, so the replacement can
be determined by the prediction from the regression with NV7and NVAMI1. The

regression results can be seen on Figure (2).

STAT. Regression Summary for Dependent Variable: NVAM2
R=,99936264 R?= ,99872569 Adjusted R?= , 99861950
F(2,18)=9404,9 p<, 00000 Std.Error of estimate: 1,2407

N=21 St. Err. St. Err.

BETA of BETA B of B t(18) p-level
Intercept -8,36204 | 1,956358 | -4,27429 ,000263
NV7 , 551537 , 034178 , 02808 , 038921 | 16,13741 ,000000
NVAML , 453564 , 034178 , 45571 , 034339 | 13,27081 ,000000

Figure 2: Results of regression

All in all 21 missing from the 1344 data had to be recovered this way, keeping
thus the proportion well below 2% of the overall data number.

What we are interested in is how the fluctuation pattern of an individual
hydrograph can be obtained from the linear combination of several basic fluctuation
patterns, that may correspond to the underlying effects, driving the fluctuation of the
water level. Since the karst is mainly a capillary system, the water level in it follows
- with some easing - the configuration of the terrain, hence the overall magnitude of
the level, - in other words the mean of the hydrographs, - does not provide valuable
information, and is completely ignorable in the analysis of the latent effects. Any

kind of detrending the hydrographs can be misleading, because it would partially
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remove important information about the underlying effects, and the remainder would
be meaningless for further analysis. On the other hand, computing the variance of
time series without removing its trend does not seem to be a meaningful tool to
capture information on the underlying effects.

In order to avoid the situation when wells with greater means or variance
would predominate, we standardised the hydrographs for each and every well to
mean zero and variance one. This did not change the proportion of weights in the
linear combination of basic fluctuation patterns that estimates the hydrograph of
the given well.

The next step in the previous study was the grouping of the wells according to
fluctuation patterns in the hydrographs. This was motivated by the idea that the
latent effects may vary some throughout the area, but wells with similar hydrographs
have to be under the influence of the same underlying effects. So, when concentrating
to the utmost exactness in the determination of the effects then group by group
considerations seem more adequate, whereas a unified approach seems more fruitful
in getting a compatible and comparable weight system at every location, even at
the price that the obtained factors reflect only the overall tendencies of the effects.
It has to be noted, that if the group is too homogeneous, then instead of finding
independent fluctuation patterns that reflect the realistic latent effects, one may
find certain linear combination of it, characteristic of the whole group. It is well
known from ordinary factor analysis that the presence of marker variables is needed
for finding a well interpretable factor solution.

It was a priori clear that two main effects driving the fluctuations are the
infiltration of the water from the precipitation, and the water extraction of the
bauxite and coal mines and the communal water pumps. So, within the limits of
the present paper, we intended to determine and identify these effects and describe
the spatial structure of the infiltration.

Considering all the water extraction data of the area it appeared that the

amount of water, pumped out at Nyirad was three or four times more than all the



rest. The remaining extractions were scattered in location and devided in amount
all over the territory, thus their effect was negligible. For this reason it proved to be
sufficient to use the data of Nyirad for comparison.

Infiltration itself is a very complex process, because the amount of the infiltrat-
ing water depends on the geomorphology, the water conductivity of the superficial
rocks, the air temperature, the amount, duration and the physical state of the pre-
cipitation, and also the vegetation and many other factors. This makes it clear, that
the effect of infiltration changes throughout the mountains, hence the importance of
creating homogeneous groups. Nevertheless the area is not so large that the main
tendencies in the amount of yearly infiltrated water would vary too heavily among
locations. This circumstance justified the validity of the above mentioned unified
approach in order to obtain compatible weights of the infiltration effect in wells.

After these considerations we are in the position to perform dynamic factor

analysis for the correct identification of the underlying effects.

2. Dynamic Factor Analysis

When observations of multiple time series are considered it is often plausible to
assume that there are common driving forces behind them, a few latent effects or
factors, which determine the behaviour of the individual observations. A common
goal in statistics is to identify these latent effects or factor time series. The conven-
tional tool to determine latent variables from observed samples is factor analysis.
As Anderson (1963) pointed out, direct application of factor analysis to multidi-
mensional time series often produces unreliable or misleading results, especially,
when delayed interdependence occurs among the components. The reason is that
conventional factor analysis has been elaborated for independent observations and
independence is not the case for time series. This fact requires the elaboration of a
new technique, capable to take into account the dynamic structure of the observa-

tions. This technique has been named dynamic factor analysis after Geweke (1977).
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Since then different approaches became known, several of which are mentioned in

Markus et al. (1997).

The idea we use goes back to Bankévi, Veliczky and Ziermann (1979, 1992),
though it can be related up to a certain degree to the work of Box and Tiao (1977)
on canonical transformations of time series vectors, too. This factor analysis model
requires the factor time series to fit well to an autoregressive model and to min-
imise a cost function, which is a linear combination of the conditional variance of
the prediction error and the state estimation error. So factors should be well pre-
dictable and the original time series should be reproduced well from them. This
optimisation problem can be solved by an iterative method rather than directly,
that gives the advantage of easy programmability (cf. Ziermann and Michaletzky,
1995). In our previous studies (cf. Markus, Kovacs and Csepregi, 1997, Markus,
Berke, Kovacs, Urfer 1997) we used an optimisation algorithm for quadratic forms
described by Michaletzky, Tusnady, Ziermann and Bolla (1997) and the computer
program developed by them on the base of this algorithm.

Let Y(t) be a sample from the observation of the multidimensional time series

or time series vectors.
Y(t) = (Yi(t),....Yw(t)) ,  0<t<T.

Further assume Y (t) to be weakly stationary apart from a possible linear trend, and
satisfying
Y(t)=A -F+¢€t) (2.1)

with the N x M matrix A, the time series vector F(t) of M independent time series
f:(fl(t)w"-vfM(t))/ 5 OStST,

and the Gaussian white noise vector



Now it is aimed to find optimal, in a certain sense, estimators Fj(t) = fj(t)—s of
the factor time series F;(t). Speaking somewhat heuristically, the estimation of our

model should focus on the following three requirements:

(i) The estimators F(t) = [F;(t)] of the factors F should be a time-independent

linear transformation of the observation Y.
(ii) The factor time series F; should be linearly well predictable from their past.

(iii) Time-independent linear transformation of the factors should provide a ”good”

estimator Y of the observations Y.

In order to meet these requirements and give them a more precise meaning

(i) consider only the class of homogeneous linear estimators of F,

(ii) suppose F to consist of independent autoregressive processes F;(t) of order L;
with a possible linear trend:

Filt) = cjo+ X2 eip - Filt — k) + 6,(1) (2.2)

k=1
and with the Gaussian white noises & = (d,(¢),...,dm(¢))", independent from each
other and from €(¢). Plugging in now the estimated factors into the best predictor
of the autoregressions one gets F;(t) Empirical best the predictor of F(t) as
L

Fj(t) = C50 + ZJ: Cik - Fj(t — k) . (23)

k=1

Though the optimality of this predictor cannot be preserved for the plug in, we will
use f‘(t) = (ﬁl(t), . .,ﬁM(t))/ in 2.3 for the prediction of the estimator F(¢) of

the factors F, given the past of the estimator. Since the observations and thus the



estimations of the factors are known for 0 < ¢ < T' | it is possible to compare the
predictor with the estimator itself, and by centring, get an unbiased estimator Sj(t)

of the noise §;(t) as

50 = By = B — | BT |

_ T
(For any X(t) X denotes the average 52 X(t).) The squared sum £@ or the
=0

1
T+1
weighted squared sum (& of Sj(t) is called the estimated dynamic erroror estimated

weighted dynamic error, respectively:

M T Mo T
ED =3280 . €D =2 w3500
j=11=0 7=1 t=0

(d)

where the constants w; "’ are the dynamic weights.

As of (iii), from the estimated factors one can produce a linear estimator

o~

Y()= (Yi(t)... V() . 0<t<T,

M
Yi(t) =do; 4+ > dij - Fi(1)

i=1

estimating the observed time series Y (¢), the realisations will be called the reesti-

mation of the observation. The "reestimator” opens the way to estimate €(t), the

- [vi-v|

the squared sum ) or the weighted squared sum £ of which is called the esti-

noise in 2.1 as

=
=

a(t) =Yi(t) -

mated static error or estimated weighted static error respectively:

N T N T
EV =33 a? &Y =Y ul-Yan)”.
i=1 t=0 =1 t=0

(s)

where the constants w;” are the static weights.

The estimation of the model means to find the matrices

B=1[b:] , C=lcx , D=[dij],

1=1..N , yg=1..M, k=1,.,L=max];
J
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and the vectors
co = [¢jo],  do = [do,],
of which B determines the estimator of the factors, C and cq the predictor of the
estimator, D and dg the reestimation of the observation.
To fulfil the requirement given in (iii), the estimation of the model, that is the
matrices B, C, D and the vectors ¢y, do, is regarded to be "good” if the sum of
the estimated (weighted) static and the dynamic errors is minimal. This means the

minimisation of the following functional:

N T M T
V()= €D+ €D =3 wl - e+ w3500 L (24)
=1 t=0 7=1 t=0

on the constraints
var(F)=Yp =1y . (2.5)
Let us remark that the ML estimator of the matrices B, C, D seems too
complicated to compute, even though one can determine the density function, but
to find its place of global maximum seems too difficult. To overcome these difficulties

we used the algorithmic solution, mentioned above.

Rather than find a direct optimal solution of 2.4 and 2.5, what seems to be
almost impossible, an iterative approximation is suggested in Bankovi, Veliczky and
Ziermann (1979), a criss-cross algorithm, which was further developed by Michalet-
zky et al. (1997). This means to find for fixed B, D the optimal C, then for fixed
C determine B, D and iterating this procedure until the norm of the difference of
this matrices will be sufficiently small. A more detailed description of the procedure
can be found in Mérkus et al (1997). It is known (Béankovi et al. (1992)), that
neither steps of this procedure could increase the value of the ¥ functional, but a
full analysis of this iteration proved to be too difficult as yet. Practical experiences
and simulations indicate however, that the algorithm is sufficiently stable, and under
broad conditions should provide a unique solution.

Starting from first order AR processes for factors, almost no change could be

experienced when the order was increased. However, we got much better results if we
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dropped the autoregressive term of the first factor, regarding only the 2nd and 3rd
factors as AR 1 processes. The reason possibly is the clear downward trend, caused
by the water extraction. We applied the above mentioned iterative approximation
of the ¥ functional until the change of its value between two consecutive steps of
the iteration exceeded 0.001. For the computation we used a program developed by
Michaletzky, Tusnady, Zierman and Bolla. Since the hydrographs were standardised,
and there was no reason to emphasise the behaviour of this or that monitoring well,
or this or that factor, we chose equal unit static and dynamic weights in the static and
dynamic error terms, as well. Three effects, that is the corresponding three dynamic
factors explain about 84% of the overall variance, although it has to be noted that
the generalisation for the case of dynamic factors of this customary characterisation
of the result of ordinary factor analysis is not quite straightforward. We were able
to identify the first two factors, and it seems for us that the third is describing a

small territorial variance in infiltration.

Naturally, as well as on the basis of the previous investigation, the water
extraction and the infiltration are expected to be the main underlying effects. In
Markus et al. (1997) detailed reasoning is given, here we address only briefly the
identification. It is not the aim of the present paper to analyse the first factor but,

for the sake of completeness, evidence is given that it represents the water extraction.

STAT.
Correlations of Factor 1 and
Wells Influenced by Depression
Wells HGN HGN HGN HGN HGN HGN HGN HGN HGN

22 26 37 46 49 51 55 63 68

FACTORL | .984 | .995 | .988 | .983 | .978 | .994 | .977 | .981 | .991

Figure 3: Correlations of factor 1 and the hydrographs influenced by depression
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Very strong correlation can be found between the dominating first factor and
the hydrographs of monitoring wells just next to the water extraction site (see Figure
(3). These are the wells influenced severely by the depression caused by water
extraction. On Figure (4)the graphs of the above mentioned wells and of the first
factor also show that factor 1 can be regarded as the effect, representing the water

extraction at Nyirad.

Comparison of Factor 1 and Wells Influenced by Depression

2.0 ﬁ\
N

- \
-1.0 N -0 HGN-26
—O— HGN-51
-1.

- y ; < -
1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 HGN-68
1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 —e— FACTOF

Figure 4: Graphs of factor 1 and the hydrographs influenced by depression

The second dynamic factor represent the overall tendencies of the infiltration
throughout the whole investigated area. In order to check it, infiltration has to be
computed by conventional methods. Different empirical methods exist for the com-
putation of the infiltration. These methods have it in common that all calculations
are based on the precipitation data of meteorological stations, and do not depend on
the location, or the local geological structure. For the comparisons we used infiltra-
tions, calculated by four of these methods, called by the names of their creators as
Bocker (1974), Kessler (1954), Maucha (1990) and Morton (1983), see also Csepregi
(1995). As it was pointed out in Markus et al. (1997) the different methods produce
pretty different results, correlating only 0.5-0.7 among themselves.

To identify the second factor, it has to be compared with the computed infil-

tration. In Figure (5) the correlations are given between the second factor and the
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infiltrations, computed by Kessler’s method. Kessler’s infiltrations give the highest

correlations with the 2nd factor just like in the previous investigation (see Markus

et al. (1997)).

STAT,

Meteoro- Correlations of Factor 2

logical and Infiltrations Calculated by Kessler's Method
Stations

A.FA | BVAR | BSZ. | HER. KH. | NYIR URK | V.PR | ZIRC

FACTOR2 .838 | 726 | .728 | .845 | .673 | 713 | .827 | .7l6

155

Figure 5: Correlations of factor 2 and Kessler’s infiltrations

The corresponding graph (see Figure (6)) fit even better than suggested by the

correlations. This is due to the fact that in calculated infiltrations much higher fluc-

tuations can be observed that in empirical ones, this calls for further investigations

and possibly corrections in the methods.

Comparison of Factor 2 and Infiltration Calculated by Kessler's Method

b

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990
1971 1973 1975 1977 1979 1981 1983 1985 1987 1989

Figure 6: Graphs of factor 2 and Kessler’s infiltration

—e— FACTOF

ANTALF
—— HERENIL
& URKUT

On the Balaton Highland, where the effect of water extraction can be excluded
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because of the geological structure, undisturbed wells can be observed, the water
level of which is influenced exclusively by the infiltration. So, it is a natural idea to
compare the hydrographs of these wells straight with the 2nd factor. This can be
seen on (8) Figure 5 while the corresponding correlations are given in(7) In Table
4. The good fit of the graphs, and the high correlations strengthen the statement,

that factor 2 represent infiltration.

STAT,
Correlations of Factor 2 and
Water Levels in Undisturbed Wells

Variable | B.AKAL | B.FURL | B.FUR2 | KADAR. K.KAL | PECS. ZANKA

FACTORZ .8488 L9150 .8947 .9104 .8702 .9189 9067

Figure 7: Correlations of factor 2 and the hydrographs of undisturbed wells

Comparison of Factor 2 and Water Level in Undisturbed Wells

—O— B.Fun
—=m— Kadar
- Pécse

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990
1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 ° Facto

Figure 8: Graphs of factor 2 and hydrographs of undisturbed wells
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3. Spatial Modelling for the Weights of the Infiltration

The method of dynamic factor analysis determined the empirical weights of the
i-th factor in the reestimation of the j-th observations - these are d; ;, the elements
of the D matrix. These weights are straightforward analogues of the factor loadings
in ordinary factor analysis, performed according to the covariance matrix, hence
D will also be called the matrix of dynamic factor loadings or sometimes dynamic
loadings for short. In the given case dynamic factor analysis was performed not just
for unstructured multiple time series but for spatially referenced ones. Therefore a
unique location can be associated to each and every dynamic loading; d; ; is natu-
rally associated with the location of the i-th observation. The obtained empirical
dynamic loadings are estimations of the theoretical ones, incorporating this way ran-
dom errors, and being thus random variables. The original observations Y; represent
a finite and thus incomplete sample from an infinite collection of possible sample
variables distributing continuously all over the investigation area, that is from the
spatial (stochastic) process of karstwater levels. Theoretically, this spatial process
can be decomposed into the linear combinations of the same factors at every loca-
tion, hence the dynamic loadings have obvious meaning at intermediate points as
well | that is at locations other than observation sites. Generally speaking, the fac-
tors may also have spatial structure, but the considered phenomenon can realisticly
be modelled by fixed factor time series. To account for the spatial variability of the
factors themselves seem a difficult but interesting problem that we intend to inves-
tigate in the sequel. These considerations make sense to study the spatial process of
the empirical dynamic factor loadings. To stress spatial dependence introduce the

notation

ZJ‘:{Z]‘(S)28€DCR2}.

for the spatial process of the empirical dynamic loadings of the j-th factor. This

means that the d; ; coefficients give the observed value of the variables Z;(s;). This
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way data have been obtained at N locations, s1,..., sy and Z;(s1), ..., Z;(s,) repre-
sent a finite sample from a continuously parametrised spatial stochastic process all
over D. This layout is often referred to as the statistical analysis of spatial data
called geostatistics, see Cressie (1993, p. 10) for more details. In the present work we
shall investigate the spatial structure of the dynamic loadings of the second factor -
the one corresponding to infiltration in the application - only, and this fact enables
us to omit in what follows the lower index of the spatial processes Z;, by putting
Z(s) = Zy(s) .

In general the random variables of spatial processes possess some kind of spatial
dependence. The spatial dependence of any two variables Z(s) and Z(s + h) is
structured according to the shift h between the corresponding locations s and s+h €
D. The shift represents both distance and direction. For so called isotropic spatial
processes the dependence structure is direction invariant.

The objectives of the spatial analysis within this context of geostatistics are

the following.
(i) Spatial modeling: find an appropriate model for the phenomenon under study.

(ii) Parameter estimation: estimate the parameters of the model which define the

distribution of the spatial process.

(iii) Kriging: predict a realization of the interesting process for any location in the
investigation area where data are needed or for locations on a certain grid for

mapping purposes.

The modeling approach presumes (often unverifiably) that the spatial process
Z(s), s € D, can be decomposed into two components which account additively
for different scales of variation. The first component u(s), s € D, is the large scale
variation component describing the mean or trend of the spatial process. The second
component d(s), s € D is the correlated error process accounting for all the random

variation (often classified as the smooth small-scale, microscale and error variations,
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cf. Cressie (1993, p. 113 ) ) of the process. With this the process is represented by
2(5) = u(s) +8(s),  s€D.

By use of the matrix notation for the sample vector Z = ( Z(s1),..., Z(s,))" with

" and spatially correlated random disturbances

mean vector g = (p(s1), ..., 1t(85) )
vector & = (6(s1),...,0(s,) ) the sample can be represented by the general or spatial
linear model

Z=p+é6, E6)=0 Cov(d)=2X.
The existence of the moments is supposed. To complete the spatial linear model the

mean and covariances can be structured according to some parametric functions.

The large scale variation is expressed as a linear combination of k£ regressors

f(s)" with the coefficient vector B3:

pls) =1(s)'B,

where f(s) = ( fi(s),...fx(s) )" is composed by functions which correspond to ex-
planatory variables such as location coordinates, distances to certain locations,
grouping variables, and so forth (cf. Cressie, 1993, p. 151). The coefficient vec-
tor B is unknown and has to be estimated on the basis of the observed values
(Z(81)y..., Z(3n) ) of the spatial process Z. In modelling the spatial trend of the
dynamic loadings, polynomials in the location coordinates will be used for regres-
sors. Define F := (f(s1)’,...,f(s,)")" the regressor matrix for the sample variables,
and f = f(sg) the vector of regressors for a random variable at location s € D.
Hence, the expectation of the sample variables and the variable Z(sq) are given by
FE(Z)=FpB and E( Z(so)) = '3, respectively.

To represent the spatial dependence structure of the dynamic loading process
the semivariogram

v(h,0) = %Var(Z(s) — Z(s+ h))

is used - as it is usual in geostatistics - instead of the autocovariance function or

covariogram

o(h,8):= COU(Z(S), Z(s+ h))
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For ergodic processes these two functions are connected by
7(h7 0) = 0(07 0) - U(hv 0)

The dependence of the covariance matrix of the sample vector Z on € is sometimes
expressed by the notation 3(6) = ¥ = {COU(Z(SZ'), Z(s;) )} ijl. Further, the
vector of covariance’s between Z(sq) and the sample vector Z is denoted by o (8) =
o= {COU( Z(s0), Z(si) )} ;1' Valid parametric models for the semivariogram and
the covariogram are presented in Cressie (1993, pp. 61-68). There, an interpretation
of the components of the vector 8 is also presented. In the Gaussian case the model
parameter vectors B and 6 define the first and second order moments and thus the
whole process Z.

After the model identification, i.e. choice of the parametric model, the
unknown model parameter vectors 8 and 8 must be estimated. The estimation of
the spatial mean and prediction of the spatial process at any location is possible.

The various known variogram estimators cannot be used directly for spatial
prediction (kriging) what we intend to carry through, because they are not condition-
ally negative definite, which is the well-known property of theoretical variograms.
The idea then is to search for a valid variogram that, as the measure of the spatial
dependence structure, is closest to the estimated spatial dependence in the dynamic
loading process. The space of all valid variogams is a large set over which to search,

so a parametric family of variograms
V={2v:29()=2(-0);0 € 0)

(e.g. linear, exponential, spherical etc.) is chosen. Several goodness-of-fit criteria for
finding the best element of V can be proposed. Cressie (1993, p. 91) notes that the
various least squares criteria require the fewest assumption on the distribution of Z.
In the given case of dynamic loadings, not only the exact but even the asymptotic
distribution of the estimators is too difficult to calculate, and only simulations seem

to be perspectivical in obtaining information on the distribution of Z. Thus the

18



distribution can easily be misspecified, calling for special care to be taken for the
robustness of the used methods. Least squares fittings in general possess these
properties (see e.g. Carroll and Ruppert 1982). Furthermore, in view of the bias
of variogram estimations when spatial trend is present in the model, we decided
to settle at the weighted least squares method of variogram fitting as described in
Cressie (1993, p. 95).

The estimation of the spatial mean is known as trend surface estimation. As-
suming knowledge about the structure parameter 8 the trend surface estimator or

best linear unbiased estimator (BLUE) is given by
fi(so) =13,  soeD.

where for B seems to be reasonable to use the generalised least squares estimate
of B plugging in 615 instead of the true parameter @. Thus the "WLS” estimate
for the trend parameter 3 is given by

— — 1 —
Biwrs = (F'2(0wis)'F) F'X(0yw.s) 'Z. (3.2)

Evaluating the trend surface estimator by use of the estimated structure pa-
rameter é, the empirical best linear unbiased estimator (EBLUE) is obtained.

The prediction of spatial processes is known as kriging. Adopting the para-
metric trend model u(s) = f(s)'8, s € D, the geostatistical method of best linear
unbiased prediction (BLUP) is called universal kriging. The universal kriging pre-

dictor is given by
Z(so) =f'B+0'S"(Z—-FB), so€D.

Similar to the EBLUE, plugging in the estimated parameters for the true but
unknown structure parameter results in empirical best linear unbiased prediction
(EBLUP).

Let us note, that optimality properties of the BLUE and BLUP may not be
shared by the EBLUE and EBLUP, respectively. The uncertainty of the EBLUE
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and EBLUP is measured by the corresponding mean squared error (MSE) and mean
squared prediction error (MSPE). Approximations for these quantities do not exist
in general. A remarkable result, however, is known as the underestimation prob-
lem. This result states that using the estimate 6 for 0 gives the empirical MSE and
empirical MSPE of the EBLUE and the EBLUP, which have the tendency to under-
estimate (in mean) the true MSE of the BLUE and true MSPE of the BLUP. And
by the optimality of the BLUE and BLUP, the corresponding mean squared error
and mean squared prediction error can not be larger than the one of the EBLUE

and EBLUP, respectively (cf. Cressie, 1993, pp. 296-299).

It is clear, that on the one hand the structure parameter 8 cannot be estimated
independently of the trend parameter, on the other hand (3.2) shows that the es-
timation of the trend parameter 3 requires knowledge of the structure parameter.
A possible procedure to overcome this problem is to start with the ordinary least
squares estimate of B3, compute the structure parameter estimation from the residu-
als, fit a variogram model, obtain a generalised least squares estimator of 3 based on
the fitted model, and so forth, the procedure can be itterated. However, it can easily
be illustrated on certain examples (Cressie, 1993, p. 166.) that residuals based on
the most efficient estimator of the trend parameter yield a biased estimator of the
variogram. It is generally true that the bias of a residual based variogram estimator
is small at lags near the origin but more substantial at distant lags. Now, since
our variogram model is fitted by weighted least squares, which puts most weight
on the estimator at small lags, the effect of the bias should be small. Moreover,
because kriging is carried out in local neighbourhoods, the fitted variogram is only
evaluated at smaller lags, precisely where it has been well fitted. The bias is more
likely to affect the estimated kriging variance, which may be smaller than it should
be. The exactness of the universal kriging predictor as well as the estimated kriging
variance may be far more influenced by the distribution of é in the model if that is
mistakenly specified as Gaussian. So in the end of the itterative calculation of the

kriging predictor we carefuly payed attention to the distribution of the residuals.
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The actual calculations of the kriging predictions were carried out using the
SpatialStats module of the S-Plus program package. Ordinary kriging immediately
proved to be inadequate for the spatial prediction of the dynamic loadings of the
second factor. It is further emphasized by the highly non-normal distribution of the
dynamic loadings. Afterwards, universal kriging has been performed with linear,
quadratic, and cubic polynomials as regressors of the hypothesised trend surface.
The spherical family of variograms sems appropriate for fitting to the empirical
variograms of the residuals. Compared to the linear case the fitted variogram for
the residuals of cubic trend removal does not show great improvements, although
the crucial fit around the origin improves somewhat (compare Figures (9), (10)).
The sill value decreases to one third when universal kriging is performed instead
of ordinary one, however, it does not lowers significantly further for the cubic case
compared to the linear trend removal. On the other hand the number of estimated
parameters increases - only 2> has insignificant coefficients, thus only this term can
be dropped. What still may argue for the cubic trend removal is the distribution of
the residuals that gets much closer to normal (see Figure (14)), although in terms of
skewness and curtosis it is still not sufficiently good (cf. Figure (15)). The obtained
kriging predictions ( see Figures 11, 12 are not very different, and reflect well the
geological - sedimentological and tectonic - structure, however the detailed analysis
from these point of view exeeds the framework of the present paper. The map of the
MSPE of the cubic case is given on Figure (13) There is hope to get more information
on the distribution of the dynamic loadings by simulations and then trans-Gaussian

kriging may be used.
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Figure 10: Variogram fitted by WLS to the residuals from cubic trend fitting
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Figure 12: Universal kriging prediction of dynamic loadings with cubic trend fitting

24



220000

200000
|

narth

180000

160000

500000 520000 240000 260000
gast

Figure 13: Standard error of universal kriging prediction of dynamic loadings with

cubic trend fitting

25



Normal Probability Plot of the Original Dynamic Loadings Normal Probability Plot of Dynamic Loadings after Linear Trend Removal
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Figure 14: Normal plot of observations and residuals of linear, quadratic and cubic

trend fitting
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STAT. Descriptive Statistics
Variable
Std. | Skew |Kurt
V. N|Mean| Min| Max|Dev. | ness|osis
ORIGINAL 64 |0.00|-1.1/2.68]1.00]1.16 .54
LIN. TREND RES. 64 |0.00|-1.6|3.05]1.00 .87 .48
QUAD.TREND RES. 64 |0.00|-2.0|2.59]1.00 .78 .14
CUB. TREND RES. 64 |0.00|-2.1/2.58]1.00 .76 .59

Figure 15: Skewness and kurtosis of standardised residuals
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