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A Selective Procedure For
Combining Forecasts

Sven�Oliver Troschke

Department of Statistics� University of Dortmund�

����� Dortmund� Germany

troschke�amadeus�statistik�uni�dortmund�de

Abstract� If there are various forecasts for the same random variable� it is com�

mon practice to combine these forecasts in order to obtain a better forecast� But

an important question is how to perform the combination� especially if the system

under investigation is subject to structural changes and� consequently� the best com�

bination method is not the same all of the time� This paper presents a data driven

approach� which �for each point of time� selects a combination technique from a given

set of combination techniques� Properties and limitations of this selection procedure

are investigated using simulated data from normal distributions�

Keywords� Combination of forecasts� selection predictor�
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� Introduction

Let E�� � � � � Ep be predictors of a one�dimensional random variable �� The predictors

may or may not be unbiased for �� Suppose that they can be calculated from data

available at each point of time t � IN � We assume in this paper that neither of the

predictors is best all of the time� but that di�erent predictors may be best at di�erent

times� The notion �best� may refer to any criterion chosen to judge the quality of a

predictor such as root mean square error �RMSE�� mean absolute deviation �MAD��

and so on�

Wondering which of E�� � � � � Ep to use for the prediction of �� one may determine

the best predictor from theoretical considerations or from past data and use this

predictor in the future� But each predictor may use information that the others

neglect� Thus� the idea is to combine the forecasts in order to obtain a better forecast

for �� But how can this be done most eciently�






Note that a special case of the problem described above is combining estimators for

a constant ��

There has been a great number of articles in the forecasting literature dealing with

the various ways to obtain a good combination� after the idea of combining fore�

casts was introduced by Bates and Granger �����	� In fact� the number of o
ered

alternatives is so large that one may easily lose sight� not knowing which to prefer�

The idea in this article is to preselect a set S of good combination techniques and

let past data decide which of these techniques should be used�

Applying this idea to single predictors means to select the best predictor from a

given set of predictors� As indicated above this method is not very promising and

can be outperformed by combined forecasts� since they use more information�

But applying the idea to combined forecasts is a di
erent issue� because each com�

bined predictor already contains all the available information� Thus it is interesting

to see how this idea works out in practical situations� For this purpose we will con�

duct a simulation study using normally distributed data� Another analysis using

German macroeconomic forecast data will throw additional light on this topic� It

will be reported in a future Technical Report �Troschke �����		�

A di
erent view on the selection predictor is provided by the following thoughts� To

choose that combination technique� which was best in the past is a very intuitive

way of deciding for one of the many possible combination techniques� The selection

predictor makes this decision at each point of time based on the past data available

and so may a person who is in charge of deciding for a combination technique� Our

analysis judges the e
ects of this kind of decision making�

Section  of this report will introduce the so called selection predictor� which formal�

izes the above idea� Section � presents the design of a simulation study conducted to

reveal the properties of the selection predictor� Comparison of di
erent predictors

will be done using the �empirical	 root mean square error criterion� which will be

described in Section �� Section � reports and evaluates the results of the simulation

study� before Section � concludes this paper with some �nal remarks�

� The Selection Predictor

If there are several possible methods to forecast the values of a random variable � we

wish to select the most e�cient method at each time t� A way to make this selection

on the basis of past data is provided by the following de�nition� The amount of past

data used is determined by the choice of the parameter h�

As indicated in the introduction the set S of possible methods should consist of





predictors using all the available information� In general� these will be combined

predictors calculated from a number of single predictors available to the statistician�

Hence� the predictors in S will di�er in the way the combination is performed� This

includes weighted combinations which di�er in the way the combination weights are

calculated�

De�nition ��� �Selection predictor�

Let S � fC�� � � � � Ckg be a set of predictors for a one�dimensional random vari�

able � and let Cj�i� denote the forecast provided by Cj at time i� Furthermore� let

RMSE�C�� �� t� h�� � � � �RMSE�Ck� �� t� h� be the respective root mean square errors

of the predictors from S with respect to � calculated at time t from the last h points

of time� i�e�

RMSE�Cj� �� t� h� �

�
�	

h

t��X
i�t�h

�Cj�i�� ��i���

�
A
���

� j � 	� � � � � k �

Then the selection predictor S�t� h� � S�C��t�� � � � � Ck�t�� h� at time t on the basis

of the past h points of time is de
ned by the following procedure�

� Identify the predictor Cj� � S producing the smallest value RMSE�Cj� �� t� h��

j � 	� � � � � k�

� The selection predictor at time t is S�t� h� � Cj��t��

The question how h should be chosen will always have to be answered with respect

to the system under consideration� One would expect that larger values for h are

appropriate if the system exhibits a certain stability in the sense that the relative

quality of the predictors does not change too fast� Smaller values� even as small as

h � 	� should be chosen if this kind of stability is absent� How h should be chosen

exactly will depend on the grade of stability in the system�

In forecasting we will often �if not always� observe that the relative quality of the

forecasts changes with time� If there are� e�g�� two forecasters of economic variables�

one forecaster may provide relatively better forecasts when the economy is in a

downswing than if the economy is in an upswing� Such situations are often referred

to as structural changes�

The simplest way to react to such structural changes is to update the combina�

tion weights whenever a new combination is to be performed� Bates and Granger

�	��� suggest several simple time�varying weights� Diebold and Pauly �	���� pro�

pose more sophisticated techniques� all extensions of the standard regression�based

�



theory of forecast combination� Deutsch� Granger and Ter�asvirta �����	 investigate

several variants of switching regression models
 Here di�erent regression models are

employed� dependent on which state the system under investigation is supposed to

be in�

Again� the reader is left with a great variety of combination techniques with no guide

when to apply which technique� The selective procedure introduced in this paper

tries to overcome this di�culty� The set S may contain combined predictors with

simple timevarying weights as well as predictors based on sophisticated regression

models or switching regression models� It may also contain combined predictors

based on rank techniques �Russel and Adam �����	� Klapper �����		 or predictors

employing covariance adjustment techniques� if more than one variable is to be

forecasted �Rao ������ ����	� Ihorst �����	� Trenkler and Ihorst �����		� The data

driven selection procedure will choose the method which produced the best results

in the past and apply this technique� Thus one may possibly bene�t from all the

suggested models�

In the next sections we will analyse the properties of the selection predictor by means

of a simulation study�

� Design of the Simulation Study

Our simulation study is designed to handle a situation where the relative quality of

two predictors varies with time� The study comprises n points of time t � �� � � � � n�

The number n will be referred to as the length of the study� Let X�t	 and Y �t	

be two normally distributed random variables with a common mean ��t	 but with

possibly di�erent variances ��
X
�t	 and ��

Y
�t	� i�e� X�t	 � N ���t	� ��

X
�t		 and Y �t	 �

N ���t	� ��
Y
�t		� While � � � is held �xed� the relation between ��

X
�t	 and ��

Y
�t	

changes during the study as will be described below�

Since � is assumed to be constant we are in the special case of estimation mentioned

in the introduction� The goal is to estimate � in such a way that the associated root

mean square error �RMSE	 is minimized� For this purpose at each point of time

t � f�� � � � � ng in the study we observe independent samples X��t	� � � � � X���t	 and

Y��t	� � � � � Y���t	 from the respective random variables X�t	 and Y �t	�

Two standard estimators of � are the respective means of the X and Y samples�

i�e�

X�t	 �
�

��

��X

i��

Xi�t	 and Y �t	 �
�

��

��X

i��

Yi�t	 t � �� � � � � n �

�
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Figure �� Variation of ��

Y
during the study for study length n � ���

Each of these two estimators is based on only one of the two samples and� thus�

does not contain all the available information� Consequently� combined estimators

should be used� Combined estimators calculated from the two standard estimators

include convex combinations T��t	 of X�t	 and Y �t	� i�e�

T��t	 � �X�t	 
 ��� �	Y �t	 � � � IR� t � �� � � � � n �

A look at the way we intend to change ��

X
and ��

Y
helps us determining the combined

estimators we should consider� While holding ��

X
� � �xed we will vary ��

Y
in the

following way� ��

Y
� ��� is held constant during the �rst sixth of the study� then

it increases linearly to ��

Y
� �� during the second sixth of the study� then linear

increases to ��

Y
� �� ��

Y
� �� and ��

Y
� � follow in the subsequent sixths of the

study� In the �nal sixth ��

Y
� � is held constant again� Obviously� we can state that

the smaller we choose n �the length of the study	� the faster we vary ��

Y
� The way

how ��

Y
is varied can be seen from Figure � for n � ���

Since X�t	 and Y �t	 are unbiased for all t � �� � � � � n the consequence of changing ��

Y

as described above is� that at the beginning of the study Y �t	 is a better estimator





�in terms of root mean square error� than X�t�� in the middle of the study they are

equally good and at the end X�t� is better than Y �t�� By this we create a process in

which the best �combined� estimator will not be the same all the time� a situation

in which the use of selection estimators may be bene�cial�

Varying ��

Y as described above includes only one change from ��

Y � ��

X to ��

Y � ��

X �

Other variation schemes could be applied as well� especially such schemes where

the ranking of ��

Y and ��

X changes more frequently during the study� We believe�

however� that the e�ect of such schemes can be approximated by regarding the

variation described above with small values for n�

The respective values ���� 	�
� �� 
�	 and � for ��

Y correspond to the optimal ��

values ���� 	���� ���� 
��� and ��� in the convex combination T��t�  �X�t�����

��Y �t�� Since X�t� and Y �t� are independent the optimal value �� is given by �cf�

Bates and Granger �������

�� 
Var�Y �t��

Var�X�t�� � Var�Y �t��


��

Y �t�

��

X�t� � ��

Y �t�
�

Thus� T����t� is optimal at the beginning of the study and T����t� is optimal at

the end� Hence� we will use S  fT���� T���g as the set S from which the selection

estimator will choose� i�e� the selection estimator will choose from

T����t� 
�

�
X�t� �

�

�
Y �t� and T����t� 

�

�
X�t� �

�

�
Y �t� �

We deliberately chose this very simple constellation of estimators with constant

weights� We believe that the basic properties of the selection estimator can be seen

best using this choice� since they are not masked by di�culties that may arise when

using more sophisticated combination techniques� If we used� for example� weighted

means of X and Y with weights dependent on past data� the estimation of the

weights would be an additional problem disguising the properties of the selection

estimator�

With S  fT���� T���g the selection estimator can only choose between T��� and T����

Nevertheless� the selection estimator may well be better than both� T��� and T����

since it may choose the better combined estimator at each point of time during the

study�

To calculate the selection estimator we must be aware that it relies on the perfor�

mance of the estimators from S in the past� That is why a certain amount of past

data is needed before the selection procedure may be employed� These data are

provided by the �rst ten points of time �Phase I��

�



Consequently� Phase II where the performances of all estimators under consideration

are compared� starts with t � �� and ends with t � n� The comparison is done in

terms of �empirical� root mean square errors� see Section � for details�

In the simulation study the whole process �Phase I and II� is repeated � 			 times�

The results from the single repetitions are recorded for further evaluation with the

aim to answer the following questions connected with the selection estimator


��� How does the selection estimator perform relative to the single estimators X

and Y �

��� How does the selection estimator perform relative to the arithmetic mean of

X and Y �

�� How does the selection estimator perform relative to the estimators T��� and

T��� from which it selects�

��� How is the quality of the selection estimator a�ected by the speed of the change

of ��

Y �

��� How much past data should the selection procedure use to make its choice

from the set of estimators S� �This refers to the choice of the parameter h in

the de�nition of the selection estimator��

��� What is the e�ect if we enlarge the set S of estimators from which the selection

procedure chooses�

The �rst �ve questions will be answered by a simulation study� in which we will

calculate the �Phase II� RMSE�values of X� Y � T���� T���� selection estimators from

S � fT���� T���g� and of the arithmetic mean

T��� �
�

�
X �

�

�
Y

of X and Y � respectively� Note that T��� is not only the arithmetic mean of X and

Y but also the arithmetic mean of T��� and T��� and of T���� and T����� which will

be introduced later on�

Question � will be answered by looking at RMSE�values for varying lengths n of the

simulation study� ��

Y steadily increases from ��� to � regardless of the choice for n�

Consequently� if n is a small value the change of ��

Y is quite fast� whereas for large

values of n the change is very slow� In our simulation study we will consider n � ���

n � �� n � ��� n � ���� n � ��� and n � ����

�



To investigate Question � within the �rst study we will employ two di�erent strate�

gies for the calculation of the selection estimator� On the one hand at time t the

selection procedure will choose the estimator with the smallest RMSE�value deter�

mined from the past �� points of time	 i�e� we choose h 
 �� in the de�nition of the

selection estimator� On the other hand at time t the selection procedure will choose

the estimator with the smallest RMSE�value determined from all points of time up

to t��	 i�e� we choose h 
 t��� The latter strategy is often employed with the idea

not to waste any information from past data	 while the former presumes that past

data may become too old to be valid for the current point of time�

Of course	 other choices for h may be reasonable� As indicated in Section � the best

choice for h will always depend on the properties of the system under investigation�

In order to throw additional light on this topic a second simulation study is carried

out� Here the RMSE�values of the selection estimator from S 
 fT���� T���g are

calculated for varying h� For n 
 �� and n 
 � we will investigate h 
 �	 h 
 �	

h 
 	 h 
 �	 h 
 � and h 
 ��	 for n 
 ��	 n 
 ���	 n 
 ��� and n 
 ��� we

will additionally consider h 
 �� and h 
 ��� Since we want to use h 
 �� and

h 
 �� we prolonged Phase I for the larger study lengths n	 i�e� for n 
 ��	 n 
 ���	

n 
 ��� and n 
 ��� we will have Phase I from t 
 � to t 
 �� and Phase II from

t 
 �� to t 
 n�

The �nal Question ��� will be answered by a third simulation study� Here we will

include further estimators in the set S from which the selection estimator chooses�

The further estimators will be the arithmetic mean T���	

T���� 

�

��
X �

�

��
Y and T���� 


�

��
X �

�

��
Y �

These estimators are also optimal at some time during the study	 T���� after one

third	 T���� after two thirds	 and T��� after half of the study�

It should be noted that the three simulation studies are independent of each other	

i�e� they are not using the same random data but new data are generated for each

study� Consequently	 the corresponding tables will not show exactly the same RMSE�

values for the same choices of parameters� By comparing these values the reader may

get an impression of the variation of the average from � ��� simulation runs�

� Error Measurement

To judge the performance of an estimator T 	 we will calculate the �empirical� RMSE

of T with respect to � �here � � �� on the basis of the data from t 
 �� to t 
 n

�



�Phase II�� i�e�

RMSE�T� �� n� �� n� ��� �

�
�

n� ��

nX
t���

�T �t�� ���
�
���

�

Here T �t� denotes the estimate provided by T at time t�

The arithmetic mean T��� � ���	��X �Y � of the single estimators under considera


tion is a simple but very e�cient combined estimator� It proves successful in many

practical studies and very often outperforms much more sophisticated combination

techniques� A very comprehensive study of this kind is reported by Makridakis et

al� ���	�� Makridakis and Winkler ������ and Winkler and Makridakis ������

The arithmetic mean is more robust with respect to changes of the relative quality

of the estimators than most other combination techniques� This appears to be the

reason for its success and this is why the performance of the arithmetic mean is the

touchstone against which all other combination techniques have to be measured�

Consequently� throughout this paper we will give our results not in terms of the

respective root mean square errors �i�e� RMSE�T� ��� but in terms of the root mean

square errors relative to the root mean square error of the arithmetic mean �i�e�

RMSE�T� ���RMSE�T���� ���� These values will be referred to as �relative RMSE


values��

� Results

Table � shows the RMSE
values �relative to the RMSE of the arithmetic mean� of

X� Y � T���� T���� and of two selection estimators calculated from S � fT���� T���g�

The �rst selection estimator uses past data from the last �� points of time �h � ����

while the second uses all available past data �h � t � ��� All values are average

values from � ��� simulation runs as described in Section �� The values have been

truncated after the fourth decimal�

��� How does the selection estimator perform relative to the the single

estimators X and Y �

As can be seen from Table � the selection estimators outperform X and Y by far

�with the only exception being the case n � �� where the selection estimator using all

points of time is slightly worse than X�� This had to be expected� since the selection

estimators choose from combined estimators and� thus� use more information than

X or Y separately�

The above impression is con�rmed by Table � in the appendix� Here we have recorded

how often �in percent of the � ��� simulation runs� the selection estimator was better

�



S�T���� T����

n X Y T��� T��� �� p�o�t� all p�o�t�

�� �����	 ��
�	� ��	��� �����
 ������ �����

� ����� ������ ����
� ���	� ���
�� ����	�

�� ����		 ���	� ����
� ����	� ����� ����	


�	� ��	��� ������ ���
� ������ ���	�� ������

��� ��	��� ������ ����� ����
� ���	 �����	

	�� ��		
 ����	� ����� ���
�	 ���	�� �����


Table �� Selection from two estimators� Average RMSE�values �relative to the RMSE

of the arithmetic mean� from � ��� simulation runs�

than both� X and Y � one of them � none of them� The selection estimators were

never worse than both� and from n � � on they were better than both in most of

the simulation runs� Again� the selection estimator using �� points of time showed

better results than the selection estimator using all points of time�

��� How does the selection estimator perform relative to the arithmetic

mean of X and Y �

From Table � we see that the selection estimator using �� points of time outperforms

the arithmetic mean from n � � on� by up to 
�� percent� For n � �� these two

estimators are approximately equal� The selection estimator using all points of time

is worse than T��� in general� Only from n � �	� on the selection estimator wins by

a small margin�

Table � in the appendix reveals the distribution of the relative RMSE�values of the

estimators� To see how often �in percent of the � ��� simulation runs� the estimators

could outperform the arithmetic mean we may have a look at the third column of

Table �� Columns four through nine allow to judge by what margin the estimators

were better � worse than T����

The three histograms in Figure 	 correspond to speci�c rows of Table ��

For the short study length n � �� we see that the selection estimator from S �

fT���� T���g using �� points of time is about as good as T���� The distribution of

the relative RMSE�values is almost symmetric around �� For larger study lengths n

�e�g� n � �	�� we observe that the distribution changes in favour of the selection

estimator� A gain of � to �� percent with respect to T��� is observed most frequently�

The performance of the selection estimator from S � fT���� T���g using all points of

time is much worse�

��
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��



��� How does the selection estimator perform relative to the estimators

T��� and T��� from which it selects�

Of course one would wish that the selection estimator outperforms the estimators

from which it selects or that it is as good as the best estimator from S� But since we

do not know beforehand which of the estimators from S will be the best� we might

also be satis�ed if the selection estimator outperforms many of the estimators in S�

For S � fT���� T���g we can see from Table � that the selection estimator using ten

points of time is better than T��� for all study lengths n and better than T��� from

n � �� on� The selection estimator using all points of time is better than T��� for

all n as well� but it is also worse than T��� for all n�

Table � in the appendix records how often �in percent of the � 			 simulation runs


the selection estimator was better than both� T��� and T��� � one of them � none of

them� For the smaller study lengths n � �� and n � � the selection estimator using

�	 points of time is at least as good as the better estimator of T��� and T��� in only

�� to �� percent of the simulation runs� But it is better than at least one of these

estimators in �� to �� percent of the simulation runs� For larger n these percentages

rise enormously� The selection estimator using �	 points of time outperforms T���

and T��� in most of the simulation runs� The selection estimator using all points of

time performs much worse again�

��� How is the quality of the selection estimator a�ected by the speed of

the change of ��

Y �

Recall that the speed of the change of ��

Y is manipulated by varying the study

length n� As indicated by the answers to the previous questions� it must be stated

that the performance of the selection estimators becomes the better the larger the

study length n grows� i�e� the slower ��

Y changes� Since there is not much change

in the relative RMSE�values after n � ��� we can assume� however� that a state of

saturation is reached �Table �
�

For the smallest n in our study �n � ��
 the selection estimator using �	 points

of time is about as good a choice as the arithmetic mean and for larger n�values

this selection estimator outperforms the arithmetic mean and exhibits satisfying

properties�

��� How much past data should the selection procedure use to make its

choice from the set of estimators S�

Regarding all questions considered above the selection estimator using ten points of

time performed better than the selection estimator using all points of time� This is

con�rmed by a look at Table � in the appendix� which gives head�to�head results

for these two estimators�

��



h � � h � � h � � h � � h � � h � �� h � �� h � ��

n � �� �	���� �	�
�� �	���
 �	���� �	�
�� �	���� � �

n � �� �	���� �	�
�� �	���
 �	���� �	��� �	��
� � �

n � �� �	���� �	�
�� �	���� �	���� �	�� �	��� �	��
 �	���

n � ��� �	��� �	�
�
 �	��� �	��� �	��� �	���� �	���� �	����

n � �
� �	���� �	�
�� �	���� �	��� �	��� �	���� �	���� �	��
�

n � �� �	��� �	��

 �	��� �	� �	���� �	��� �	���� �	��


Table �� Selection estimators from S � fT���� T���g� Average RMSE�values �relative

to the RMSE of the arithmetic mean� from ���� simulation runs

Even for n � �� we see that �� points of time is at least as good as all points of time

in 
� percent of the simulation runs� and for larger n to choose �� points of time is

better in �� to �� percent of the simulation runs	 Hence� we can give the advice not

to use too old data for the selection process� The farther past is not so important

compared to the latest performances of the estimators in S	 Data from how far back

should be considered will depend on the special situation under investigation	

The second simulation study� reported in Table �� allows some additional insight

concerning this topic	 With the usual choices for n we investigated several choices

for h and observed the relative RMSE�values �averages from ���� simulation runs�

all values truncated after the fourth decimal�	 Recall that the relative RMSE�values

for n � ��� n � ���� n � �
� and n � �� have been calculated on the basis of the

data from t � �� to t � n� while the relative RMSE�values for n � �� and n � ��

have been calculated using the data from t � �� to t � n	

We observe that the slower we change ��

Y � i	e	 the larger we choose the study length

n� the larger we should choose the parameter h� which represents the amount of past

data used in the selection procedure	

For �xed n we see that the relative RMSE�values are high for small h	 With in�

creasing h the RMSE�values go down �rst� but from some h on they go up again	

This indicates that there is an optimal choice for h dependent on the choice of n	

This con�rms the intuition that one should neither use too few data �i	e	 neglect

information� nor too old data	

Reading Table � columnwise we observe that the performance of the selection esti�

mator with smaller choices for h is almost independent of the speed of the change in

��

Y 	 For larger h we can con�rm that there is a certain point of saturation regarding

the study length n	

All in all we see that the selection estimators generally outperformed the arithmetic

��



mean whenever the parameter h was reasonably chosen�

��� What is the e�ect if we enlarge the set S of estimators from which

the selection procedure chooses�

Table � collects the RMSE�values �relative to the RMSE of the arithmetic mean� of

several selection estimators based on di�erent sets S with up to seven estimators� As

a consequence from the results of the �rst two studies	 we chose the data on which

the selection procedure is based to comprise the last ten points of time only �and

Phase II starts with t 
 ���� Also	 it seems to be su�cient to investigate n 
 �	

n 
 ��	 n 
 �� and n 
 ���� Despite the recommendation given in Sections � and

�	 we have also considered sets S including the non combined estimators X and Y �

The conjecture that the use of these estimators is not bene�cial is con�rmed by the

outcome of the simulation� Again	 all values are average values from � ��� simulation

runs which have been truncated after the fourth decimal�

For the cases where S consists of only two estimators we get similar results concern�

ing the performance of the selection estimators relative to the estimators from S as

in Question � above� Of course	 for S 
 fX� Y g the relative RMSE�values are far

higher than for the sets S consisting of combined estimators�

Whenever a set S consisting of combined estimators only	 is enhanced by X and Y

the relative RMSE�values drop by about ����� Hence	 we can reassure that S should

consist of combined estimators only�

If we restrict our considerations to sets S with combined estimators only	 we can

state that adding a further estimator to S almost allways reduces the relative RMSE

�for n 
 � there are minor inconsistencies in that sense�� It is obvious	 however	

that the e�ect of adding a further estimator is smaller	 if the number of estimators

in S is larger� Consequently	 one might restrict oneself to employ a set S with a few

good estimators rather than a set with a large number of estimators�

Similar to the third column of Table �	 Table � in the appendix shows how often

�in percent from the � ��� simulation runs� the selection estimators were able to

outperform the arithmetic mean� While this was the case in about �� percent of the

simulation runs for n 
 �	 the percentage rises up to � percent for larger study

lengths�

Finally	 Table  in the appendix records how often �in percent from the � ���

simulation runs� the selection estimators could outperform the estimators from S�

Given are the percentages for the cases when the selection estimator was at least as

good as j estimators from S	 but not as good as j � � estimators for j 
 �� � � � � ��

For n 
 � the selection estimators are in the mid�eld for most of the simulation

runs	 i�e� they are at least as good as half of the estimators from S	 but there

��



S n � �� n � �� n � �� n � ���

fXg ������ ������ ����	� ������

fY g ��
��� �����
 �����
 ����
�

fT���g �����
 ���
	� ���		� ����
�

fT���g ������ ������ ������ ����	�

fT����g ������ ���

	 ������ ����
�

fT����g ������ ���	
� ����	� ������

fT���� T���g ����		 ����	� ������ ������

fT����� T����g ������ ����
� �����	 ���	��

fX� Y g ���	�� ������ ������ ������

fT���� T���� T���g ������ �����	 ������ ������

fT����� T���� T����g �����	 ������ ������ ���	�


fX� T���� Y g ������ ������ ������ ������

fT���� T����� T����� T���g ������ �����
 ����	� ������

fX� T���� T���� Y g ���	�� �����
 ������ ������

fX� T����� T����� Y g �����
 ����	� ������ ���
��

fT���� T����� T���� T����� T���g ������ ������ ����	� �����


fX� T���� T���� T���� Y g �����	 ����
� ������ ������

fX� T����� T���� T����� Y g ������ ������ ������ ���
��

fX� T���� T����� T����� T���� Y g ������ ����
� ������ ���	��

fX� T���� T����� T���� T����� T���� Y g ������ ������ ������ ���	��

Table � Selection from up to seven estimators Average RMSE�values �relative to

the RMSE of the arithmetic mean� from � ��� simulation runs�

��



is a considerable number of simulation runs �� to �� percent� where the selection

estimator is even worse than all the estimators from S� For larger study lengths n�

and hence slower change of ��
Y
� the selection estimators can outperform more and

more of the estimators from S� For n 	 �
� the selection estimators are better than

all of the estimators from S in about �� percent of the simulation runs�

� Conclusions

It has been shown that the selection predictor approach is very promising if the

relative quality of the predictors does not change too fast� Hence� this approach

might be successful in situations where forecasts are done quite frequently� whereas

it might be less benecial� when there is a rather long period between forecasts�

Here� the meaning of �quite frequently� or of �a rather long time� must be determined

regarding the topic under investigation�

Another fact that should be payed attention to is that the data which form the

basis for the selection process should not be too old� so that the selection process

is sensitive to changes in the relative quality of the predictors� On the other hand�

the amount of past data used in the selection procedure should not be too small� in

order not to waste valuable information� We found evidence that there is an optimal

compromise between these two demands� i�e� an optimal choice of the parameter h�

If the relative quality of the predictors does not change too fast and if h is reasonably

chosen a selection predictor may outperform all predictors from the set S as well as

the arithmetic mean of the single forecasts�

Including additional �combined� predictors in S improves on the performance of the

selection predictor� especially for larger values of n� i�e� slower changes of the relative

quality of the predictors� Of course� the additional predictors should be reasonably

chosen� o�ering a good alternative to the predictors already available in S for at

least some possible cases� A certain point of saturation could be observed regarding

the number of included predictors as well as regarding the slowness of the change of

�
�

Y
�

Including non combined predictors in S reduces the quality of the selection predictor�

If a set S consisting of combined predictors only� is enhanced with noncombined

predictors the performance of the selection predictor gets worse�

All the above results have been deduced from a simulation study where the pre�

dictors in S are quite simple� in the sense that they are convex combinations of X

and Y with �xed combination weights� Using the selection procedure with combina�

tion techniques that need to estimate the weights from past data has an important

��



consequence� The general approach when using such combination techniques is to

split the available data into two parts� Then the �rst part is used to estimate the

combination weights and the second part is used to judge the performance of the

predictors� When employing selection procedures� however� the available data must

be split in three parts� To calculate and judge the selection predictor by the third

part of the data� we need to know about the performance of the predictors from S

within the second part� But to calculate the predictors from S for the second part of

the data� we need to estimate the respective combination weights from the �rst part

of the data� Thus� employing selection predictors requires an additional splitting of

the data� Phases II and I from Section � need to be supplemented by a Phase ��

The selective procedure developed in this report is of interest as a method to choose

from a great many of possible combination techniques� The necessity to introduce

this procedure arose from an investigation of German macro economic forecast data

using covariance adjustment techniques �introduced by Rao �	
��� 	
��� Ihorst

�	

�� Trenkler and Ihorst �	

�� This work is presented in another technical

report �Troschke �	

��

	�
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A Tables

n
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than both

equal to

the better
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the worse

worse

than both
�� p�o�t� �� ����� ����� ����	 ����� �����


� ���
� ����� ����� ����� �����

�� ����
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 ����� �����

�	� ����� ����� ����� ����� �����

��� ����� ����� ����� ����� �����

	�� ����� ����� ����� ����� �����

Table � Selection estimators from S � fT���� T���g vs� X and Y �
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Interval for relative RMSE�values
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Table �� Distribution of RMSE�values �relative to the RMSE of the arithmetic mean�

from � ��� simulation runs for various selection estimators	
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Table � Selection estimators from S � fT���� T���g vs� T��� and T����

n
�� p�o�t�

better
equal

all p�o�t�

better
�� ����� ����
 �����

�� ��	

 ����� ���
�

�� ����� ����� ���	�

��� ����	 ����� �����

��� ����� ����� �����

��� ����� ����� �����

Table 	 Selection estimators from S � fT���� T���g �� points of time vs� all points

of time�
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Table � Selection from up to �ve estimators Percentage �calculated from � ���

simulation runs� of outperforming the arithmetic mean�
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