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Abstract

In a recent paper Gonz�alez Manteiga and Vilar Fern�andez ������ considered the

problem of testing linearity of a regression under MA��� structure of the errors using
a weighted L��distance between a parametric and a nonparametric �t� They established

asymptotic normality of the corresponding test statistic under the hypothesis and under

local alternatives� In the present paper we extend these results and establish asymptotic

normality of the statistic under �xed alternatives� This result is then used to prove that

the optimal �with respect to uniform maximization of power� weight function in the test

of Gonz�alez Manteiga and Vilar Fern�andez ������ is given by the Lebesgue measure

independently of the design density�

The paper also discusses several extensions of tests proposed by Azzalini and Bow�

man ����
�� Zheng ������ and Dette ������ to the case of non�independent errors and

compares these methods with the method of Gonz�alez Manteiga and Vilar Fern�andez

������� It is demonstrated that among the kernel based methods the approach of the
latter authors is the most e�cient from an asymptotic point of view�

Keywords� Test of linearity� nonparametric regression� moving average process� optimal weighted
least squares� asymptotic relative e�ciency

� Introduction

Consider the common nonparametric regression model

Yi � m�xi� � �i i � 	� � � � � n�	
	�

	



where m denotes the regression function� xi the ith explanatory variable varying in the interval
��� 	 and the �i form a triangular array of random errors with zero mean
 It is an important
question in applied statistics if a linear model describes the data adequately � i
e


H� � m�x� �

pX
j��

�jgj�x� � x � ��� 	��	
��

where g�� � � � � gp are given linearly independent functions and � � ���� � � � � �p�
T � � � R

p de�
notes the vector of parameters
 Linear models are attractive among practitioners because they
describe the relation between the response and the predictor in a concise way
 Much e�ort has
been devoted to the problem of checking linearity in the recent literature� because misspeci��
cation of a linear model may lead to serious errors in the subsequent data analysis
 For some
recent literature we refer to Eubank and Hart �	����� Azzalini and Bowman �	����� Brodeau
�	����� Stute� Gonz�alez Manteiga� Presedo Quindimil �	����� Dette and Munk �	����� Al�
cal�a� Christ�obal� Gonz�alez Manteiga �	���� or Dette �	����
 While most authors consider the
case of independent innovations much less progress has been made in the problem of checking
linearity in the case of dependent errors

Recently� Gonz�alez Manteiga and Vilar Fern�andez �	���� studied the problem of testing the
lack of �t of a parametric regression under an MA��� structure of the errors by considering
the weighted L��distance

�T ���
n �

	

n

nX
i��

f �mn�xi��
pX

j��

��jgj�xi�g�w�xi��	
��

where w denotes a �known� weight function� ��n � ����� � � � � ��p�
T the weighted �with respect

to w� LSE in the assumed linear regression and �mn is the nonparametric curve estimator of
Gasser and M�uller �	����
 Note that originally a smoothed version of the parametric �t was

considered in T
���
n in order to avoid problems with the bias �see also H�ardle and Mammen

�	����
 The di�erences between the two statistics are minor and will be explained at the

end of Section �
 Therefore we will also denote T
���
n as the statistic introduced by Gonz�alez

Manteiga and Vilar Fern�andez �	����
 The statistic �	
�� de�nes an empirical distance between
a parametric and nonparametric estimate of the regression and the null hypothesis �	
��

is rejected for large values of �T
���
n � Gonz�alez Manteiga and Vilar Fern�andez �	���� proved

asymptotic normality of �T
���
n under the hypothesis of linearity and under local alternatives

and as a consequence they obtained the consistency of this procedure
 A bootstrap procedure
of this test was examined by means of a simulation study in Vilar Fern�andez and Gonz�alez
Manteiga �	����


In this paper we are interested in the asymptotic behaviour of the statistic �T
���
n �and several

related tests� under �xed alternatives
 These results are important for at least two reasons

On the one hand we obtain estimates of the type II error which are of particular interest if
the hypothesis of linearity is not rejected
 On the other hand we will demonstrate below that
these results can be used for the determination of an optimal weight function w in the statistic
�T
���
n such that the �asymptotic� power at any �xed alternative becomes maximal


The paper will be organized as follows
 In Section � we introduce the necessary notation and
establish asymptotic normality of �T

���
n under �xed alternatives
 This result is used to prove

�



that the uniform weight function maximizes the �asymptotic� power of the corresponding
test under any �xed alternative and that this property does not depend on the underlying
design density
 Section � discusses generalizations of the tests of Azzalini and Bowman �	�����
Zheng �	���� and Dette �	���� to the case of errors with MA��� structure and compares the
di�erent methods from a local asymptotic point of view
 In particular it is shown that from an
asymptotic viewpoint the approach of Gonz�alez Manteiga and Vilar Fern�andez �	���� yields
a most e�cient procedure for testing linearity under MA��� structure of the errors
 Finally�
some of the proofs are given in Section �


� The statistic T
�	�
n and its asymptotic distribution un�

der �xed alternatives

Throughout this paper we consider the regression model �	
	� with a �xed design given by

i

n
�

Z xi

�

f�t�dt��
	�

where f is a positive density on the interval ��� 	 �see Sacks and Ylvisaker �	����
 We also
assume that

M�
� �

Z �

�

�m�x�� gT �x����f�x�w�x�dx

is minimal at a unique point �� � �� where �� denotes the interior of � � R
p �note that

M�
� � � if and only if the hypothesis of linearity is valid�
 In the general regression model we

use the nonparametric curve estimate of Gasser and M�uller �	����

�mn�x� �
	

h

nX
j��

Yj �
Z sj

sj��

K�
x� s

h
�ds��
��

where s� � �� sn � 	� sj�� � xj � sj �j � �� � � � � n�� h is the bandwidth and K a symmetric

kernel with compact support� say ��	� 	� For the asymptotic analysis of the statistic T
���
n

in �	
�� we require the following basic assumptions �see also Gonz�alez Manteiga and Vilar
Fern�andez �	����
 The design density� the regression� the weight and kernel function are
assumed to be su�ciently smooth� that is

g�� � � � � gp� w� f�m � C�r���� 	� K � C������ 	��
��

where r � � and C�p���� 	 denotes the set of p�times continuously di�erentiable functions

Throughout this paper

Up � spanfg�� � � � � gpg��
��

denotes the linear subspace spanned by the linearly independent regression functions g�� � � � � gp
and obviously the null hypothesis �	
�� is valid if and only if

m � Up �

�



The errors �i are generated by a stationary causal process

�i �
�X
j��

bjei�j�

where feig is a sequence of independent identically distributed random variables with zero
mean� zero kurtosis� ��e � Var�e� ��� such that

E�jeij���� ����
��

�for some 	 
 �� and the autocovariance function ��k� � E����k�� � ��e
P�

j�� bjbj�k is
absolutely summable and additionally

�X
s���

jsjj��s�j �����
��

Finally� we assume that the bandwidth in ��
�� satis�es

nh	�� 	�� hn������������ 	 ����
��

and that the weight function has support contained in the interval ��� 	� The following theorem

�part b� speci�es the asymptotic distribution of the statistic T
���
n introduced by Gonz�alez

Manteiga and Vilar Fern�andez �	���� under �xed alternatives
 Because there is a term missing
in the asymptotic bias under the hypothesis of linearity given by the lastnamed authors we
also restate it here �part a�


Theorem ���� Assume that ������ ����� 	 ���
� are satis�ed and n	��

�a� Under the hypothesis of linearity we have

n
p
h

�
T ���
n � B�

nh

�
D�	 N ��� ������
��

where the asymptotic bias and variance are given by

��� � �
� �X
s���

��s�
�� Z �

��

�K 
K���z� dz

Z �

�

w��x� dx���
��

B� �
�X

s���

��s�

Z �

��

K��z� dz

Z �

�

w�x� dx���
	��

respectively and K 
K denotes the convolution of K with itself�

�b� Under a �xed alternative m �� Up � spanfg�� � � � � gpg we have

p
n

�
T ���
n �M�

� �
B�

nh

�
D�	 N ��� ������
		�

�



where the asymptotic bias and variance are given by

M�
� �

Z �

�

w�x����x�f�x� dx���
	��

��� � �
�X

s���

��s�

Z �

�

w��x����x�f�x� dx���
	��

� � m � PUp
m and PUp

denotes the orthogonal projection onto Up with respect to the

inner product � q�� q� 
�
R �
�
q��x�q��x�w�x�f�x� dx�

It is important to note the di�erent rates of convergence under the null hypothesis and alter�
native in Theorem �
	
 While under the hypothesis of linearity �and under local alternatives

converging to the null at a rate �n
p
h����� the variance of T

���
n is of order �n�h���� it is of

order n�� under �xed alternatives
 The second part of Theorem �
	 is particularly useful for
the analysis of the type II error of the test which rejects the hypothesis whenever

n
p
hfT ���

n �B�nhg 
 u�������
	��

�u��� is the �	��� quantile of the standard normal distribution and in practice B� and �
�
� have

to be replaced by consistent estimates
 Because the acceptance of the null hypothesis yields
to a data analysis adapted to the linear model this error is often considered as more important
than the type I error
 By Theorem �
	 b� the probability of such an error is approximately
given by

P ��rejection � � P �n
p
hfT ���

n � B�

nh
g 
 u��������
	��

� P
�pn
��
fT ���

n �M�
� �

B�

nh
g 
 ��

��

u���p
nh

�
p
n

��
M�

�

�

� !�

p
n

��
M�

� �
��
��

u���p
nh

� � !�

p
n

��
M�

� �

where ���� M
�
� and ��� are de�ned in ��
��� ��
	��� ��
	��� respectively
 A further important

application of the second part of Theorem �
	 is given in the following corollary� which identi�es
an optimal weight function such that the asymptotic power becomes maximal


Corollary ���� Under the assumptions of Theorem ��� the asymptotic power

!�

p
nM�

�

��
�

of the test ������ is maximized for the weight function proportional to the Lebesgue density on
the interval ��� 	 uniformly with respect to m �� Up�

Proof� In order to make the dependence of the asymptotic power on the weight function
w more explicit we denote the quantities in ��
	�� and ��
	�� by M�

� �w�� �w and ����w��

�



respectively� and obtain

�
M�

� �w�

���w�
�� �

�
R �
�
w�x���

w�x�f�x�dx�
�

�
P�

s��� ��s�
R �
�
w��x���

w�x�f�x�dx
��
	��

�
�
R �
�
w�x��w�x����x�f�x�dx�

�

�
P�

s��� ��s�
R �
�
w��x���

w�x�f�x�dx

�
R �
�
��

��x�f�x�dx

�
P�

s��� ��s�
�
�M�

� ���

�����

��
where � denotes the Lebesgue density and the inequality follows from Cauchy"s inequality
applied to the factors w�x��w�x�

p
f�x� and

p
f�x����x�� Discussing equality in ��
	�� shows

that the optimal weight function has to be constant
 Therefore the Lebesgue density �or any
multiple� maximizes the asymptotic power independently of the speci�c alternative


�

Remark ���� We note that Gonz�alez Manteiga and Vilar Fern�andez �	���� worked with a

modi�ed weighted LSE #�n in the de�nition of T
���
n � which minimizes

nX
i��

f �mn�xi�� gT �xi��g�w�xi��

Theorem �
	 and Corollary �
� remain valid in this case
 Under the null hypothesis of linearity
this method avoids a bias of order O�h�r� �see also H�ardle and Mammen �	����
 However�
under �xed alternatives this bias also appears if the smoothed version of the weighted LSE
is used
 Because the main interest of this paper is the asymptotic behaviour under �xed
alternatives we worked with the classical weighted LSE and used a su�ciently small bandwidth
�see assumption ��
�� to obtain the order o�	� for the corresponding term in the bias of the
standardized statistic


� Related tests of linearity�

In this section we discuss the asymptotic behaviour of several related tests which were recently
introduced in the context of independent observations
 We begin with a test statistic proposed
by Zheng �	����

T ���
n �

	

n�n� 	�h

X
i��j

K�
xi � xj

h
�w�xi�w�xj���i��j��
	�

where ��i are the residuals formed from a weighted least squares �t� i
e


��i � Yi �
pX

���

g��xi������
��

�note that in contrast to Zheng"s �	���� work we introduced a weight function in the de�nition

of T
���
n �

�



Theorem ���� If the assumptions of Theorem ��� are satis�ed we have under the null hy
pothesis of linearity

n
p
h
�
T ���
n �B�nh

� D�	 N ��� ����

where the asymptotic variance and bias are given by

��� � �
� �X
s���

��s�
�� Z �

�

f ��x�w��x�dx

Z �

��

K��z� dz��
��

B� � K���
�X

s����s ���

��s�

Z �

�

w��x�f�x�dx

Under a �xed alternative we obtain

p
n
�
T ���
n �M�

� �
#B�

nh

�
D�	 N ��� �����

where the asymptotic bias and variance are given by

M�
� �

Z
���x�f ��x�w��x�dx

#B� � B� �K���

Z �

�

���x�w��x�f�x�dx

��� � �
�X

s���

��s�

Z �

�

f�x�w��x�f��fw��x�� PUp��fw��x�g�dx��
��

Our next example considers the asymptotic behaviour of the test of Dette �	����� who studied
a di�erence of variance estimators as test statistic� i
e


T �	�
n � ���LSE � ���HM�

Here ���LSE is the weighted least squares estimator of the variance in the linear regression model
and ���HM is a weighted version of the nonparametric estimator introduced by Hall and Marron
�	���� which is de�ned by

���HM �
	

�

nX
i��

�
Yi �

Xn

j��
wijYj

��
w�xi�

� � n� �
nX
i��

wii �
nX
i��

nX
k��

w�
ik��
��

wij �
K
�xi�xj

h

�
Pn

l��K
�
xi�xl
h

� �
�



Theorem ���� If the assumptions of Theorem ��� are satis�ed we have under the null hy
pothesis of linearity

n
p
h

�
T �	�
n � B	

nh

�
D�	 N ��� ����

where the asymptotic bias and variance are given by

B	 �
�X

s����s���

��s�

�
�K����

Z �

��

K��x� dx

	Z �

�

w�x�dx

��� � �
� �X
s���

��s�
�� Z �

��

f�K�x�� �K 
K��x�g�dx
Z �

�

w��x�dx��
��

Under a �xed alternative we obtain

p
n

�
T �	�
n �M�

� �
B	

nh

�
D�	 N ��� ����

where the asymptotic variance is given by

��� � �
�X

s���

��s�

Z �

�

f�x�w��x����x�dx��
��

Corollary ���� Under the assumptions of Theorem ��� the asymptotic power of the test which
rejects H�� whenever

n
p
h�T �	�

n � B	

nh
� 
 u�����

is maximized for the weight function proportional to the density of the Lebesgue measure
uniformly with respect to m �� Up�
A very similar statistic was considered by Azzalini and Bowman �	����

T ���
n �

��T ��� ��TM ��

��TM ��

where �� � �
p
w�x������ � � � �

p
w�xn���n�

T is the vector of �weighted� residuals formed from a
weighted LSE �t� M � �In �W �T �In �W � and W � �wij�

n
ij�� is the matrix de�ned by the

weights ��
��
 Roughly speaking� this statistic is obtained from the statistic T
�	�
n replacing the

original observations by residuals from a parametric �t


Theorem ���� If the assumptions of Theorem ��� are satis�ed we have under the null hy
pothesis of linearity

n
p
h

�
T ���
n � B�

nh

�
D�	 N ��� ����

��

�



where the asymptotic bias is given by

B� �

P�
s��� ��s�

�

�
�K����

Z �

��

K��z� dz

	Z �

�

w�x�dx�

��� is de�ned in ����� and � is a constant of proportionality given by

� � ����

Z �

�

w�x�p�x�dx

Under a �xed alternative we obtain

p
n

�
T ���
n � M�

�

�
� B�

nh

�
D�	 N ��� ����

��

where ��� is de�ned in ���
��

Corollary ���� Under the assumptions of Theorem ��� the asymptotic power of the test which
rejects H�� whenever

n
p
h�T ���

n � B�

nh
� 
 u������

is maximized for the weight function proportional to the density of the Lebesgue measure
uniformly with respect to m �� Up�

Remark ���� Note that we are not able to derive a result similar to Corollary �
� and �
�
about the optimal weight function for the statistical test proposed by Zheng �	����� because
the asymptotic variance under the alternative in Theorem �
	 is more complicated compared
to Theorem �
� and �
�


We will conclude this section with a brief comparison of the di�erent methods based on T
���
n �

T
���
n � Calculations similar as those used in the derivation of ��
	�� show that the asymptotic

power of the test based on T
�i�
n is given by

pi � !�
p
n
M�

�

x
���
i

� x
���
i

x
���
i

u���p
nh

� i � 	� �� ���
��

where �for j � �� 	�

x�j�i �



�j if i � 	

�j if i � �� �

and ���� �
�
�� �

�
�� �

�
� are de�ned in ��
��� ��
	��� ��
�� and ��
��� respectively
 The application of

the Lebesgue measure as optimal weight function makes the dominating term in ��
�� for all
methods equal to

p
n
M�

�

��
�
p
n
�R �

�
���x�f�x�dx

�
P�

s��� ��s�

� �

�

���
��

�



Note that derivation of an optimal weight function for Zheng"s �	���� statistic is not possible
because of the complicated structure of the limiting variance ��� under �xed alternatives �see
Theorem �
	
 In this case the power of the corresponding test is given by

p� � !�
p
n
M�

�

��
� ��u���

��
p
nh

� y

��
p
nh

� � !�
p
n
M�

�

��
� ��u���

��
p
nh

���
	��

where y � K���
R �
�
���x�w��x�f�x�dx and ���� �

�
� are de�ned in ��
�� and ��
��� respectively


The following result shows that the dominating term in ��
	�� is smaller than the term in ��
��


Consequently for any weight function a test of linearity based on T
���
n is �asymptotically� less

e�cient than procedures based on T
���
n � T

�	�
n and T

���
n provided that the Lebesgue measure is

used as the optimal weight function in these procedures


Lemma ��	� Under the assumptions of Theorem ��� it follows

�
�X

s���

��s�

�
M�

�

��

��

�

R �
�
���x�w��x�f ��x�dxR �

�
f�x�w��x�f��fw��x�� PUp��fw��x�g�dx

�
Z �

�

���x�f�x�dx

for every weight function w� such that the integrals in this inequality exist�

It follows from ��
�� that for the remaining procedures the power is maximized by minimizing

the asymptotic variance under the null hypothesis
 Our �nal result shows that x
���
i becomes

minimal for the test of Gonz�alez Manteiga and Vilar Fern�andez �	���� and consequently this
procedure is asymptotically most powerful among the kernel based methods discussed in this
paper


Lemma ��
� For any square integrable density K we haveZ
�K 
K���x�dx �

Z
K��x�dx �

Z
��K �K 
K���x�dx

or equivalently

��� � ��� � ����

� Proofs

Because all proofs are similar� we restrict ourselves exemplarily to a proof of Theorem �
	� for
which the asymptotics is slightly more complicated
 For the sake of a transparent notation
we only consider the case w � � �here � denotes the density of the Lebesgue measure on the
interval ��� 	��Without loss of generality we assume orthonormality of the regression functions
g�� � � � � gp with respect to the density f� Introducing the notation g�x� � �g��x�� � � � � gp�x��

T

the residuals in ��
�� can be written as

��i � �i ���xi�� gT �xi�f��n � ��g��
	�

	�



where �� is the unique minimizer of
R �
�
�m�x�� gT �x����f�x�dx� Our �rst Lemma speci�es the

asymptotic behaviour of ��n � �� under the null hypothesis and �xed alternatives


Lemma A��� Under the assumptions of Theorem ���� w  	 and orthonormal regression
functions we have for any m � C�r���� 	

p
n���n � ��� �

	p
n

nX
i��

g�xi��i � op�	�
D�	 N ���

�X
s���

��s�Ip�

where Ip denotes the p� p identity matrix�

Proof� Recalling the notation ��xi� � �m � PUpm��xi� � m�xi� � �T� g�xi� we obtain Yi �
��xi� � gT �xi��� � �i and

p
n���n � ��� �

p
nB��

n f 	
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nX
i��

g�xi���xi� �
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i��

g�xi��ig

where

Bn �
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T �xi� � Ip �O�

	

n
���
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is the design matrix of the LSE

��n � B��
n

	

n

nX
i��

g�xi�Yi�

For the �rst term in the sum we note that

	

n

nX
i��

g�xi���xi� �

Z �

�

g�x���x�f�x�dx�O�
	

n
� � O�

	

n
�

where the last estimate follows from the fact that �� � �� is the unique minimizer ofZ �

�

�m�x�� �Tg�x���f�x�dx�

Observing ��
�� this establishes the �rst equality of Lemma A
	
 The asymptotic normal�
ity now follows exactly by the same arguments as given by Gonz�alez Manteiga and Vilar
Fern�andez �	���� in the proof of their Theorem 	


�

Throughout the proof of Theorem �
	 we make use of the decomposition

T ���
n � V��n � �fV ���

��n � V
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which is obtained from ��
	� and the notation
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h
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Proof of Part a� of Theorem ���� Under the hypothesis of linearity �  � we have

V ���
��n � V ���

	�n � V �	�
	�n � �� The remaining terms are treated essentially in the same way as in

Gonz�alez Manteiga and Vilar Fern�andez �	���� and therefore we only state the main steps
here
 We have

V
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��n � op�

	

n
p
h
��V

���
	�n � op�

	

n
p
h
���
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and for the asymptotic bias and variance of V��n
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��r�
�� Z �

�

f ��x� dx

Z �
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K��z� dz � o�
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���
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Note that the derivation of ��
�� requires a �nite �rst moment of the autocovariance function
as assumed in ��
�� and the condition nh	�� 	 � speci�ed in ��
��
 These assumptions
are necessary but not stated explicitly in Gonz�alez Manteiga and Vilar Fern�andez �	����

Finally� the asymptotic normality of n

p
h�V��n�E�V��n� follows from a central limit theorem

for triangular arrays with m�n� dependent main part �see Niewenhuis �	����


Proof of part b� of Theorem ���� The statements given in ��
�� of the previous paragraph
show
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where V
�	�
	�n is nonrandom and asymptotically equivalent to
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Combining this estimate with ��
�� and ��
�� yields for the statistic of interest
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For the variance of the dominating term on the right hand side of ��
�� we obtain
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where we used the representation of
p
n���n � ��� of Lemma A
	
 Changing the order of

summation yields
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Summarizing these calculations gives

lim
n��

�nV �V
���
��n � V

���
	�n � � �

�X
s���

��s�

Z �

�

f�x�f��f��x�� PUp��f��x�g�dx � ������
		�

In order to establish asymptotic normality we apply Theorem �
� of Nieuwenhuis �	���� to
the statistic
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where �note that we have applied Lemma A
	 in the de�nition of the Xi�n�
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We are now establishing conditions �C	�� �C�� and �C��� in Theorem �
� of Nieuwenhuis
�	���� noting that b�n � Var�

Pn
i��Xi�n� � �����n� � o�	n� by ��
	��
 We start with the

condition �C�� and obtain
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where we used jck�nj � O� �
n
� �uniformly with respect to k � f	� � � � � ng� in the second estimate


This establishes condition �C�� in Nieuwenhuis �	����� i
e
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because all estimates are independent of i� j� A similar argument yields
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which gives the corresponding estimate �C���� that is
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We �nally have to prove the �� � 	��moment condition �C	� for the arrays �Xi�nbn� and
� $Xi�n�m�n�bn�� To this end we note that
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where we used Minkowski"s inequality in the second step
 Because this estimate also holds
if m�n� is replaced by �� we have proved condition �C	� for the array �Xi�nbn�� The corre�
sponding condition for the array � $Xi�n�m�n�bn� is now obtained from ��
	�� and Minkowski"s
inequality� which gives

Ej $Xi�n�m�n�j��� �
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o���
The asymptotic normality under a �xed alternative now follows from ��
��� ��
		�� ��
	�� and
Theorem �
� in Nieuwenhuis �	����
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Proof of Lemma ��	� Assume that the regression functions are orthonormal with respect
to the measure w�x�f�x�dx� then
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which proves the assertion of the Lemma
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Proof of Lemma ��
� Using Jensen"s inequality and Fubini"s theorem we obtainZ
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 For the second part we note that
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where we used the �rst inequality in the last step
 This proves Lemma �
�
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